5-1 CTOD試験 荷重点変位制御システム・・・・・・33P
5-2 予備試験CTOD試験結果(荷重-荷重点変位)・・・・34~41P
5-3 本試験CTOD試験結果 (荷重-荷重点変位)・・・・42P
5-4 本試験CTOD試験体の破面写真(SM490YB)・・・43~72P

5-1 CTOD試験 荷重点変位制御システム

CTOD (3点曲げ) 試験 荷重点変位制御試験システム

-33-

5-2 予備試験CTOD試験結果(荷重一荷重点変位)

-34-

荷重点変位 クリップゲージ変位 2

(mm)

3

0 1 0

-37-

-38-

-39-

-40-

5-3 本試験CTOD試験結果 (荷重一荷重点変位)

-42-

5-4 本試験CTOD試験体の破面写真(SM490YB)

写真3-1a 擬へき開破面(予ひずみ0%材)

写真3-1b 擬へき開破面(予ひずみ3%材)

写真 3 - 1 c 擬へき開破面(予ひずみ 7.5%材)

写真3-2 予ひずみ0%材におけるディンプル

写真3-3 よひずみ3%材における粒界破面

調査結果、今日の橋梁ではSM490Y材が重量比で約50%を占め、SS4 00が30%程度使用されている事が分かった。シャルピー値の規定がある鋼材 (B、C)は33%程度を占めることが分かった。

図 2-1 構造形式による各種鋼材の使用割合

図 2-2 各種鋼材のシャルピー値(調査結果)

-47-

鋼板板厚	シャルピー値(最低~最高)	板枚数	備考
17	119 ~ 295J	19	
18	100 ~ 263J	73	
19	87 ~ 286J	106	
20	110 ~ 267J	19	
21	95 ~ 246J	28	
22	110 ~ 277J	76	
23	115 ~ 277J	15	
24	130 ~ 256J	24	
25	145 ~ 271J	49	
26	163 ~ 266J	16	
27	160 ~ 266J	15	
28	155 ~ 295J	51	
29	168 ~ 279J	3	資料不足
30	170 ~ 260J	18	
31	160 ~	1	資料不足
32	166 ~ 267J	24	

表2-7 板厚毎のシャルピー値調査結果(SM490YB)

図 2-3 シャルピー値分布範囲(SM 4 9 0 Y B)

衝撃値分	} 布(J)	A社	A社	A社	A社	A社	B社	C社	D社	D社	D社	備考
	0-19											
	20-39											
	40-59											
衝	60-79											
	80-99		1									
	100-119	7	1									
	120-139		2									
	140-159		1		2							
撃	160-179		1	9		17					-	
	180-199			g	4							
	200-219	3		13	7							
	220-239			8			12	1	33	8	11	
	240-259			1				2	11	45	21	
値	260-279							2			11	
	280-299											
	300-319											
	320-339											
	340-359			1.								
扳枚数	(枚)	10	6	40	13	17	12	5	14	53	43	213
重量	(kg)	40327	21322	94885	49164	38619	30934	37552	25623	224139	212038	774603
板厚	(1111)	18~22	18~23	19~32	19~22	17~27	18~24	20~28	22~30	18~30	22~30	17~32

表2~8 同一鋼塊でのシャルピー値の分布状態(SM490YB)

26

750

図 3-2 試験片採取位置(大型試験片)

25

図 3-3 シャルピー試験片形状 (JIS Z 2202)

図 3-4 CTOD 試験片形状(BS 5762-1979)

CTOD試験片への疲労亀裂導入、ならびにCTOD試験概要については添付 資料参照。

3-4 試験結果

予備試験、本試験結果は以下の通り。

3-4-1 予備試験結果

SM490YB材における、0%および7、5%歪材の試験結果は以下の通り。

(1)シャルピー試験結果

予 歪 7.5% の 歪 時 効 材 の V E の 落 ち 幅 は、 ー 2 5 ° C 以 上 に お い て 30 ~ 40% 程 度 で あ り ー 2 7 ° C 以 上 で 27.5J を 満 た し て い る 。

図3-5 シャルピー試験結果(予備試験結果)

図 3 - 6 C T O D 試験結果(予備試験結果) 個々の C T O D 試験(荷重 一 荷重 点変位)結果は巻末資料参照

図 3-7 許容最大欠陥特性寸法(予備試験結果)

図 3-8 許容表面欠陥寸法(予備試験結果)

図 3-9 RTWの相関式によるJ遷移曲線シフト図(予備試験結果)

図 3 - 1 0 RTWの相関式によるJの試験値一推定値(予備試験結果)

3-4-2 本試験結果

(1)シャルピー試験結果

シャルピー値においてSM490YBは、素材時のシャルピー値が非常 に低い事もあって、3.0%、7.5% 歪では規定値(27.5J)を満足出来なかった。 SM400Bは、平均的なシャルピー値より低めの材料であったが、 歪量 7.5% でも十分規定値を満足した。また、両鋼材とも余歪の増加につれて、 遷移曲線が高温側に移動しており、歪時効による靱性の低下が認められた。

図 3-11 シャルピー吸収エネルギーー温度曲線

図 3-12 予歪とシャルピー吸収エネルギーの関係

(2) CTOD試験結果

CTOD値の規定値は、図3-13、-14に示す。海洋構造物に関す る規定の「API RP 2Z」では溶接熱影響部で試験温度-10°Cで0.25mm以 上を要求しているが、SM400Bはほぼ上回っているが、SM490 YBは大きく下回った結果となった。またシャルピー試験結果同様に余 歪の量にしたがって遷移曲線の高温側へのシフトが認められた。なお歪 時効はシャルピー試験より明確に現れており、両鋼材とも3%歪で靭性 値が急激に低下し、3~7%での低下率は小さい。

図 3-13 CTOD-温度曲線

図 3-14 予歪量とCTODの関係

個々のCTOD試験(荷重一荷重点変位)結果は巻末資料参照

遷移温	度の	上昇量
-----	----	-----

	予歪3%	予歪7.5%
SM400B	13°C	22°C

シャルピー吸収エネルギー遷移曲線

図 3-1 5 歪時効による遷移温度の上昇(シャルピー試験)

、要我	:日府	σ	日晷
垣1夕	/皿/文	v)_	レチト星

	予歪3%	予歪7.5%
SM400B	28°C	35°C

図 3-1 6 歪時効による遷移温度の上昇(CTOD試験)

図 3-1 7 許容欠陥特性寸法

○:推定値 △:実測値

図 3-1 9 C T O D の実測値とW E S 3 0 0 3 G 種による推定値(SM400B)

〇:推定値 △:実測値

図 3-2 0 C T O D の実測値とW E S 3 0 0 3 G 種による推定値(SM490YB)

○:推定値 △:実測値

図 3 - 2 1 C T O D の実測値とR T W 委員会の推定式による推定値(SM400B)

○:推定値 △:実測値

図 3-2 2 CTODの実測値とRTW委員会の推定式による推定値(SM490YB)

図 3-2 3 WES 3003G種によるCTOD推定値と実測値の相関

図3-24 RTW委員会の提案式によるCTOD値と実測値の相関

5-1 CTOD試験 荷重点変位制御システム

<u>CTOD(3点曲げ)試験 荷重点変位制御試験システム</u>

5-2 予備試験CTOD試験結果(荷重一荷重点変位)

-63-

-64-

-67-

-68-

-69-

5-3 本試験CTOD試験結果 (荷重一荷重点変位)

5-4 本試験CTOD試験体の破面写真(SM490YB)

写真3-1a 擬へき開破面(予ひずみ0%材)

写真 3-1 b 擬へき開破面 (予ひずみ 3%材)