## 鋼橋技術研究会

設計部会W/G(Bグループ)

## 調査研究報告書

有効座屈長に関する研究

## 平成7年5月

# もくじ

| 1 | はじ  | めに                                               | 3  |
|---|-----|--------------------------------------------------|----|
| 2 | 有効  | 座屈長の決定に関する現状と問題点                                 | 4  |
|   | 2.1 | 断面設計                                             | 4  |
|   | 2.2 | 有効座屈長の決定法の現状・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 4  |
|   | 2.3 | 問題点                                              | 7  |
| 3 | 新し  | い算出法の提案                                          | 9  |
|   | 3.1 | 有効座屈長の定義と設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・  | 9  |
|   | 3.2 | 新しい算出法                                           | 11 |
| 4 | 数値  | 計算例                                              | 15 |
|   | 4.1 | Y 型橋脚                                            | 15 |
|   | 4.2 | アーチ系ローゼ橋                                         | 17 |
| 5 | 考察  |                                                  | 19 |
| 6 | 今後  | の検討課題                                            | 20 |
| 7 | 付録  |                                                  | 21 |
|   | 7.1 | 平成 7 年度土木学会年次学術講演会資料 –1                          | 21 |
|   | 7.2 | 平成 7 年度土木学会年次学術講演会資料 –2                          | 23 |
|   | 7.3 | アンケート調査資料                                        | 25 |

1 はじめに

わが国の設計基準<sup>1),2)</sup>は、骨組構造物を構成する部材の許容軸圧縮応力度の決定に有効座屈長の 概念<sup>3)</sup>を用いている。しかし、構造物の大規模化、構造形式の複雑化している現状において、従来の 方法ではあらゆる構造物に対して一義的に有効座屈長を決定することが困難であり、設計上対応仕切 れない状況にある。

このため、最近、従来の方法に対して構造全体系の固有値解析を適用して断面の有効座屈長を評価することが行われる傾向にある。この方法は、ハード的には受け入れられる状況にあるが、実務上の適用については消極的であるばかりでなく、設計上種々の問題点を残していることが指摘されている<sup>4)-12)</sup>。

このような現状において、本報告では、まず設計実務者への有効座屈長に関するアンケート調査 を実施し、実務レベルの断面設計における有効座屈長の取扱いおよびその算出法の現状および問題点 を整理している<sup>9)</sup>。次に、固有値解析に基づいて有効座屈長を合理的に求める方法として、現在の照 査体系を前提にした場合における新たな2手法を提案し、それらの有効座屈長の算出法の妥当性につ いて、実橋レベルの数値計算例としてアーチ系ローゼ橋およびY型橋脚などの鋼構造物を取り上げて 固有値解析を実施して検討している<sup>10)</sup>。

新しく提案する有効座屈長の算出法は、固有値計算を前提にする点では、従来の手法と差異はないが、固有値解析における幾何剛性の評価をする上で重要となる軸圧縮力に対して、従来の作用軸圧 縮力ではなく、概略設計時に用いた断面、および有効座屈長を基に得られる限界軸圧縮力、および設 計荷重時の最大軸圧縮力に着目している点が大きな特徴である。 2 有効座屈長の決定に関する現状と問題点

#### 2.1 断面設計

現在、鋼構造物の断面設計は設計荷重の作用状態のもと、微小変位、線形弾性の仮定による骨組 構造解析を用いて安全性照査を行う部材単位の設計法であり、部材強度への非線形性の影響は応力度 照査式および安定照査式の強度側に考慮されている。具体的には、 図-1 の手順による許容応力度設 計が行われている。つまり、

- (1):荷重条件、構造形式などの設計条件を設定する。この設定の基、
- (2) : 構造解析に用いる断面 (A, I) を仮定する。
- (3): (2)の断面の基で構造解析により断面力を求める。
- (4): (3)の断面力を用いて、例えば道路橋示方書<sup>1)</sup>(以後、道示と呼ぶ)の場合、次式の応力度照 査式、安定照査式を満足するように断面計算を行い仮定断面(*A*,*I*)を決定する。

$$\frac{\sigma_c}{\sigma_{ca}} + \frac{\sigma_{bx}}{\sigma_{bax}(1 - \sigma_c/\sigma_{eax})} + \frac{\sigma_{by}}{\sigma_{bao}(1 - \sigma_c/\sigma_{eay})} \le 1 \quad \dots \quad (1-b)$$

ここに、 $\sigma_c$ ,  $\sigma_{bx}$ ,  $\sigma_{by}$  は作用軸圧縮応力度、強軸、弱軸に関する作用曲げ応力度、 $\sigma_{eax}$ ,  $\sigma_{eay}$ は強軸、弱軸に関する許容オイラー座屈強度、 $\sigma_{cal}$  は局部座屈に関する許容応力度、 $\sigma_{ca}$  は 許容軸圧縮応力度、 $\sigma_{bax}$ ,  $\sigma_{bao}$  は強軸に関する許容曲げ応力度、および許容曲げ応力度の上限 値、である。

- (5) : (4) の許容応力度の計算に用いる有効座屈長は、過去の経験やノモグラフを用いて仮定する。 この時、断面の材質は鋼材の板厚が適性になるよう決定する。
- (6):(4)の計算に基づいて断面定数を修正し、構造解析を行い断面力を求める。
- (7): (6)の断面力を用いて、式 (1-b)の応力度照査式、安定照査式を満足するように断面計算を
   行い、設計断面 (A, I)を決定する。
- (8): (7)の照査に用いる有効座屈長は、特殊な構造形式の場合、(6)から得られた作用軸圧縮力 を用いて固有値解析を行い決定する。この固有値解析は通常1回目のループのみ行われる。通 常の構造形式の場合は(5)で採用した値をそのまま使用する。
- (9) : (7) の計算結果で決まった断面定数と(6) に用いた断面定数との比が ±5 ~ 10% の許容誤差 内に収まるまで(6), (7) を繰り返す。

#### 2.2 有効座屈長の決定法の現状

前述の断面設計手順の(5)(7)段階において、式(1-b)の許容応力度を評価するためには、部材の 有効座屈長を決定する必要がある。現在,実設計において適用されている有効座屈長の算出方法は、 部分構造解析法と全体構造解析法に大別できる<sup>11)</sup>。



승규는 친구가 다 가슴을 가지?

#### 図-1 断面設計の手順

B – 5

部分構造解析法: 比較的単純な骨組構造物に対して、部分構造系の基、設計基準で規定されている 簡単な式や図表、ノモグラフ<sup>1),2)</sup>などを用いて有効座屈長を決定する。また、同形式の構造物の設計 事例が既にある場合には、そのデータを参考にして設定することもある。

これは、現在のように電子計算機が発達していなくハード的に整っていなかった時代において、 構造全体系の固有値計算は困難であり、便宜的に、しかも安全側な評価になるように配慮したものと 考えられる。

全体構造解析法: この方法は、構造全体系の固有値解析に基づく方法であり、一般に部分構造解析 法で設計上対処仕切れない場合に用いられている。実構造物の全体座屈強度は、実務上変形の影響を 無視した接線剛性を用いた線形固有値解析により決定できることを前提に、組み合わせ荷重状態での 構造解析 (影響線解析)により得られる作用軸圧縮力状態における構造全体系の接線剛性行列に基づく 固有値解析から分岐座屈強度を求め、曲げ剛性と座屈強度より各断面の有効座屈長を算出する方法で ある。現在、この方法には設計上、弾性固有値解析と有効接線弾性係数法<sup>2)</sup>(以後、 *E*f 法と呼ぶ。) がある。

弾性座屈固有値解析に基づく方法は、骨組モデルに対して作用軸圧縮力に依存した接線剛性行列 による次式

の固有値解析を行い、得られた最小固有値 κ から座屈荷重 (= κN) を求め、次式

$$\ell_{ei} = \pi \sqrt{\frac{E_i I_i}{\kappa N_i}} \qquad (3)$$

オイラーの座屈式から逆算する方法、あるいは得られた座屈モード形状から推定する方法であり、任 意の構造物に適用できる汎用的な有効座屈長の決定方法である。ここに、 $K_E$ は微小変位理論におけ る剛性行列、 $K_G$ は基準状態における幾何剛性行列、 $\ell_{ei}$ は要素iの有効座屈長、 $E_i$ は要素iの弾 性係数、 $I_i$ は要素iの断面 2 次モーメント、 $\kappa$ は最小固有値、 $N_i$ は要素iの軸圧縮力。

一方、 $E_f$ 法は構造全体系の弾塑性分岐座屈強度を有効接線弾性係数 $E_f$ を用いて近似的に求める方法である。ここでは、作用軸圧縮力分布および変断面分布に対応して断面ごとに有効接線弾性係数 $E_{fi}$ を評価して有効座屈長を求める方法<sup>11)</sup>(以後、修正 $E_f$ 法と呼ぶ。)について述べる。この方法は式(2)、式(3)の $E_i$ を座屈強度 $\sigma_{ei}$ と柱の基準耐荷力 $\sigma_{cri}$ が一致するように次式

$$E_{fi} = \frac{\sigma_{cri}}{\sigma_{ei}} E_i \qquad (4)$$

で修正した有効接線弾性係数 E<sub>fi</sub> に置き換え、繰り返し計算により有効座屈長を算出する方法である。

これらの固有値解析から得られる有効座屈長は、断面変化が少なく、軸圧縮力に支配される構造 系の場合に妥当な、しかも伝統的方法に比較して有利な値を評価できる。 2.3 問題点

以上の有効座屈長の算出法について、実際に設計技術者にアンケート調査を実施した。その結果 をまとめると次のようになる。

- 1. 部分構造解析法により有効座屈長を求める方法は、容易に扱える反面、次のような問題点が指 摘されている。
  - a)適用範囲に限界があり、複雑な形式の構造物の設計に用いるのは困難である。
  - b) 複雑な構造物、大規模構造物あるいは座屈設計例の少ない構造物に対しては、有効座屈長の算出に関して明確な指針が存在しておらず、算出方法の決定が設計者の判断に委ねられている。
  - c)得られる許容軸圧縮応力度は、一般に安全側過ぎる評価になってしまう傾向がある。
- 2. 一方、固有値解析に基づく方法は、数値計算上のハード面およびソフト面の発展および普及を 背景に、構造物の座屈に影響する構造形式、断面変化、拘束条件および荷重条件などを容易に 考慮できることから最近多用される傾向にあるが、実務上主に以下の問題点が指摘されている。
  - a) 弾性固有値解析法, E<sub>f</sub> 法ともに,作用軸圧縮力の小さな部材において,有効座屈長が極端に長くなる。その結果,圧縮強度を過小評価してしまうか,または限界細長比を越えてしまい設計不可能となる場合がある。
  - b) 弾性固有値解析は通常数ケースの固定荷重状態でしか行われないのに対して、断面力解析 は影響線荷重状態で行われるので、有効座屈長を算出するときの荷重状態と部材断面の支 配的な荷重状態が異なるという矛盾が生ずる。そのため、固有値解析を実施するときの荷 重の強度と載荷状態を設定するのが困難である。
  - c) 変断面部材の場合に、応力照査断面ごとに有効座屈長を変化させて設計するのは繁雑である。
  - d) *E*<sub>f</sub> 法については、この方法を吊橋主塔以外の一般構造物にもそのまま適用してよいかという疑問が残る。また、解の収束の安定性に問題がある。
  - e) 固有値解析として、数学的には解が得られるものの、物理的な現象を明確に説明すること が困難である。

なお、アンケート調査の詳細については、付録 7.3 のアンケート調査資料を参照していただきたい。

上記の問題点において、2.b) については、ここで提案する新たな手法の一つが、影響線荷重状態を考慮した上で固有値解析を行っており、指摘されているような矛盾を解決しているものと思われる。

次に、問題点 e) について考えるために、図-2 に示すような断面諸元を持つ Y 型橋脚を取り上 げる。外力は鉛直集中荷重とし、その大きさは設計荷重ではなく P = 10000t の単位荷重を用いるこ とにする。また、この荷重載荷位置は左柱頂部の A 点であり、柱 ①, ②, ③ が軸圧縮力支配になる ように作用させている。

この荷重条件の下で構造解析を行い、得られる軸圧縮力を用いて式 (1-b) の弾性固有値解析を実施すると、その最小固有値は  $\lambda = 7.125$  となり、 図-3 のような座屈モードを得る。また、同時に

このモデルの弾性有限変位解析を行い、荷重一変位挙動を示したのが 図-4 である。本モデルは非対 称構造であるため、はじめから水平変位が生じており、荷重の増大とともに  $\lambda$ =7.125 の前後におい て、急に変形性能が低下し、後座屈経路に移っている。このように、固有値解析から得られた座屈強 度と、有限変位解析より得られる崩壊荷重との間には何らかの密接な関係があるものと類推される。

| 部材                    | A                                              | I(面内)                                                    | I(面外)                                                    | J                                              | 使用                                                       |
|-----------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|
| 番号                    | (m²)                                           | (m⁴)                                                     | (m <sup>4</sup> )                                        | (m <sup>4</sup> )                              | 材料                                                       |
| 1<br>2<br>3<br>4<br>5 | 0. 264<br>0. 341<br>0. 341<br>0. 295<br>0. 295 | 0. 180<br>0. 208<br>0. 208<br>0. 185<br>0. 185<br>0. 185 | 0. 323<br>0. 406<br>0. 406<br>0. 373<br>0. 373<br>0. 507 | 0. 347<br>0. 419<br>0. 419<br>0. 394<br>0. 394 | SM490Y<br>SM490Y<br>SM490Y<br>SM490Y<br>SM490Y<br>SM490Y |



#### 図-2 Y型橋脚の断面諸元







#### 3 新しい算出法の提案

#### 3.1 有効座屈長の定義と設計

現行基準の許容軸圧縮応力度は、両端単純支持、一様断面、一様軸圧縮力の単一圧縮部材の座屈 応力度を基準にして定められている。したがって、単純支持以外の境界条件をもつ圧縮部材、断面が 変化する圧縮部材、さらには軸圧縮力が変化する部材に関しては、基準となる条件に等価になるよう に換算した仮想の長さを有する圧縮部材により対処している。この仮想の長さを有効座屈長と呼ぶこ とは周知のとおりである。

いま、固有値解析による有効座屈長の算出法について、変断面片持ち柱およびラーメン構造を対象にして具体的に考えてみる。 図-5 の変断面片持ち柱の場合、鉛直荷重 P による作用軸圧縮力 N は一様分布であり、この軸圧縮力を考慮して式(2)の固有値解析から得られる最小固有値  $\kappa$ の基、各部材要素の座屈強度  $N_{cr}(=\kappa N)$  も一様となるため、式(3)から明らかなように曲げ剛性の違いにより得られる (e)(f) のような有効座屈長  $\ell_{e1}$ ,  $\ell_{e2}$  を有する換算部材① ②として、柱の基準耐荷力曲線から限界強度  $N_u$  が決定される。この時、(g) のように限界強度は一様ではなくなる <sup>13)</sup>。

同様に、軸圧縮力が変化する例として鉛直荷重と水平荷重の組み合わせ荷重を受け、一様断面部 材から構成された 図-6 のような門型ラーメンを考える。この場合、(b)から判るように、左柱は右 柱に比べて軸圧縮力は小さく、しかも柱基部ほどその傾向は著しい。したがって、得られる座屈強度 *N<sub>cr</sub>* は一様でなくなるため、一様断面であっても左柱基部②の有効座屈長が他の要素に比べて長くな り、変断面部材の場合と同様な限界強度分布となる。

このように、変断面部材の大断面柱基部では、断面が大きく限界強度に余裕があるにもかかわら ず、また他の部材に比べて小さな軸圧縮力が作用する柱基部では、結果として柱要素①より限界強度 を低く評価してしまう矛盾を含んでいる。このような不合理な有効座屈長となる部材に対する設計上 の簡便な具体的対策法として

1. 曲げ部材として断面設計。

2. 適切な数値による有効座屈長の頭切り。

3. 変断面部材を一様断面に換算した圧縮部材として断面設計。

4. 変化する軸圧縮力を一様軸圧縮力に換算した圧縮部材として断面設計。

5. 高次固有値、固有モードの適用。

が考えられる。

図-5において、鉛直荷重のみが作用するのであれば本来変断面設計は行わない。このような断面 変化を行うのは、例えば、図-7(c)のような水平荷重との組み合わせ荷重の場合である。つまり、 鉛直荷重のみを受ける片持ち柱であれば一様断面部材(a)、水平荷重のみを受ける場合であれば、曲 げモーメントに抵抗するように柱基部の断面を補強した変断面(b)が最適となるはずである。したがっ て、(c)の変断面柱に鉛直荷重のみが作用する(d)(e)として柱基部の座屈設計を行うところに困難さ が生じている。このような場合、1.の対策法のように柱基部は曲げ部材として設計できる可能性が ある。問題は、任意の構造物を構成する部材に対して圧縮部材であるか、曲げ部材であるかの判断が 難しいことである。



図-5 変断面片持ち柱の有効座屈長と限界強度



図-6 門型ラーメン構造の左柱の有効座屈長と限界強度



図-7 変断面部材の設計

また、 図-6 のように小さな軸圧縮力が働き、有効座屈長が極端に長くなる時、式(1-b)により の安定照査をする必要があるかどうか疑問が残る。この場合、 2. の方法のように実用上適切な有効 座屈長の限界長さを規定し、頭切りしても十分と考えられる。しかし、この限界値を構造系に対して 一義的に与えることが可能かどうかが不明である。

3.4. については、実際に断面が変化する部材や軸圧縮力が変化する部材について一様断面・一様 軸圧縮力との対比から有効座屈長を評価するのが難しい。

これまで述べてきた固有値解析では、暗黙のうちに最小固有値を対象にしてきたが、構造物を構成する部材単独の座屈に注目し、対応する高次の固有値を用いて有効座屈長を求める方法が、5.の 対策法である。最近、特に複雑な構造や大規模構造に適用されている。しかし、軸圧縮力分布や剛性 分布の複雑な構造系の着目部材を支配する座屈モードの判定が困難になる。

一般的なはりー柱部材の座屈設計では、これまでの多くの研究成果を基に精度の高い経験式であ る式(1-b)の2軸曲げを受けるはりー柱の相関式などを照査式として用いている。この照査式は、は りー柱の最悪荷重状態に対して常に安全側の強度評価を与える必要があるため、曲げモーメントが零 の場合の照査式は純圧縮状態の耐荷力を評価していなければならないため、許容軸圧縮応力度 σ<sub>ca</sub> は 上述の軸圧縮力のみを受ける圧縮部材として決定される。構造全体系の固有値解析は、この純圧縮状 態に対する有効座屈長を評価するために適用されている。また、付加曲げの影響項における許容オイ ラー座屈強度 σ<sub>ea</sub> にもその有効座屈長が用いられる。ただし、この照査式で与えられる強度限界と部 材を組み合わせて作られる構造全体の座屈強度との間には、直接的な関係はない。

3.2 新しい算出法

構造全体系の固有値解析により有効座屈長を求める方法は、得られる最小固有値が、その構造系 に対して1つ存在するだけで、各断面ごとに存在するのではない。したがって、この固有値を用いて 式(3)から各断面の有効座屈長を評価することは可能であるが、2.3 節で述べたような疑問が生じて いる訳である。

以上のことを踏まえて、まず提案する有効座屈長の算出法の第1の方法は、荷重条件に依存しな い方法<sup>8),12)</sup>である。これまでの方法が設計荷重下での作用軸圧縮力を接線剛性行列の軸圧縮力に用 いているのに対して、各断面の限界軸圧縮力を用いる方法をとっている点に特徴がある。これは、固 有値解析が構造全体系と各部材が同時に座屈する条件を前提にしていること、部材単位の照査体系 における純圧縮状態に対する有効座屈長を算出していることなどから、設計荷重下での作用軸力分布 を用いるのではなく、その保有する限界軸力分布に等価となるように調整された軸圧縮力を用いる必 娶があるとの認識に立っている。この場合、厳密な限界軸圧縮力が与えられれば得られる最小固有値 は、κ=1となる。

この提案法は、荷重形態として何種類も考慮する必要はなく、唯一の荷重形態の下で弾性固有値 解析を1回行えば良い。また荷重形態を決定するとき、設計者の恣意が入り込む余地もそれほどなく、 図-1の設計手順において、(5)段階での有効座屈長を用いて柱の基準耐荷力曲線より得られる限界 軸圧縮力を、(8)段階における軸圧縮力として用いるだけであり、大きな修正を必要とせず、計算機 の中にサブルーチンとして取り込むことも比較的簡単であり、従来の設計業務の流れを崩さずにすむ。

B-13

第2番目に提案する方法は、設計荷重下すなわち影響線載荷を行った際の軸圧縮力の最大値(引 張り力の場合はゼロとする)を各部材に導入して固有値解析を行う方法である。2.3 で述べている ように、断面力解析は影響線荷重により実施されている。もし、圧縮力で部材が決定されているなら ば、その時の圧縮力を各々の部材に載荷することにより、適切な有効座屈長が得られるものと期待さ れる。なお、固有値解析を実施した際の荷重状態は、実際の荷重状態を再現してはいないものの、各 部材断面にとっては最も不利な軸圧縮力が作用していることになる。また、現在の設計業務において は、影響線荷重下での各断面の軸力は簡単に取り出すことができ、何等プログラムを変更することな く本手法を適用することができる。

#### 4 数値計算例

ここでは、前節で提案した有効座屈長の新しい算出法の妥当性を実設計に採用されている方法と 比較しながら検討する。対象とする構造は、高速道路における Y 型橋脚とアーチ系ローゼ橋である。

#### 4.1 Y 型橋脚

まず、図-2 に示したY型橋脚について考える。固有値解析に用いる軸圧縮力は

- 1-a 法 : A 点にのみ鉛直荷重を載荷した時の軸圧縮力。
- 1-b 法 : B 点にのみ鉛直荷重を載荷した時の軸圧縮力。
- 1-c 法 : 設計荷重である (D+L) を作用させた時の軸圧縮力。
- 1-d 法 : 設計荷重である (D+W+T) を作用させた時の軸圧縮力。
- 2法: : 設計荷重である (D+L) を作用させた時の軸圧縮力の最大値。
- 3法 : あらかじめ各部材の有効座屈長を L=2.2H と仮定し、

道路橋示方書の基準耐荷力曲線より求めた限界軸圧縮力。

の5ケースについて検討した。それぞれの解析方法により得られる最小固有値から座屈荷重を求め、 これより得られる有効座屈長を 表 -1、 表 -2 に示す。さらに、応力照査時に現れる項  $\sigma_c/\sigma_{caz}$  と  $1/(1 - \sigma_c/\sigma_{ea})$ の値も表に示した。なお、表中のアンダーラインが引いてある項は、大きい方の値を 有効座屈長として採用する。

各解析方法より得られる有効座屈長に注目すると、面内座屈では40.3m から48.4m の範囲にあ り、約2割程度の開きがある。新たに提案した2方法が、従来の方法によるものよりも長めの有効座 屈長を与える傾向にあることがわかる。次に面外座屈では、38.9m から48.5m の範囲内にあり、約 2.5割程度の開きがある。面内座屈の場合とは異なり、(1-c)法が最も長めの有効座屈長を与えてい る。ここで提案した2つの方法は若干の差異はあるものの、面内座屈と面外座屈ともにほぼ同じ有効 座屈長を与えていることがわかる。

次に、有効座屈長が照査式に与える影響について調べる。面内座屈については、 表 –1 に示すように、有効座屈長では約2割程度の開きがあるものの、  $\sigma_c/\sigma_{caz}$  においては約1割程度の開きが見られる。一方、面外座屈においては、有効座屈長で約2.5割程度の開きがみられたが、 $1/(1 - \sigma_c/\sigma_{ea})$ においては大きな差異は見られない。このように、本モデルでは、照査式における有効座屈長の影響はそれ程敏感でないことがわかる。

| •     |                                                      | <u>育効座</u> 国<br>部材番                                                             | <u> </u>                                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | フ。/σ。ュ<br>部材番                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u></u>                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                               |
|-------|------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 2                                                    | 3                                                                               | 4                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                      | 6                                                                                                                                                                                                                                                                                                             |
| 25. 5 | 26. 9                                                | 28.1                                                                            | -                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                       | 48.4                                                                                                                                                                                                                                                                                                                                                                                           | 0. 206                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                      | 0. 196                                                                                                                                                                                                                                                                                                        |
| _     | _                                                    | -                                                                               | 17.6                                                                                                                                                                                                                                                 | 18.0                                                                                                                                                                                                                                                                                                                    | 33.7                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.152                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                             |
| 29.3  | 35.7                                                 | 37.0                                                                            | 29.8                                                                                                                                                                                                                                                 | 29. 9                                                                                                                                                                                                                                                                                                                   | 40.5                                                                                                                                                                                                                                                                                                                                                                                           | 0.213                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.171                                                                                                                                                                                                                                                                                  | 0. 184                                                                                                                                                                                                                                                                                                        |
| 36.8  | 30.4                                                 | 32.5                                                                            | 26.4                                                                                                                                                                                                                                                 | 28.5                                                                                                                                                                                                                                                                                                                    | 45.7                                                                                                                                                                                                                                                                                                                                                                                           | 0.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0,121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.169                                                                                                                                                                                                                                                                                  | 0.192                                                                                                                                                                                                                                                                                                         |
| 31.0  | 34.5                                                 | 36.0                                                                            | 31.0                                                                                                                                                                                                                                                 | 31.0                                                                                                                                                                                                                                                                                                                    | 41.5                                                                                                                                                                                                                                                                                                                                                                                           | 0.217                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.173                                                                                                                                                                                                                                                                                  | 0.185                                                                                                                                                                                                                                                                                                         |
| 34.0  | 32.8                                                 | 31.6                                                                            | 30.4                                                                                                                                                                                                                                                 | 29.0                                                                                                                                                                                                                                                                                                                    | 40.3                                                                                                                                                                                                                                                                                                                                                                                           | 0. 224                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0. 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.170                                                                                                                                                                                                                                                                                  | 0. 183                                                                                                                                                                                                                                                                                                        |
|       | 1<br>25. 5<br>-<br>29. 3<br>36. 8<br>.31. 0<br>34. 0 | 1 2<br>25. 5 26. 9<br>29. 3 35. 7<br>36. 8 30. 4<br>.31. 0 34. 5<br>34. 0 32. 8 | 有効座原         部材番         1       2       3         25.5       26.9       28.1         -       -       -         29.3       35.7       37.0         36.8       30.4       32.5         .31.0       34.5       36.0         34.0       32.8       31.6 | 有効座屈長(m)         部材番号         1       2       3       4         25.5       26.9       28.1       -         -       -       17.6         29.3       35.7       37.0       29.8         36.8       30.4       32.5       26.4         31.0       34.5       36.0       31.0         34.0       32.8       31.6       30.4 | 有効座屈長(m)         部材番号         1       2       3       4       5         25.5       26.9       28.1       -       -         -       -       17.6       18.0         29.3       35.7       37.0       29.8       29.9         36.8       30.4       32.5       26.4       28.5         31.0       34.5       36.0       31.0       31.0         34.0       32.8       31.6       30.4       29.0 | 有効座屈長(m)         部材番号         1       2       3       4       5       6         25.5       26.9       28.1       -       -       48.4         -       -       17.6       18.0       33.7         29.3       35.7       37.0       29.8       29.9       40.5         36.8       30.4       32.5       26.4       28.5       45.7         31.0       34.5       36.0       31.0       31.0       41.5         34.0       32.8       31.6       30.4       29.0       40.3 | 有効座屈長(m)         部材番号         1       2       3       4       5       6       1         25.5       26.9       28.1       -       -       48.4       0.206         -       -       -       17.6       18.0       33.7       -         29.3       35.7       37.0       29.8       29.9       40.5       0.213         36.8       30.4       32.5       26.4       28.5       45.7       0.230         31.0       34.5       36.0       31.0       31.0       41.5       0.217         34.0       32.8       31.6       30.4       29.0       40.3       0.224 | 有効座屈長(m)       6         1       2       3       4       5       6       1       2         1       2       3       4       5       6       1       2         25.5       26.9       28.1       -       -       48.4       0.206       0.123         -       -       17.6       18.0       33.7       -       -       -         29.3       35.7       37.0       29.8       29.9       40.5       0.213       0.135         36.8       30.4       32.5       26.4       28.5       45.7       0.230       0.127         31.0       34.5       36.0       31.0       31.0       41.5       0.217       0.133         34.0       32.8       31.6       30.4       29.0       40.3       0.224       0.130 | 有効座屈長(m) $\sigma_c/\sigma_{ca}$ 部材番号         1       2       3       4       5       6       1       2       3         25.5       26.9       28.1       -       -       48.4       0.206       0.123       0.116         -       -       17.6       18.0       33.7       -       -       -       -         29.3       35.7       37.0       29.8       29.9       40.5       0.213       0.135       0.127         36.8       30.4       32.5       26.4       28.5       45.7       0.230       0.127       0.121         31.0       34.5       36.0       31.0       31.0       41.5       0.217       0.133       0.126         34.0       32.8       31.6       30.4       29.0       40.3       0.224       0.130       0.120 | 有効座屈長(m) $\sigma c/\sigma carz$ 部材番号部材番号部材番号123456123425.526.928.148.40.2060.1230.11617.618.033.70.15229.335.737.029.829.940.50.2130.1350.1270.17136.830.432.526.428.545.70.2300.1270.1210.16531.034.536.031.031.041.50.2170.1330.1260.17334.032.831.630.429.040.30.2240.1300.1200.172 | 有効座屈長(m) $\sigma_c/\sigma_{caz}$ 部材番号部材番号1234561234525.526.928.148.40.2060.1230.11617.618.033.70.1520.15229.335.737.029.829.940.50.2130.1350.1270.1710.17136.830.432.526.428.545.70.2300.1270.1210.1650.16931.034.536.031.031.041.50.2170.1330.1260.1730.17334.032.831.630.429.040.30.2240.1300.1200.1720.170 |

表-1 Y型橋脚の面内座屈時の有効座屈長

表-2 Y型橋脚の面外座屈時の有効座屈長

| 解析<br>方法 |       | 7     | <u>利座</u><br>部材番 | <u> </u> |      |              |       | 1/    | (1-σ。/<br>部材番 <sup>日</sup> | σ <sub>ελ</sub> ) |       |       |
|----------|-------|-------|------------------|----------|------|--------------|-------|-------|----------------------------|-------------------|-------|-------|
| - ·      | 1     | 2     | 3                | 4        | 5    | 6            | 1     | 2     | 3                          | 4                 | 5     | 6     |
| (1-a)    | 35. 7 | 39. 2 | 41. 1            | _        | _    | <u>48. 5</u> | 1.035 | 1.023 | 1.023                      | -                 | -     | 1.060 |
| (1-b)    | -     | -     | -                | 26.2     | 26.7 | <u>33. 9</u> | · – · | -     | <i>–</i>                   | 1.014             | 1.014 | -     |
| (1-c)    | 40.6  | 51.7  | 53.5             | 43.7     | 44.0 | 40.2         | 1.046 | 1.040 | 1.040                      | 1.039             | 1.039 | 1.040 |
| (1-d)    | 47.7  | 41.1  | 43.8             | 36.3     | 39.1 | 42.4         | 1.065 | 1.025 | 1.027                      | 1.026             | 1.031 | 1.045 |
| (2)      | 40.0  | 47.0  | 49.0             | 42.5     | 42.5 | 38.9         | 1.045 | 1.033 | 1.034                      | 1.036             | 1.036 | 1.038 |
| (3)      | 43.9  | 43. 4 | 41.5             | 42.2     | 40.1 | 40.4         | 1.055 | 1.028 | 1.024                      | 1.036             | 1.032 | 1.041 |

#### 4.2 アーチ系ローゼ橋

次に、 図-8 に示したアーチ系ローゼ橋のアーチリブについて考える。なお、使用材料は SM490 である。固有値解析に用いる軸圧縮力は次の5ケースについて検討した。

1-a 法 : 設計荷重である (D+L) を全載荷させた時の軸圧縮力。

1-b 法 : 設計荷重である (D+L) を半載荷させた時の軸圧縮力。

- 2法: 設計荷重である (D+L) を作用させた時の軸圧縮力の最大値。
- 3-a 法 : あらかじめアーチリブの有効座屈長をパネル要素長と仮定し、 道路橋示方書の基準耐荷力曲線より求めた限界軸圧縮力をアー チリブにのみ作用。
- 3-b 法 : アーチリブには、 3-a 法 の限界軸圧縮力を用い、それ以外の 部材には設計荷重である (D+L) を半載荷させた時の軸圧縮力。

それぞれの解析方法により得られる最小固有値から座屈荷重を求め、これより得られる AB 部材の有 効座屈長を 表 -3 に示す。さらに、応力照査時に現れる項  $\sigma_c/\sigma_{caz}$  と  $1/(1 - \sigma_c/\sigma_{ea})$  の値も表に示 した。

各解析方法より得られる有効座屈長に注目すると、面内座屈では 8.28m から 19.73m の範囲にあ り、約 2 倍の開きがある。先の Y 型橋脚の場合と同様に、新たに提案した 2 方法が、従来の方法に よるものよりも長めの有効座屈長を与える傾向にあることがわかる。次ぎに面外座屈では、21.56m から 31.21m の範囲内にあり、新たに提案した 2 方法は従来の方法と比べ、 3~5 割程度長めの有効 座屈長を与えている。

有効座屈長の差異が照査式に与える影響を調べると、 $\sigma_c/\sigma_{caz}$ においては、有効座屈長において 倍程の開きがあるにもかかわらず、新たな方法は約 1 割程大きめの値を示しているだけで、安全側の 評価となっている。一方、曲げの  $1/(1 - \sigma_c/\sigma_{ea})$ について調べると、有効座屈長で 3~5 割の差異が あるにもかかわらず、面内、面外ともに新たな 2 方法は約 1 割程大きめの値を示し、安全側の評価と なっている。



図-8 アーチの断面諸元

表--3 アーチの有効座屈長

| 解析                                      | 有効函                                     | 2屈長(m)                                    | $\sigma_c/\sigma_{caz}$                   | 1/(1-σ                                    | $c/\sigma_{ea}$                           |
|-----------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| 方法                                      | 面内                                      | 面外                                        |                                           | 面内                                        | 面外                                        |
| (1-a)<br>(1-b)<br>(2)<br>(3-a)<br>(3-b) | 8.28<br>8.29<br>16.07<br>19.73<br>17.25 | 21. 56<br>21. 61<br>28. 08<br>31. 21<br>- | 0.667<br>0.667<br>0.751<br>0.792<br>0.764 | 1.026<br>1.024<br>1.105<br>1.167<br>1.123 | 1. 106<br>1. 098<br>1. 206<br>1. 251<br>- |

B-18

#### 5 考察

現在実設計に適用されている有効座屈長の算出法についてアンケート調査を行った結果、簡易式 や図表を用いて決定する方法は、実績があり容易に扱える反面、複雑な構造など適用に限界があるこ と、固有値解析により決定する方法は汎用的な方法であるが、作用軸圧縮力が小さな部材や変断面部 材において不合理な有効座屈長になること、さらに荷重状態の設定が困難になることなど、実設計に 適用されている有効座屈長の算出法についてアンケート調査を行い、簡易式や図表を用い方法や固有 値解析による方法に対する長所、短所を整理することができた。

ここで対象としたY型橋脚モデルでは、対象部材が最大軸力となる鉛直荷重のみを作用させる方 法が最も有利な有効座屈長になり、提案する2方法は現行法に比べて多少改善されている。また、アー チ構造はこの断面の概略設計に用いた断面、有効座屈長が明確でなっかたため、提案する第1の方法 についてはパネル長を初期座屈長として用いた限界強度を軸圧縮力とした。そのため、得られた有効 座屈長は長めの値となっているが、これは、用いた実断面が最適断面に近いにもかかわらず、限界強 度を過小評価してしまったためと考えられる。

最後に、有効座屈長が照査式に与える影響を調べたが、各手法により有効座屈長がちがうものの、 照査式ではその差異が顕著に見られないという結論を得た。ここでは 2 つのモデルを対象としたに すぎないが、対象としたモデルはいずれも実橋モデルに近く、本結論の妥当性は言えるものと思われ る。

#### 6 今後の検討課題

この改善のための工夫として、新しい方法を提案した訳であるが、これまでの作用軸圧縮力によ る固有値解析に比して、提案法のように軸圧縮力を変化させると、構造系によっては変化させた軸圧 縮力につりあう外力と実際の作用外力状態が大きく異なることになり、座屈モードにも変化が生じる。 これは、固有値解析による有効座屈長の概念を前提に安全性照査を行うのであれば、有効座屈長はす べての部材が純圧縮部材として同時に終局状態に達するとして求め、荷重に依存させていないからで あり、本算出法の特徴である。

問題は、常に全ての部材が全体系の座屈に支配的影響を与えるように断面設計することができる かどうかである。一方で、不静定構造物では構成する1部材の座屈が全体座屈につながらないこと、 静定構造物では構成する1部材の座屈が全体座屈を支配することを考える時、常に構造全体系の座屈 強度と部材の座屈強度が等価になるように断面の最適設計を行うことが理想的な断面設計か、さらに は理想的な断面設計の場合、そのような設計が現実に可能かについては疑問の余地が残されており、 今後の問題点である<sup>14),15)</sup>。

#### 7 付録

#### 7.1 平成7年度土木学会年次学術講演会資料-1

土木学会第50回年次学術講演会(平成7年9月)

#### I - 3

#### 骨組構造物の有効座屈長の算出法に関する考察 - 計1算 例 🛛

| 東京電機大学      | īE | 員 | 井浦雅司 |
|-------------|----|---|------|
| (株)CRC総合研究所 |    |   | 南野寿造 |
| 東京都立大学      | Æ  | 員 | 野上邦栄 |
| (株)日本車両     |    |   | 桜木隆司 |

#### 1. はじめに

本報告は文献[1]に続く第2報であり、第1報で提案した骨組構造物の有効座屈長を算出する新たな2つの 手法の妥当性を、数値計算例により検討することを目的としている.これら2つの手法の特徴は、固有値計 算を前提としている点は従来の手法と差異はないが、荷重形態として何種類も考慮する必要はなく、唯一の 荷重形態の下で弾性固有値計算を1回行えばよい点である[2].また、荷重形態を決定する時、設計者の恣意 が入り込む余地もそれ程なく、計算機の中にサブルーチンとして取り込むことも比較的簡単であり、従来の 設計業務の流れを壊さずにすむことも大きな特徴である。解析モデルとしては、高速道路におけるY型橋脚 と、アーチ系ローゼ橋(単弦ローゼ)の2つを取り上げた、前者については、道路橋示方書[3]の図表を適用す ることは難しく、有効座屈長を決定するには設計者の判断が必要となる例題である。後者については、従来 の研究[4]から、固有値解析により有効座屈長を算定する際の妥当な荷重形態はほぼ定着しているものの、本 手法による有効座屈長の検討を行うために取り上げた。

#### <u>2.計算例</u>

2.1 Y型構題 Fig.1 に示すY型構脚を考える、Table 1 に各部材の断面積, 剛度, 使用材料を記した. 解 析方法(1-a)の荷重条件は、Fig.1 に示すように、A点にのみ鉛直集中荷重を載荷したものであり、一方, 解 析方法(1-b)は、B点にのみ鉛直集中荷重を載荷している。解析方法(1-c)は、設計荷重である (D+L) を作用 させた時の軸力を求め、これを基に固有値計算したものである。解析方法(2)は、設計荷重である(D+W+T) を作用させた時の軸力を求め、これを基に固有値計算したものである。解析方法(2)は、設計荷重の下での、 各部材の軸力の絶対値最大を求め、これを基に固有値解析をしている。解析方法(3)は、予め各部材の有効座 屈長を2.2×Hと仮定し、その下での限界軸圧縮力を道路橋示方書の規定より求め、この軸力を基に固有値解 析をしている。それぞれの解析手法により得られる最小固有値から座屈荷重を求め、これより得られる有効 座屈長を Table 2 とTable 3 に示す、さらに、応力照査時に現れる項 σ<sub>c</sub>/σ<sub>ext</sub> と 1/(1-σ<sub>c</sub>/σ<sub>ex</sub>)の値 も表に示した、なお、表中、アンダーラインが引いてある項は、大きい方の値を有効座屈長として採用する。

2.2 アーチ系ローゼ播 Fig.2に示すアーチ系ローゼ橋を考える.スパンは74.35mで,アーチリブパネル要 素長は8.66mである.断面寸法の詳細は紙面の都合上省略するが、実橋に近い断面寸法を用いている.解析方 法(1-a)は、死荷重と活荷重を全載荷させた下での軸力を基に固有値解析を行い、一方,解析方法(1-b)は、 死荷重と活荷重を半載荷させた時の軸力を基に固有値解析を行っている.解析方法(2)は、死荷重と活荷重を 作用させた時、各部材に生じる絶対値最大の軸力を基に固有値計算をしている.解析方法(3-a)は、予めアー チリブの有効座屈長をパネル要素長と仮定し、これを基に限界軸力(一様分布)を求め、これをアーチリブ にのみ作用させて個有値解析したものである.解析方法(3-b)は、アーチリブに先ほどの限界軸力を作用させ、 その他の部材には死荷重と活荷重時の軸力分布を作用させて個有値解析を行った.Table 4 には、各解析法 により得られる最小固有値から座屈荷重を求め、これより得られる A-B 部材(Fig.2 参照)の有効座屈長と、 応力照査時に現れる項 σ c/σ cax と 1/(1-σ c/σ ca) の値を示した.

#### <u>3.考察</u>

実構造物に近いモデルを対象とした本報告の計算例より以下の事柄が明かとなった。

(1) 弾性固有値解析により有効座屈長を計算する際に、荷重状態により有効座屈長は異なる。しかしながら、 応力照査時に現れる項σε/σε、については、ここで想定した荷重状態の下ではそれ程大きな差異は見られ なかった。

(2)本計算例において、新たに提案した2つの手法により得られる有効座屈長には、大きな差異は見られなかった.これは、固有値計算時の構造物の断面寸法が、最適断面に近いものであったと考えることもできる. なお、本報告は鋼橋技術研究会設計部会(部会長:依田照彦・早稲田大学)におけるワーキンググループの成果の一部をまとめて報告したものである。

#### 土木学会第50回年次学術講演会(平成7年9月)

Table 1 Y型橋脚の断面寸法

| 部材 | A      | I(面内) | I(面外) | J      | 使用     |
|----|--------|-------|-------|--------|--------|
| 番号 | (m2)   | (m4)  | (m4)  | (m4)   | 材料     |
| 1  | 0.264  | 0.180 | 0.323 | 0.347  | SM490Y |
| 2  | 0.341  | 0.208 | 0.406 | 0.419  | SM490Y |
| 3  | 0.341  | 0.208 | 0.406 | 0. 419 | SM490Y |
| 4  | 0. 295 | 0.185 | 0.373 | 0.394  | SM490Y |
| 5  | 0. 295 | 0.185 | 0.373 | 0.394  | SM490Y |
| 6  | 0.471  | 0.650 | 0.597 | 0.875  | SM570  |



Table 2 Y型橋脚の面内座屈時の有効座屈長

| 解析    |      | 1    | 与効座に | <b>E長(m)</b> |       |              |        |       | J c / J c a | 1      |        |        |
|-------|------|------|------|--------------|-------|--------------|--------|-------|-------------|--------|--------|--------|
| 方法    |      |      | 部材番  | 号            |       |              |        |       | 部材番号        | 17     |        |        |
|       | 1    | 2    | 3    | 4            | 5     | 6            | 1      | 2     | 3           | 4      | 5      | 6      |
| (1-a) | 25.5 | 26.9 | 28.1 | -            | -     | <u>48. 4</u> | 0. 206 | 0.123 | 0.116       | -      | -      | 0.196  |
| (1-b) | -    | -    | -    | 17.6         | 18.0  | <u>33. 7</u> | -      | -     | -           | 0.152  | 0.152  | -      |
| (1-c) | 29.3 | 35.7 | 37.0 | 29.8         | 29. 9 | 40.5         | 0. 213 | 0.135 | 0.127       | 0. 171 | 0. 171 | 0.184  |
| (1-d) | 36.8 | 30.4 | 32.5 | 26.4         | 28.5  | 45.7         | 0. 230 | 0.127 | 0.121       | 0.165  | 0.169  | 0.192  |
| (2)   | 31.0 | 34.5 | 36.0 | 31.0         | 31.0  | 41.5         | 0. 217 | 0.133 | 0.126       | 0.173  | 0.173  | 0.185  |
| (3)   | 34.0 | 32.8 | 31.6 | 30.4         | 29. 0 | 40.3         | 0. 224 | 0.130 | 0.120       | 0.172  | 0.170  | 0. 183 |

Table 3 Y型構製の面外座屈時の有効座屈長

| 解析    |      | 4    | 与効座を | 已長(m) |      |              |       | 1/     | ′(1-σ <sub>e</sub> / | σ)       |        |        |
|-------|------|------|------|-------|------|--------------|-------|--------|----------------------|----------|--------|--------|
| 方法    |      |      | 部材番  | 号     | _    |              |       |        | 部材番号                 | <u>₽</u> |        |        |
|       | 1    | 2    | 3    | 4     | 5    | 6            | 1     | 2      | 3                    | 4        | 5      | 6      |
| (1-a) | 35.7 | 39.2 | 41.1 | -     | -    | 48.5         | 1.035 | 1.023  | 1.023                | -        | -      | 1.060  |
| (1-b) | -    | -    | -    | 26. 2 | 26.7 | <u>33. 9</u> | -     | -      | -                    | 1. 014   | 1.014  | -      |
| (1-c) | 40.6 | 51.7 | 53.5 | 43.7  | 44.0 | 40.2         | 1.046 | 1.040  | 1.040                | 1.039    | 1.039  | 1.040  |
| (1-d) | 47.7 | 41.1 | 43.8 | 36.3  | 39.1 | 42.4         | 1.065 | 1.025  | 1.027                | 1.026    | 1. 031 | 1.045  |
| (2)   | 40.0 | 47.0 | 49.0 | 42.5  | 42.5 | 38.9         | 1.045 | 1.033  | 1.034                | 1.036    | 1.036  | 1.038  |
| (3)   | 43.9 | 43.4 | 41.5 | 42.2  | 40.1 | 40.4         | 1.055 | 1. 028 | 1.024                | 1.036    | 1. 032 | 1. 041 |

<u>Table 4 アーチの有効座屈長(A-B部材)</u>

| 解析    | 有効度    | 5屈長(m) | σc/σcaz | 1/(1-σ | c/σ)   |
|-------|--------|--------|---------|--------|--------|
| 方法    | 面内     | 面外     |         | 面内     | 面外     |
| (1-a) | 8.28   | 21.56  | 0.667   | 1.026  | 1.106  |
| (1-b) | 8.29   | 21.61  | 0.667   | 1.024  | 1.098  |
| (2)   | 16.07  | 28.08  | 0.751   | 1.105  | 1.206  |
| (3-a) | 19.73  | 31. 21 | 0.792   | 1.167  | 1. 251 |
| (3-b) | 17. 25 | -      | 0.764   | 1.123  |        |



#### <u>4. 参考文献</u>

Fig. 2 アーチ系ローゼ橋

[1] 平山・野上・望月・南野・井浦:骨組構造物の有効座屈長の算出法に関する考察 - 理論, 土木学会第 50回年次学術講演会, 1995. 9.

[2] 野上邦栄・山本一之:構造全体系の固有値解析による骨組部材の合理的な有効座屈長の評価,土木学会 論文集,N0. 491/I-40, 1994.4.

[3] 日本道路協会:道路橋示方書·同解説、鋼橋編、丸善、1994.

[4] 土木学会(倉西茂 編):鋼構造物の終局強度と設計(鋼構造シリーズ 6), 1994.

#### 7.2 平成7年度土木学会年次学術講演会資料-2

#### 土木学会第50回年次学術講演会(平成7年9月)

#### 1-4

#### 骨組構造物の有効座屈長の算出法に関する 考察 - 理論

| 大日本コンサルタント(株) | 正   | 員 | 平山 搏  |  |
|---------------|-----|---|-------|--|
| 東京都立大学        | 正   | 員 | 野上 邦栄 |  |
| 株) サクラダ       |     |   | 望月 清彦 |  |
| 株)CRC 総合研究所   |     |   | 南野 寿造 |  |
| 東京電機大学        | IE. | 員 | 井浦 雅司 |  |

#### 1. はじめに

最近、従来の方法<sup>1)</sup>に対して構造全体系の固有値解析<sup>2),3)</sup>を適用して断面の有効座屈長を評価することが行われている。鋼橋技術研究会設計部会(部会長:依田照彦早稲田大学教授)で実施した有効座屈長に関するアンケー ト調査によると、この方法はハード的には受け入れられる状況にあるが、実務上の適用については消極的である ばかりでなく、設計上種々の問題点を残していることが指摘されている。これを改善する対策として、付加軸力 法<sup>4)</sup>、高次固有値法<sup>5)</sup>および荷重条件に依存しない方法<sup>5),6)</sup>などが提案されているが、高次固有値法以外の方法 については、実設計での実績はない。また、これらの種々の算出法の適用については、設計技術者に混乱と誤解 を与えているのも事実である。ここでは、実務レベルでの断面設計における有効座屈長の取扱いおよびその算出 法について整理し、固有値解析に基づいて有効座屈長を合理的に求める方法について考察を加えている。

#### 2. 断面設計の手順

現在、鋼構造物の断面設 計は、 図-1 の手順により行わ れている。(1):荷重条件、構 造形式などの設計条件を設定す る。(2):構造解析に用いる断 面 (A, I) を仮定する。 (3): (2) の断面の基で構造解析により断 面力を求める。(4): (3)の断 面力を用いて応力度照査式、安 定照査式を満足するように断面 計算を行い仮定断面 (A,I) を決 定する。(5):(4)の計算に用い る有効座屈長は、過去の経験や ノモグラフを用いて仮定する。 断面の材質は鋼材の板厚が適性 になるよう決定する。(6):(4) の計算に基づいて断面定数を修 正し、構造解析をおこない断面 力を求める。(7):(6)の断面力 を用いて、応力度照査式、安定 照査式を満足するように断面計 算を行い、設計断面 (A, I) を決 定する。(8):(7)に用いる有効 座屈長は、特殊な構造形式の場



合、(6)から得られた作用軸圧縮力を用いて固有値解析を行い決定する。固有値解析は通常1回目のループのみ 行われる。通常の構造形式の場合は(5)で採用した値をそのまま使用する。(9):(7)の計算結果で決まった断面 土木学会第50回年次学術講演会(平成7年9月)

定数と(6)に用いた断面定数との比が±5~10%の許容誤差内に収まるまで(6),(7)を繰り返す。

#### 3. 有効座屈長の算定方法

現在、実設計において適用されている有効座屈長の算出方法と適用上の問題点、および荷重条件に依存しない 算出法について以下に述べる。

①簡略式や図表を用いて決定する方法:比較的単純な骨組構造物では,道路橋示方書<sup>1)</sup>で規定されている簡単 な式や AISC のノモグラフなどを用いて有効座屈長を決定するのが一般的である。また,同形式の構造物の設計 事例が既にある場合には,そのデータを参考にして設定することもある。

これらの方法は容易に扱える反面,適用範囲に限界があり,複雑な形式の構造物の設計に用いるのは困難であ る。複雑な構造物や座屈設計例の少ない構造物に対しては,有効座屈長の算出に関して明確な指針が存在してお らず,算出方法の決定が設計者の判断に委ねられているのが現状である。

②固有値解析に基づく方法:①の方法で設計上対処仕切れない場合には,固有値解析に基づく方法が多用され ている。弾性座屈固有値解析に基づく方法は,骨組モデルに対して接線剛性行列による固有値解析を行い,得ら れた最小固有値から座屈荷重を求めオイラーの座屈式から逆算する方法,あるいは得られた座屈モード形状から 推定する方法であり,任意の構造物に適用できる汎用的な有効座屈長の決定方法であると言える。また,本州四 国連絡橋公団の「吊橋主塔設計要領・同解説<sup>2)</sup>」では,非弾性効果を考慮した E<sub>f</sub> 法を規定している。この方法 は,有効接線弾性係数(E<sub>f</sub>)を導入して,構造全体系の弾塑性分岐座屈強度を固有値解析により近似的に求め, その結果から有効座屈長を算出する方法である。

しかし、これらの固有値解析に基づく方法を適用した場合、実務上主に以下の問題点が指摘されている。 (a) 弾性固有値解析法、 E<sub>f</sub> 法ともに、作用軸圧縮力の小さな部材において、有効座屈長が極端に長くなる。その結果、圧縮強度を過小評価してしまうか、または限界細長比を越えてしまい設計不可能となる場合がある。 (b) 弾性固有値解析は通常数ケースの固定荷重状態でしか行われないのに対して、断面力解析は影響線荷重状態 で行われるので、有効座屈長を算出するときの荷重状態と部材断面の支配的な荷重状態が異なるという矛盾が生 ずる。そのため、固有値解析を実施するときの荷重の強度と載荷状態を設定するのが困難である。

(c) 変断面部材の場合に、応力照査断面ごとに有効座屈長を変化させて設計するのは繁雑である。

(d) E<sub>f</sub> 法については、この方法を吊橋主塔以外の一般構造物にもそのまま適用してよいかという疑問が残る。

ここでは、(b)の問題に対処するため、設計荷重下での軸力の絶対値最大を各部材に導入して固有値解析を行う方法を新たに提案している。

③荷重条件に依存しない方法:この方法<sup>5)</sup>は、②の固有値解析に基づく方法の範疇に入る算出法であるが、こ れまでの方法が設計荷重下での作用軸圧縮力を接線剛性行列の軸圧縮力に用いているのに対して、ここでは各断 面の限界軸圧縮力を用いる方法をとっている点に特徴がある。これは、固有値解析が構造全体系と各部材が同時 に座屈する条件を前提にしていること、部材単位の照査体系における純圧縮状態に対する有効座屈長を算出して いること、各種改善法が断面の保有する限界軸圧縮強度を拠り所にしていることなどから、最悪設計荷重下での 作用軸力分布を用いるのではなく、その保有する限界軸力分布に等価となるように調整された軸圧縮力を用いる 必要があるとの認識に起因している。この方法は、現在の実務設計において図-1の設計手順を一部修正するの みで良く、容易に適用できる方法である。

文献 7) では、実橋レベルの構造を対象にして上記の各種算出法について具体的に比較検討している。

#### 参考文献

- 1) 日本道路協会:道路橋示方書·同解説,丸善, 1990.2.
- 2) 本州四国連絡橋公団:吊橋主塔設計要領·同解説, 1989.4.
- 3) 野上: ラーメン柱の有効座屈長算出法に関する一考察,構造工学論文集, No.39A, 1993.3

4) F.Nishino and W. Attia: A proposal for in-plane stability design of steel framed structure, Proc. of JSCE, 1992.1

- 5) 野上・山本:構造全体系の固有値解析による骨組部材の合理的な有効座屈長の評価,土木学会論文集,1994.4
- 6) 依田・広瀬:平面骨組構造の有効座屈長に関する一考察,土木学会第20回関東支部発表会,1993.3

7) 井浦・南野・他:骨組構造物の有効座屈長の算出法に関する考察-計算例、土木学会第50回年次学術講演会,1995.9

#### 7.3 アンケート調査資料

B-25



| ④有刘座祖                  | 長算出時の荷重状態                                     |                     | • •        | <br>      |          |
|------------------------|-----------------------------------------------|---------------------|------------|-----------|----------|
|                        | 面内: 常时                                        | 荷重(死荷重+             | · 活吞重 )    |           |          |
|                        |                                               | - 7 - 4             |            |           | -        |
|                        | 117 : 20 度                                    | 1可里                 |            |           |          |
|                        |                                               |                     |            |           |          |
|                        |                                               |                     |            |           |          |
| ⑤有効座屈                  | 長算出時に遭遇した問題                                   | 点とその解決法             |            | _         |          |
|                        |                                               |                     |            |           |          |
|                        |                                               |                     |            |           |          |
|                        |                                               |                     |            |           |          |
|                        |                                               |                     |            |           |          |
|                        |                                               |                     |            |           |          |
|                        |                                               |                     |            |           |          |
|                        |                                               |                     |            |           |          |
| ⑥各算出方                  | 法の違いによる問題点及                                   | び解決法                |            | <br>      | <u> </u> |
|                        |                                               |                     |            |           |          |
|                        |                                               |                     |            |           |          |
|                        |                                               |                     |            |           |          |
|                        |                                               |                     |            |           |          |
|                        |                                               |                     |            |           |          |
|                        |                                               |                     |            |           |          |
| <b>一</b> 八八十进 2        |                                               |                     |            | <br>····· |          |
| ⑦全体構造                  | さして耐荷力の照査を行                                   | なった場合               |            |           |          |
| ⑦全体構造<br>解析方法          | として耐荷力の照査を行<br>・弾性有限変位解析                      | なった場合<br>・非弾性有限変位解析 | ・その他(      | )         |          |
| ⑦全体構造<br>解析方法          | として耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム(          | なった場合<br>・非弾性有限変位解析 | ・その他(<br>) | <br>)     |          |
| ⑦全体構造<br>解析方法<br>問題点とそ | さして耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム(<br>の解決法  | なった場合<br>・非弾性有限変位解析 | ・その他(<br>) | )         |          |
| ①全体構造<br>解析方法<br>問題点とそ | として耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム(<br>の解決法  | なった場合<br>・非弾性有限変位解析 | ・その他(<br>) | <br>)     |          |
| ⑦全体構造<br>解析方法<br>問題点とそ | として耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム(<br>の解決法  | なった場合<br>・非弾性有限変位解析 | ・その他(<br>) | )         |          |
| ⑦全体構造<br>解析方法<br>問題点とそ | として耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム(<br>の解決法  | なった場合<br>・非弾性有限変位解析 | ・その他(<br>) | )         |          |
| ⑦全体構造<br>解析方法<br>問題点とそ | さして耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム (<br>の解決法 | なった場合<br>・非弾性有限変位解析 | ・その他(<br>) | )         |          |



l = 2.06 = 2×25.94 = 51.88 m

| 1也 売 ( ⑤ 内 o h 犬 )         ⑤有効磁屈長算出時に遭遇した問題点とその解決法         ⑥含算出方法の違いによる問題点及び解決法         ⑦全体構造として耐荷力の照直を行なった場合         解析方法 ・弾性育限変位解析 ・非弾性有限変位解析 ・その他 ( )         使用プログラム ( )         問知点とその解決法 | ④有効座曲的         | 長算出時の荷重状態       |            |         |                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|------------|---------|---------------------------------------|
| ③有効壓屈長算出時に遭遇した問題点とその解決法<br>③各算出方法の違いによる問題点及び解決法<br>③全体構造として耐荷力の照査を行なった場合<br>解析方法 ・弾性育限変位解析 ・非弾性育限変位解析 ・その他( )<br>使用プログラム( )<br>問題点とその解決法                                                       |                | 地震(面积           | 431 共)     | · · · · |                                       |
| ③有効磁磁長算出時に遭遇した問題点とその解決法<br>③各算出方法の違いによる問題点及び解決法<br>③全体構造として耐荷力の照査を行なった場合<br>解析方法 ・弾性育限変位解析 ・非弾性育限変位解析 ・その他 ( )<br>使用プログラム ( )<br>明範点とその解決法                                                     |                |                 |            |         |                                       |
| ③有効座屈長算出時に遭遇した問題点とその解決法 ⑤各算出方法の違いによる問題点及び解決法 ⑦全体構造として耐荷力の照直を行なった場合 严折方法 ・弾性有限変位解析 ・非弾性有限変位解析 ・その他()) 使用プログラム()) 明如点とその解決法                                                                      |                |                 |            |         |                                       |
| ⑤有効座砠長算出時に遭遇した問題点とその解決法 ⑤各算出方法の違いによる問題点及び解決法 ⑦全体構造として耐荷力の照査を行なった場合 解析方法 ・弾性育限変位解析 ・非弾性育限変位解析 ・その他 ( )<br>使用プログラム ( ) 『知点とその解決法                                                                 |                |                 |            |         |                                       |
| ②各算出方法の違いによる問題点及び解決法   ②全体構造として耐荷力の照査を行なった場合   犀桁方法 ・彈性育限変位解析 ・非弾性育限変位解析 ・その他( )   使用プログラム( )   問題点とその解決法                                                                                      | ⑤有効座屈長         | <br>算出時に遭遇した問題  | 点とその解決法    |         |                                       |
| ③各算出方法の違いによる問題点及び解決法           ③全体構造として耐荷力の照直を行なった場合           解析方法         ・弾性育限変位解析         ・その他())           使用プログラム()         )           問題点とその解決法                                        |                |                 | ·····      |         |                                       |
| ③各算出方法の違いによる問題点及び解決法 ③全体構造として耐荷力の照査を行なった場合  解析方法 ・弾性育限変位解析 ・非弾性有限変位解析 ・その他 ( )  使用プログラム ( )  問題点とその解決法                                                                                         |                |                 |            |         |                                       |
| ③各算出方法の違いによる問題点及び解決法 ②全体構造として耐荷力の照直を行なった場合 邓圻方法 ・彈性育限変位解析 ・非彈性育限変位解析 ・その他()) 使用プログラム() 問題点とその解決法                                                                                               |                |                 | · · ·      |         |                                       |
| <ul> <li> ③各算山方法の違いによる問題点及び解決法 </li> <li> ⑦全体構造として耐荷力の照査を行なった場合 </li> <li> 遅折方法 ・弾性有限変位解析 ・非弾性有限変位解析 ・その他()) </li> <li> 使用プログラム()) </li> <li> 問題点とその解決法 </li> </ul>                            |                |                 |            |         |                                       |
| ③各算出方法の違いによる問題点及び解決法          ⑦全体構造として耐荷力の照査を行なった場合         解析方法       ・弾性有限変位解析       ・非弾性有限変位解析       ・その他()       )         使用プログラム()       )       3         問題点とその解決法       )       3     |                |                 |            |         |                                       |
| ②全体構造として耐荷力の照査を行なった場合<br>躍析方法 ・弾性有限変位解析 ・非弾性有限変位解析 ・その他 ( )<br>使用プログラム ( )<br>問題点とその解決法                                                                                                        | <b>⑥各算出方法</b>  | の違いによる問題点及      | び解決法       |         |                                       |
| ②全体構造として耐荷力の照査を行なった場合<br>解析方法 ・弾性有限変位解析 ・非弾性有限変位解析 ・その他 ( )<br>使用プログラム ( )<br>問題点とその解決法                                                                                                        |                |                 |            |         | -<br>                                 |
| ②全体構造として耐荷力の照査を行なった場合<br>解析方法 ・弾性有限変位解析 ・非弾性有限変位解析 ・その他 ( )<br>使用プログラム ( )<br>問題点とその解決法                                                                                                        |                |                 |            |         |                                       |
| ②全体構造として耐荷力の照査を行なった場合<br>解析方法 ・弾性有限変位解析 ・非弾性有限変位解析 ・その他 ( )<br>使用プログラム ( )<br>問題点とその解決法                                                                                                        |                |                 |            |         |                                       |
| ⑦全体構造として耐荷力の照査を行なった場合<br>解析方法 ・弾性有限変位解析 ・非弾性有限変位解析 ・その他 ( )<br>使用プログラム ( )<br>問題点とその解決法                                                                                                        | . ;            |                 |            |         |                                       |
| 解析方法 ・弾性有限変位解析 ・非弾性有限変位解析 ・その他 ( )<br>使用プログラム ( )<br>問題点とその解決法                                                                                                                                 | の全体構造と         | して耐荷力の照査を行      | なった場合      |         | · · · · · · · · · · · · · · · · · · · |
| 使用プログラム(                                                                                                                                                                                       |                | ·弾性有限変位解析       | ・非弾性有限変位解析 | ・その他(   | )                                     |
| 問題点とその解決法                                                                                                                                                                                      | 解析方法           |                 |            |         | · · · ·                               |
|                                                                                                                                                                                                | 解析方法           | 使用プログラム(        |            | )       |                                       |
|                                                                                                                                                                                                | 解析方法<br>問題点とその | 使用プログラム(<br>解決法 |            | )       |                                       |
|                                                                                                                                                                                                | 解析方法<br>問題点とその | 使用プログラム(<br>解決法 |            | )       |                                       |
|                                                                                                                                                                                                | 解析方法<br>問題点とその | 使用プログラム(<br>解決法 |            | )       |                                       |

| ①解析した構造型式                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ②有効座屈長の算出方法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>鋼製橋脚</li> <li>2. 吊橋</li> <li>3. 斜張橋</li> <li>4. トラス</li> <li>5. アーチ</li> <li>6. 方杖ラーメン</li> <li>7. その他</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ol> <li>道路橋示方書</li> <li>本四公団(平均断面を用いたEf法)<br/>(使用プログラム )</li> <li>各断面毎の剛度を用いたEf法<br/>(使用プログラム )</li> <li>弾性固有値解析<br/>(使用プログラム )</li> <li>その他 )</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5 +02 6 +85 T + 12<br>5 +02 6 | 12 000 ·································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 平所 断面                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| + T + T + T + T + T + T + T + T + T + T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| + LAD 4,5 + 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 左,右上挂 6,7.11.12 1.9H2 1.9×7469=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · 14 190 1.9 HZ 1.9 x 7469 = 14 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 太下推上+10,17 1.5H3 1.5×14917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 22 375 1.5H3 1.5×14917 - 22 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <u>5 F4F 18,19</u> 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $= \frac{1}{2} $ |
| <u>Lik 8,9,10 /0 L1 /0 +/2 au</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $= \frac{1200}{100} \frac{101}{100} \frac{100}{100} \frac$                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | z y y y y z z y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 为持架 3 2.0 L3 2.0 + 5402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 10 804 2.0 L3 2.0 + 5402 = 10 804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

B-30

| ④有効座屈                                                   |                                              |                                    |          |
|---------------------------------------------------------|----------------------------------------------|------------------------------------|----------|
|                                                         |                                              |                                    | ·        |
| 1                                                       | 也要時 (西                                       | 前内·面24)                            |          |
| ¢.                                                      |                                              |                                    |          |
|                                                         |                                              |                                    |          |
|                                                         |                                              |                                    |          |
| ⑤有効座屈                                                   | 長算山時に遭遇した問題                                  | 「点とその解決法                           |          |
|                                                         |                                              | · · · · · ·                        |          |
|                                                         |                                              |                                    |          |
|                                                         |                                              |                                    |          |
|                                                         |                                              |                                    |          |
|                                                         |                                              |                                    |          |
|                                                         |                                              |                                    |          |
|                                                         |                                              | 2                                  |          |
| (6)谷昇出力;                                                | 伝の違いによる问題点及                                  | ()解决法                              |          |
| · · · · · · · · · · · · · · · · ·                       | <u></u>                                      |                                    | <u> </u> |
|                                                         |                                              |                                    | <u> </u> |
|                                                         |                                              |                                    |          |
|                                                         |                                              |                                    | <u> </u> |
|                                                         | · · · · · · · · · · · · · · · · · · ·        |                                    |          |
|                                                         |                                              |                                    |          |
| ⑦全体構造                                                   | として耐荷力の照査を行                                  | なった場合                              |          |
| <ol> <li>⑦全体構造<br/>解析方法</li> </ol>                      | として耐荷力の照査を行<br>・弾性有限変位解析                     | なった場合<br>・非弾性有限変位解析<br>・その他())     |          |
| ⑦全体構造<br>解析方法                                           | として耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム(         | なった場合<br>・非弾性有限変位解析<br>・その他()<br>) |          |
| <ul> <li>⑦全体構造</li> <li>解析方法</li> <li>問題点とその</li> </ul> | として耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム(<br>の解決法 | なった場合<br>・非弾性有限変位解析<br>)<br>)      |          |
| <ol> <li>⑦全体構造<br/>解析方法</li> <li>問題点とその</li> </ol>      | として耐荷力の照査を行<br>・弾性育限変位解析<br>使用プログラム(<br>の解決法 | - なった場合<br>・非弾性有限変位解析<br>)<br>)    |          |
| <ol> <li>⑦全体構造</li> <li>解析方法</li> <li>問題点とその</li> </ol> | として耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム(<br>の解決法 | なった場合<br>・非弾性有限変位解析 ・その他 ( )<br>)  | · · · ·  |
| <ol> <li>⑦全体構造<br/>解析方法</li> <li>問題点とその</li> </ol>      | として耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム(<br>の解決法 | なった場合<br>・非弾性有限変位解析<br>)<br>)      | · · · ·  |

| ①解析した構造型式                                                                                                                   | ②有 効 座 屈 長 の 算 山 方 法                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>- 鋼製橋脚</li> <li>2. 吊橋</li> <li>③ 斜張橋</li> <li>4. トラス</li> <li>5. アーチ</li> <li>6. 方杖ラーメン</li> <li>7. その他</li> </ol> | <ol> <li>道路橋示方響</li> <li>本四公団(平均断面を用いたEf法)<br/>(使用プログラム )</li> <li>各断面毎の剛度を用いたEf法<br/>(使用プログラム )</li> <li>弾性固有値解析<br/>(使用プログラム NAJTRAN )</li> <li>その他</li> </ol> |
| ③モデル及び代表的部材の有効座屈長                                                                                                           |                                                                                                                                                                  |
|                                                                                                                             | 100 000 (B)                                                                                                                                                      |
| 弹性团                                                                                                                         | 有個解析の結果                                                                                                                                                          |
| 塔<br>(<br>                                                                                                                  | 町内 人口見<br>町井 人口見<br>町井 人口見                                                                                                                                       |
|                                                                                                                             |                                                                                                                                                                  |

| 有効巫屈長に関するアンケート(2/2)                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ④有効座屈長算出時の荷重状態                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1. 鉛直等分布荷重(死荷重)満載                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                       | a an an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ⑤有効座配長算山時に遭遇した問題点とその解決法                                                                                                                                                                                                                                                                                                                                                               | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ol> <li>軸方向力が変化する圧縮部材の座屈荷重(Pcr=Nλ)の決定方法<br/>斜張橋の主桁・主塔の軸力分布は、そのケーブル定着部で階段状に<br/>め、座屈している区間に着目しΣNi×Li/ΣLiにより平均的が<br/>換え座屈荷重を決定した。また、Din4114から軸力分布を台形に置き<br/>る方法(道示(S48.2))と比較検討し、安全側の値を用いた。</li> <li>ケーブルプレストレスの取扱いについて<br/>座屈固有値を算出するにあたって、ケーブルプレストレスの扱いに<br/>体剛性を確実に評価することができなくなる。しかしながら、これを<br/>することは難しく従って、ケーブルプレストレスは考慮せず安全側に<br/>決定した。</li> <li>(3名算山方法の違いによる問題点及び解決法</li> </ol> | 去<br>こ変化するた<br>は<br>か<br>た<br>た<br>数<br>え<br>算<br>出<br>す<br>こ<br>よ<br>っ<br>て<br>は<br>全<br>を<br>を<br>を<br>た<br>と<br>を<br>た<br>と<br>を<br>た<br>と<br>を<br>た<br>と<br>を<br>た<br>と<br>を<br>た<br>と<br>を<br>た<br>と<br>を<br>た<br>と<br>を<br>た<br>と<br>を<br>た<br>の<br>た<br>こ<br>を<br>き<br>た<br>こ<br>を<br>う<br>て<br>こ<br>の<br>た<br>の<br>こ<br>ろ<br>を<br>う<br>て<br>の<br>こ<br>ろ<br>を<br>う<br>の<br>て<br>の<br>に<br>ろ<br>ろ<br>の<br>こ<br>ろ<br>ろ<br>ろ<br>ろ<br>ろ<br>ろ<br>ろ<br>ろ<br>ろ<br>ろ<br>ろ<br>ろ<br>ろ<br>ろ<br>ろ<br>ろ |
| 1. 有効座屈長の決定について明確な基準がないため、比較的過大設計<br>あるように思われる。                                                                                                                                                                                                                                                                                                                                       | となりがちで                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ①全体構造として耐荷力の照査を行なった場合                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 解析方法 ・弾性有限変位解析 ・非弾性有限変位解析 ・その他 ()<br>使用プログラム ( とASVJ<br>問題点とその解決法                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1. 有限変位解析は、明確な座屈固有値及びモードを得ることができな<br>モデルを用いた解析は、そのプログラムの整備とともに非常に煩雑<br>平面解析を行うことによりチェック程度に使用しているのが現状で、                                                                                                                                                                                                                                                                                | い。 また立体<br>となるため、<br>ある。                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



| 有効歴屈長に関するアンケート(2/2)                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ④有効座凪長算山時の荷重状態                                                                                                                                                                                                                                              |
| <ol> <li>主塔の橋軸直角方向の有効座屈長の算出<br/>設計荷重の17.7倍</li> <li>主塔の橋軸方向の有効座屈長の算出<br/>設計荷重の4.0倍</li> </ol>                                                                                                                                                               |
|                                                                                                                                                                                                                                                             |
| ⑤有効座Π長算出時に遭遇した問題点とその解決法                                                                                                                                                                                                                                     |
| <ol> <li>問題点<br/>特に、主塔の橋軸方向の有効座屈長を求める場合において、ケーブルの影響<br/>(プレストレスの取扱いや圧縮に抵抗しないという特性)の評価方法が問題に<br/>なった。</li> <li>解決法<br/>ケーブルを含んだ全体構造の解析を行いこれらの影響を考慮した。</li> </ol>                                                                                             |
| 商業質用方法の違いにとる問題書及び解決法                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                             |
| <ol> <li>問題点</li> <li>・現在のところ、橋梁の型式や規模ごとに算出方法を規定している基準がなく、<br/>算出方法の決定が設計者の判断に委ねられている。</li> <li>・道路橋示方書では典型的な部材端条件を有する柱の有効座屈長を規定してい<br/>るが、複雑な構造や吊り構造等にこの規定をそのまま適用することは難しい。</li> <li>・Ef法を使用する場合、弾性固有値解析の結果を利用しているために解の収<br/>束の安定性に問題があるように思われる。</li> </ol> |
|                                                                                                                                                                                                                                                             |
| <ul> <li>⑦全体構造として耐荷力の照査を行なった場合</li> </ul>                                                                                                                                                                                                                   |
| 解析方法 (・弾性有限変位解析) ・非弾性有限変位解析 ・その他 ( )<br>使用プログラム ( KASUS                                                                                                                                                                                                     |
| <ul> <li>問題点とその解決法</li> <li>1. 問題点 <ul> <li>有限変位解析は固有値解析とは異なり座屈荷重、座屈モードを明確に求めることができない。このため、解の収束の有無により座屈現象を判断しているが、計算の精度や制御方法等により座屈荷重が左右されるため信頼性に問題があると考えられる。</li> <li>2. 解決法 <ul> <li>計算の信頼性を確認するため、複数の解析コードで計算を行うことが切まり</li> </ul> </li> </ul></li></ul>   |
| いと思われる。(上記の計算例では実行していません。)                                                                                                                                                                                                                                  |

| ①解析した構造型式 | ②有効座 屈 長 の 算 山 方 法                                |
|-----------|---------------------------------------------------|
| 1. 鋼製橋脚   | 1. 道路橋示方暫                                         |
| (2.) 吊橋   | 2. 本四公団(平均断面を用いたE1法)<br>(毎円プログラム)                 |
| 3. 斜張橋    |                                                   |
| 4. トラス    | (使用ノログラム - <b>ルスTIPIC</b> )<br>4. 弾性固有他解析 NASTRAN |
| 5. アーチ    | 活(使用プログラム )<br>5.その他 )                            |
| 6. 方杖ラーメン |                                                   |
| 7. その他    |                                                   |
|           |                                                   |

#### ③モデル及び代表的部材の有効座屈長

主捞解析 モデルと同樣

济江国新题

座尾毛

權野 min. 73.7  $m_{0x}$  79.8 " 暴吼号. ① 上部 t 計 t 前 min 64.8 max 69.7 " ② 上部  $m_{0}$  T 部  $m_{1}$  56.5 "  $m_{0}$  40.9 " ③ T 部  $m_{0}$  7 书 min 48.8 max 49.1 " ④ T 部 ~ 其計 min 36.2 max 37.1 " 切 磨 ④ min 63.4 max 68.1 " ③ 57.1 " 59.1 " ④ 37.1 " 37.9 "
| 有効座屈長に関するアンケ                | h (2/2)    |
|-----------------------------|------------|
| ④有効座屈長算出時の荷重状態              |            |
| 常時 D+L+T+SD+E (Vc-max)      | ) 時手       |
| 新日 D+WT+T+SD+E (1/2-max)    | 用于         |
| UTERF D+EO+T (VC-max)       | ) 時        |
|                             |            |
|                             |            |
| ⑤有効座屈長算出時に遭遇した問題点とその解決法     | <u> </u>   |
| 。横荷重载荷野 塔柱。载谷则 引            | 載荷側の産産の美彦。 |
| 。 把露舟。 勃的都面力。 取报 ~.         |            |
|                             |            |
|                             |            |
|                             |            |
|                             |            |
| @友質山古法の違いにとて問題占れば認法法        |            |
| ● 日月田万法の運いによる旧國从及び解決法       |            |
|                             |            |
|                             |            |
|                             |            |
|                             |            |
| · · · ·                     |            |
| ⑦全体構造として耐荷力の照査を行なった場合       |            |
| 解析方法 · 弹性有限変位解析 · 非弹性有限変位解析 | ・その他(    ) |
| 使用プログラム(                    | )          |
| 問題点とその解決法                   |            |
|                             |            |
|                             |            |
|                             |            |
|                             |            |
|                             | -          |
|                             |            |



в

- 38





部 校 查号

ක

(07)

6

T

0

*...* 

1

(J3)

"@

(f) (f) (f) (f)

) (1) (1)

(n**s**)

(IJ)

13.13

(11) (12) (13)



B −39

|                                                                                                                               | 型 式                                                                                                              | ②有 効 座 屈 :                                                                          | 長の算出方法                                                                                                 | . <u> </u>           |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------|
| <ol> <li>1. 鋼製橋脚</li> <li>2. 吊橋</li> <li>3. 斜張橋</li> <li>4. トラス</li> <li>5. アーチ</li> <li>6. 方杖ラーメン</li> <li>7. その他</li> </ol> |                                                                                                                  | <ol> <li>道路橋示力</li> <li>本四公団</li> <li>各断面毎の</li> <li>弾性固有単う</li> <li>その他</li> </ol> | 5<br>書<br>(平均断面を用いた E<br>(使用プログラム<br>D<br>剛度を用いた E f 法<br>(使<br>開プログラム<br>・<br>近<br>解析<br>(使<br>用プログラム | f 法)<br>和2 g 度前'가 i氏 |
| のエデル及び伊里的如日の                                                                                                                  |                                                                                                                  |                                                                                     |                                                                                                        |                      |
| 42頁 第17月7                                                                                                                     | 发现。<br>有结解析 (45頁                                                                                                 | 御明) ご常                                                                              | せいして                                                                                                   | . <u></u>            |
|                                                                                                                               |                                                                                                                  |                                                                                     | - · · ·                                                                                                |                      |
|                                                                                                                               | and the second | ur.                                                                                 |                                                                                                        |                      |
| X.                                                                                                                            |                                                                                                                  |                                                                                     |                                                                                                        |                      |
|                                                                                                                               |                                                                                                                  |                                                                                     |                                                                                                        |                      |
|                                                                                                                               |                                                                                                                  |                                                                                     | · · ·                                                                                                  |                      |
|                                                                                                                               |                                                                                                                  |                                                                                     |                                                                                                        |                      |
|                                                                                                                               |                                                                                                                  |                                                                                     |                                                                                                        |                      |
|                                                                                                                               |                                                                                                                  |                                                                                     |                                                                                                        |                      |

有効巫屈長に関するアンケート(2/2) ④有効座屈長算出時の荷重状態 D+L+T0+W+7 (5)有効座屈長算出時に遭遇した問題点とその解決法 国有個御析としてなジョンノテ解チー得られいしの物理現号とこしの 明研防死啊が到しい。 ⑥各算出方法の違いによる問題点及び解決法 の全体構造として耐荷力の照査を行なった場合 • 弹性有限变位解析 · 非弹性有限变位解析 ・その他 ( 弾型 好和人支伊新術 解析方法 使用プログラム(別月の外外1970にクラム) 問題点とその解決法 45頁を参照下211.

## (2) 有効座屈長及びモーメント換算係数

1) 有効座屈長は、着目する部材の $\sigma$  cag 及び $\sigma$  eax の計算に対して、それぞれ下 表の値とする。



塔柱の有効座屈長

|        | 開口部     | トラス部 | 先 端 部          |  |
|--------|---------|------|----------------|--|
| σcag の | ※面内全体座屈 | 骨組長  | 骨組長            |  |
| 計算用    | 解析による   | (L)  | $(L) \times 2$ |  |
| σeax の | 格間長(ℓ)  | 格間長  | 格間長            |  |
| 計算用    |         | (ℓ)  | (ℓ)            |  |

※開口部のσcag 計算用の有効座屈長は下表の値とする。

| 荷重ケース                   | 有効座屈長   | 座屈固有值 |
|-------------------------|---------|-------|
| D + L (Vcmax) + T (-30) | 46.1m   | 3.07  |
| D + W (TT) + T (+15)    | 36. 0 m | 2.20  |

2) モーメント換算係数は、吊橋主塔設計要領5.4により算出する。

5.4 モーメント換算係数

吊橋主塔設計要領・同解説 1989年4月(本州四国連絡橋公団)による

- 3.7 座屈固有值解析
- 3.7.1 概要

橋軸直角方向の全体座屈の照査及び開口部の有効座屈長を算出するために、接線弾線係数 法による座屈固有値解析を行った。

壮生

有効座屈長の算出フロー

(1) 荷重ケース

f - 21 $D + L (V_{cmax}) + T (-30^{\circ})$ f - 22 $D + W (TT) + T (+15^{\circ})$ 

(2) 接線弾性係数法による有効座屈長の算出方法

道示基準耐荷力曲線



# 3.7.2 橋軸直角方向安定の照査

## (1) 最小座屈固有値(モードI)

| 旅析ケース                                | 橋軸直角方向<br>入 T | 橋軸方向<br>入し |
|--------------------------------------|---------------|------------|
| $D + L (V_{cmax}) + T (-30^{\circ})$ | 2.35          | 1.86       |
| D+W(TT)+T(+15)                       | 2.06          | 1.52       |

# (2) モード図

| 解析ケース           | 橋軸直角方向 | 橋軸方向 |
|-----------------|--------|------|
| D+L(V)+T(-30°)  |        |      |
| D+W(TT)+T(+15°) |        |      |

(1) 有効座屈長(モードⅡ)

| 解析ケース                           | 有効應屈長  | 座屈固有值 |
|---------------------------------|--------|-------|
| D+L(V <sub>emax</sub> )+T(-30°) | 46.1 m | 3.07  |
| D+W(TT)+T(+15°)                 | 36.0 m | 2.20  |

(2) モード図



7. 主塔耐荷力の照査

7.1 要旨

主塔の極限耐荷力の照査を行うことを目的として、主塔骨組モデル及び補剛板FEMモデル (主塔骨組モデルから得られた断面力を用いて補剛板解析を行った)に対して弾塑性有限変位 解析を実施した。照査ケースは、主塔の断面決定ケースである

7.2 主塔骨粗系弹塑性有限变位解析

7.2.1 解析モデル及び初期不整

(1) 解析モデル



主塔骨粗モデル



3) 残留応力





墙壁

残留応力度

| 材質    | Ø + 1 | *<br>Øre | *<br>0 r. r | øre, r |
|-------|-------|----------|-------------|--------|
| SM50Y | 0.95  | -0.23    | 0.60        | -0.16  |
| SM 58 | 0.90  | -0.20    | 0.60        | -0.15  |

\*はσ,で除した値を示す。

降伏応力度 σ,

| 材質    | σ, (kg/cm <sup>1</sup> ) |
|-------|--------------------------|
| SM50Y | 3600                     |
| SM 58 | 4600                     |

(1) 
$$D + \alpha + L (+ \delta_{max}) + T (+ 30^{\circ})$$

o荷重条件

の解析結果



(2) 
$$D + \alpha \cdot W (TT) + T (+15^{\circ})$$

o 荷重条件

o 解析結果



#### 7.3 補刚板彈塑性有限変位解析

### (1) $D + \alpha + L (+ \delta_{max}) + T (+ 30^{\circ})$

1) 解析パネルの選定



 D+L+Tでは橋軸方向曲げモーメント が橋軸直角方向曲げモーメントに比べ車 越しているため、上図パネルを解析対象 とした。



- ・ バネルとも1/4対称で あるため、右図斜線部をFEM モデルで解析した。
- o境界条件は4辺単純支持とした。
- o 解析対象バネルの応力勾配
- $\begin{pmatrix}
  \phi = \frac{\sigma_1 \sigma_2}{\sigma_1}
  \end{pmatrix}
  がほぼ$ 0に等しいため、荷瓜は一様圧縮とした。
- ○荷重は右図のように変位増分 u で与えた。
- 3) 初期不整
  - o残留応力

応力分布・応力度とも主塔系骨 粗弾塑性有限変位解析と同様



o初期たわみ

「道示15.3.4 仮粗立」の許容訊差より、 ダイヤフラム間たわみ

$$\delta_{0} = -\frac{a}{1000} = -\frac{3000}{1000} = 3mm$$

縦リブ間たわみ

$$W_{20} = \frac{b}{150} = \frac{740}{50} = -\frac{740}{150} = -4.93 \text{mm}$$

o 変位図



o 変位と軸力の関係



#### (2) $D + \alpha \cdot W (TT) + T (+15^{\circ})$

#### 1) 解析パネルの選定



- 2) 解析モデル
  - ・ パネルとも1/4対称で あるため、右図斜線部をFEM モデルで解析した。
  - o境界条件は4辺単純支持とした。
  - o 解析対象パネルの応力勾配
  - $\left( \phi = \frac{\sigma_1 \sigma_2}{\sigma_1} \right)$ がほぼ 0に等しいため、荷重は一様圧 縮とした。
  - ・荷重は右図のように変位増分u
     で与えた。
- $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array}\end{array}\end{array}$

- 3) 初期不整
  - 残留応力

応力分布・応力度とも主塔系骨 粗弾塑性有限変位解析と同様 • 初期たわみ

「道示15.3.4 仮粗立」の許容誤差より、 ダイヤフラム間たわみ

$$\delta_{0} = \frac{a}{1000} = \frac{4000}{1000} = 4$$
mm

00

縦リブ間たわみ

$$W_{eo} = \frac{b/n}{150} = \frac{900}{150} = 6$$
ame

B – 51

#### 1) 解析結果

#### o変位図



o変位と軸力の関係



7.4 まとめ

耐荷力は下式で表される終局荷重係数α。で評価する。

 ・橋軸方向荷重 D+a、・L(+ $\delta_{max}$ )+T(+30\*)

 ・「「「」」」

 ・「「」」」

 ・W(TT)+T(+15\*)

上記の終局荷重係数α。は、塔骨粗弾塑性有限変位解析と補剛板弾塑性有限変位解析より第 出される。

 $\alpha_{u} = B \cdot \alpha_{u} \qquad \exists \chi (2)$ 

低減係数Bを算出するために補剛板解析を実施するが、補剛板解析で得られる終局荷重係数 をaueとすると、低減係数Bは下式で定義される。

 $B = \frac{\alpha_{ue}}{\alpha_{ux}} \quad \dots \quad \overline{f}(3)$ 

明石海峡大橋の耐荷力を式(1), (2), (3)にしたがってまとめると、下表となる。

| 荷重ケース | 骨粗解析<br>荷重係数<br>α | 補剛板解析<br>荷 <b>重 係 数</b><br>αe | 低減係数<br>B | 終局<br>荷 <b>重係数</b><br>α |
|-------|-------------------|-------------------------------|-----------|-------------------------|
| D+L+T | 10.14             | 9.33                          | 0.920     | 9.33                    |
| D+W+T | 2.44              | 2.30                          | 0.943     | 2.30                    |

表 - 1

補剛板が局部座屈した時点で断面が耐荷力を失うと考えた場合、上表のような終局荷重係数となる。

しかし、補剛板に作用する荷重Pが耐荷力P \*\*\* に達した後にひずみ量を増加させても補剛板の 耐荷力は急激に低下しない。

明石主塔では、塔骨粗系で補剛板が終局耐荷力 Pmm に達してから崩壊に至るまでのひずみ増加 はD+L+T, D+W+Tとも微少であることから、塔骨粗系崩壊時においても補剛板は Pmm と 同等の荷重 Pを分担していると考えられる。

よって、低波係数Bを1.0と考え、表-1を表-2のように修正する。

| 荷重ケース     | 骨粗解析<br>荷重係数<br>α | 補剛板解析<br>荷 重 係 数<br>α | 低減係数<br>B       | 終局<br>荷重係数<br>α、 |
|-----------|-------------------|-----------------------|-----------------|------------------|
| D + L + T | 10.14             | 10.14                 | 1.00            | 10.14            |
| D+W+T     | 2.4 4             | 2.44<br>(1.60)        | 1.00<br>(0.656) | 2.44<br>(1.60)   |

表 - 2

()内:下部水平材の局部座屈が発生した時点を

主塔の極限状態と考えた場合

No. 8 ①解析した構造型式 ②有効座屈長の算出方法 1. 鋼製橋脚 1. 道路橋示方書 2. 本四公団(平均断面を用いたEf法) 2. 吊橋 ) (使用プログラム 3. 各断面毎の剛度を用いたEf法 3. 斜張橋 (使用プログラム ) 4. トラス 4.7弹性固有值解析 (使用プログラム KASTAN ) 5. アーチ 5. その他 (6) 方杖ラーメン 7. その他 ③モデル及び代表的部材の有効座屈長 添付一1に示す。 モデル ---- 58頁参照 有初度を ----- 63夏参照

| 有効壓屈長に関す | - る | ア | ンケー | ト | (2/2) | 2) |
|----------|-----|---|-----|---|-------|----|
|----------|-----|---|-----|---|-------|----|

.

④有効座屈長算出時の荷重状態

⑤有効座Π長算出時に遭遇した問題点とその解決法

•

⑧各算出方法の違いによる問題点及び解決法

の全体構造として耐荷力の照査を行なった場合

| 解析方法   | ·弾性有限変位解析                                                                         | 非弹性有限变位解切                                                                                                                                                   | ・その他(                                                                                                       | )                                                                      |  |
|--------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--|
|        | 使用プログラム(                                                                          | MARC                                                                                                                                                        | )                                                                                                           |                                                                        |  |
| 問題点とその | D解決法 本橋の<br>設計荷重<br>している<br>め,税料<br>大変形弾<br>図14に<br>を示す。<br>重 Woes<br>また、<br>ることを | 基本設計断面に対して、非<br>に対してその影響は後小で<br>か、念のため本橋の安全<br>設計断面に対し汎用非線形<br>(塑性解析を行った。<br>:下り線 P, 橋脚側に活荷重<br>解析結果より、この載荷状<br>Mun 対して ν=2.3の安全率<br>その他の載荷状態に対して<br>を確認した。 | 線形性の影響を照在<br>あったので設計上は<br>性と最終耐荷力の確<br>解析プログラム MAF<br>を半載した状態に対す<br>態での最終耐荷力 W<br>を確保していること/<br>も2.5以上の安全率を | した結果,<br>これを無視<br>認を行うた<br>Cを用いて<br>る解析結果<br>m は設計荷<br>がわかった.<br>確保してい |  |

末行-1

らう 脚及び来の有效を原長師村

方杖ライン構ごは御郡及び早郡に軸を縮 カガ作用カ3月め、人ろの部校に対には早一柱 とにの設計が必要となる、しかし設計に当いて 必要となる方効を原来の集定方法に超ごさんた ものかないため、芽作を展安定師約結果をもと に有効を展長を算定する。

3.1. 研析条件

対象病学: 方根ラメン構(エリ称③~④ Fリ称 ③~④) 毎村方式: 平面ルーム弾性を要定定研防 (KHI供有: 水田構造研防プログラム、 KASTAN 使用)

3.2. 梅莲モデル & v input data

り構造モデル

回3-1トエリ録及び下り録の構造モデル を示す。

2) 部校明度及び支点条件 部校明度は下記の通り、部校委号は図3-1 に示ろものごある なお、部校明度は設計断面の平均値とにためた。



B -- 58

|        | 翻        | 松明度    | • • •      |       |       |        |       |                        |
|--------|----------|--------|------------|-------|-------|--------|-------|------------------------|
|        |          |        | $\bigcirc$ | 2     | 3     | (A)    | (J)   | <u>(</u> ( <b>(</b> )) |
|        | <u>ک</u> | A TENT | 0.115      | 0.137 | 0.113 | 0.098  | 0.153 | 0.172                  |
| ,<br>, | 频        | サランケモー | 0.070      | 0.083 | 0.067 | 0.059. | 0063  | 0069                   |
|        | F        | A A    | 0.138      | 0.202 | 0.139 | 0.209  | 0.783 |                        |
| ·. •   | HT.      | サント エー | 0.118      | 0.174 | 0.120 | 0.110  | 0.110 |                        |

支兵车件

図3-1の構造モデルトガ、こ

△: 鹞座方向变位构束 化口自由 。: 毫位均康、回其自由

ごお3.

3.3 解析结果

御村結果を下表に示す.

|                        |        | ·入                 | N <sup>t</sup> | Pert              | Zut   | Lez              | 2"           | ß    |
|------------------------|--------|--------------------|----------------|-------------------|-------|------------------|--------------|------|
| I                      | 买新     | 13.6               | 865            | 11760             | 0.083 | <u> 38</u> 2     | 53.0         | 0.72 |
| 1                      | PA AFT | <del>9</del> .73   | 1317           | 6230              | 0063  | <del>9</del> 7.6 | 25.7         | 1.35 |
| 缐                      | BAT    | <del>. 1.</del> 73 | 1330           | 6790              | 0.069 | <del>\$</del> 59 | 29.7         | 1.55 |
| F                      | 学习     | 15.7               | 996            | 15640             | 0174  | <del>9</del> 80  | 70.0         | 0.69 |
| 1]<br>4/10             | B#     | 5.59               | 1970           | 79 <del>9</del> 0 | 0.110 | 536              | 27.7         | 1.94 |
| <i>\$</i> , <b>7</b> _ | BAT    | 5.59               | 1909           | 7850              | 0.110 | 53.9             | <i>29</i> .7 | 1.81 |

ここと、 人、理性正有研析におけ3着目す3部校のノス 这耳、E-ド1:大不3国有值 N: P=1000 载荷時1-着月有3部代小老生有3 朝王族力 Rr: 本原荷餐、Por=入N 1:着月する部長の平均街面ご次モーメント lg:有新起存录=/3·L=兀唇 と、着目する部校の長こ B: 有种产展长代教 同3-2-1及び回3-2-21= 三川新及び下川称の 社長モードをデオ.

**P3** A2) 脚部差耳王二 \*\*\* TAURA DAI-2 KOUKAKYO NOBORI-SEN \*\*\* POSTPROCESSOR KASTAN MODE MODEL SCALE= 2.00 EO 1.0 E1 BLOCK NO = ALL MODE NO. = 1 (LAMBDA = 4.73 EO) Β -6 (A2) (P3) \*\*\* TAURA DAI-2 KOUKAKYO NOBORI-SEN \*\*\* POSTPROCESSOR KASTAN MODE BLOCK NO.= ALL MODE NO.= 2 (LAM6DA= 1.36 E1) MODEL SCALE= 2.00 ED 1.0 E1 デ 都ををそん 13-2-1. ラセラーメン描述展モード回(とい称)

A2 P6 37= JE-1 POSTPROCESSOR KASTAN MODE \*\*\* TAURA DAI-2 KOUKAKYD KUDARI-SEN \*\*\* BLOCK NO.= ALL MODE NO.= 1 (LAMBDA- 5.59 EQ) MODEL SCALE: 2.00 ED 1 0 E Ps 平部を展示人 \*\*\* TAURA DAI-2 KOUKAKYO KUDARI-SEN \*\*\* POSTPROCESSOR MODE KASTAN -BLOCK NO.= ALL MODE NO.= 2 (LANBDA= 1.57 EL) 100E NO.= 2 (LANBDA= 1.57 EL) 1073-2-2 方 大ラーン:株玉存モート(ア)(アリ鉄)

3.3 考架 以この研約結果をもとに来たい脚の方効 を居長を以下のように、きまに供する. /带 考 leg. 53 " 13=10 芝の長 寻寿 エリ統 APZP 32=1.95 BR-1.70 50 下水 平部 B=10 EDE 70 \*\* BE=1.97 BR=1.85 きろ 55"

No. 9

| ①解析した構造型式                                                                                                | ②有 効 座 屈 長 の 算 出 方 法                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>鋼製橋脚</li> <li>吊橋</li> <li>新張橋</li> <li>トラス</li> <li>アーチ</li> <li>方杖ラーメン</li> <li>その他</li> </ol> | <ol> <li>道路橋示方曹</li> <li>本四公団(平均断面を用いたEf法)<br/>(使用プログラム )</li> <li>各断面毎の剛度を用いたEf法<br/>(使用プログラム )</li> <li>弾性固有値解析<br/>(使用プログラム KASTAN )</li> <li>その他</li> </ol> |
| ③モデル及び代表的部材の有効座屈長                                                                                        |                                                                                                                                                                 |
| 添付-1に示<br>(66頁)                                                                                          | す。<br>… 添付-2(67頁)<br>… 添付-3(68頁)                                                                                                                                |
|                                                                                                          |                                                                                                                                                                 |
|                                                                                                          |                                                                                                                                                                 |

| ④有効座                                               | 長算山時の荷重状態                                    |                              |            |        |
|----------------------------------------------------|----------------------------------------------|------------------------------|------------|--------|
| <u></u>                                            | - 2 <b>.</b> ¶                               |                              |            | - ,    |
| ŶĊ                                                 | -1-12                                        |                              |            |        |
|                                                    |                                              |                              |            |        |
|                                                    |                                              |                              |            |        |
|                                                    |                                              | <u> </u>                     |            |        |
| ⑤有効座Π                                              | 長算出時に遭遇した問題<br>―――――                         | i点とその解決法                     |            |        |
| /À                                                 | 、版の用いなまきん                                    | 志意了石場会之                      | 、しない場合で    | 値が豊いろを |
| 雨夕-                                                | -スを解析した                                      | 2                            |            |        |
|                                                    |                                              |                              |            |        |
|                                                    |                                              |                              |            |        |
|                                                    |                                              |                              |            |        |
|                                                    |                                              |                              |            |        |
| ⑥各算出方法                                             | 法の違いによる問題点及                                  | び解決法                         |            |        |
|                                                    |                                              |                              |            |        |
|                                                    |                                              |                              |            |        |
|                                                    |                                              |                              |            |        |
|                                                    |                                              |                              |            |        |
|                                                    |                                              |                              |            |        |
|                                                    |                                              |                              |            |        |
| ⑦全体構造                                              | として耐荷力の照査を行                                  | なった場合                        |            |        |
| ⑦全体構造<br>解析方法                                      | として耐荷力の照査を行<br>・弾性有限変位解析                     | なった <b>場</b> 合<br>・非弾性有限変位解析 | ・その他(      | )      |
| ⑦全体構造<br>解析方法                                      | として耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム(         | なった場合<br>・非弾性有限変位解析          | ・その他(<br>) | )      |
| <ol> <li>⑦全体構造<br/>解析方法</li> <li>問題点とその</li> </ol> | として耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム(<br>の解決法 | なった <b>場</b> 合<br>・非弾性有限変位解析 | ・その他(<br>) | )      |
| ⑦全体構造<br>解析方法<br>問題点とその                            | として耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム(<br>の解決法 | なった場合<br>・非弾性有限変位解析          | ・その他(<br>) | )      |
| ⑦全体構造<br>解析方法<br>問題点とその                            | として耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム(<br>の解決法 | なった場合<br>・非弾性有限変位解析          | ・その他(<br>) | )      |
| ⑦全体構造<br>解析方法 問題点とその                               | として耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム(<br>の解決法 | なった場合<br>・非弾性有限変位解析          | ・その他(<br>) | )      |
| ①全体構造<br>解析方法<br>問題点とその                            | として耐荷力の照査を行<br>・弾性有限変位解析<br>使用プログラム(<br>の解決法 | なった場合<br>・非弾性有限変位解析          | ・その他(<br>) | )      |





**†-₩** 



1-16 \_

No. 10

| ①解析した構造型式                                                                                                                    | ②有 効 座 屈 長 の 算 山 方 法                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>- 鋼製橋脚</li> <li>2. 吊橋</li> <li>3. 斜張橋</li> <li>4. トラス</li> <li>5. アーチ</li> <li>6. 方杖ラーメン</li> <li>7. その他</li> </ol> | <ol> <li>道路橋示方曹</li> <li>本四公団(平均断面を用いたEf法)<br/>(使用プログラム )</li> <li>各断面毎の剛度を用いたEf法<br/>(使用プログラム )</li> <li>弾性固有値解析<br/>(使用プログラム )</li> <li>その他 )</li> </ol> |
| ③モデル及び代表的部材の有効座屈長                                                                                                            |                                                                                                                                                            |

.

#### 4-2 有効幅と有効座屈長

① 主桁の有効幅は慣用的な方法, すなわち着目点の曲げモーメントが最大または最小となる活荷重状態の曲げモーメントを算出し, その分布形状および基線長より等価支問長を求め,「道示」に従い 有効幅を算出した.

② 主桁は軸力と2軸曲げを受ける部材として設計したが、その 際使用した有効座屈長の設定については、立体背組構造と考えて弾 性座屈解析を行って得た値を採用した(表-3).なお架設時(張田 し時)の面外座屈についてはケーブル力の方向や座屈形状などを考 遮し決定した、図-8に完成系の面内座屈モードの一例を示す。斜張 橋の主桁に対し桁としての座屈を考慮するのは必ずしも一般的でな



図-8 弾性座屈モード(2次, 両内座屈)



| <b>'</b> | $\mathbf{X}$ | 元          | 成          | 系            | 架          | 設          | 系           |   |
|----------|--------------|------------|------------|--------------|------------|------------|-------------|---|
|          |              | P35        | Par        | Рзв          | Pas        | P37~       | 閉台点         | - |
|          |              | ~ P37      | ~ P38      | ~ P39        | ~ P37      | 閉合点        | ~P39        |   |
|          | 面山           | 80         | 88 .       | 36           | 40         | 40         | 18          | • |
| JE       | 1947 1       | $(0.6L_2)$ | $(0.4L_6)$ | $(0.6L_{1})$ | $(0.3L_2)$ | $(0.3L_3)$ | $(0.3L_1)$  | ( |
| 面外       | iki ki       | 139        | 132        | 48           | 174        | 130        | 115         | · |
|          | 74,101       | (0.8Ls)    | $(0.6L_6)$ | (0.8L1)      | (Ls)       | (L3)       | $(L_1+L_2)$ |   |
| _        | 1            |            |            |              |            |            |             | / |

#### 有効座屈長に関するアンケート(2/2)

④有効座屈長算出時の荷重状態

⑤有効座屈長算出時に遭遇した問題点とその解決法

⑥各算出方法の違いによる問題点及び解決法

#### ⑦全体構造として耐荷力の照査を行なった場合

弹性有限変位解析

解析方法

非弾性有限変位解析

)

10-2 全体耐荷力の検討

全体耐荷力の照査は構造物が荷重に対し所定の安全率を確保して いるかどうかを照査することにより行った。すなわち、安全率をα とすると、α倍した荷重に対し有限変位解析を行って断面力を算出 し、構造各部の応力度がσ<sub>u</sub> 以下であるかどうかを照査することに より行った、α=1.7 とすればσ<sub>u</sub> の値は、

σu=1.7σta(σta; 許容引張り応力度)

あるいは σ<sub>u</sub>=1.7σ<sub>cal</sub>(σ<sub>cal</sub>; 局部座屈に対する許容圧縮応力度) 構造物の全体耐荷力はこの他に材料の非線形性,初期変形や残留 応力など多くの要因により影響を受けるので,厳密には上記の照査 で十分であるとは言いがたい面もある。しかしケーブル力による不 均等応力度をも考慮した弾弾性有限変位解析プログラムの特殊性や 設計実務面での簡便さ等を考慮し,本橋では上記のように簡略的に 耐荷力を照査し、安全性を確認することとした。

・その他(

照査は主要点の影響線により荷重載荷範囲を決定して行っている. 親塔,子塔,主桁の代表的な点に対し,断面決定の際支配的であっ た状態について,その応力状態および許容値を図-27に示した。図 からも明らかなように,応力度はすべて許容値σω以下である.

非線形性の検討によれば,塔,主桁とも非線形性を考慮すると曲 げモーメントが増加するが,これに対し本検討で許容値以上の応力 度が生じていないのは次の理由によるものと思われる.

- ① 主塔のみならず主桁にも有効座屈長を考慮して設計したこと
   で,既に非線形性について対処されていること。
- ② 活荷重に対しては設計実務上その載荷状態を一致させた状態 での計算は大変繁雑である、設計にあたっては、簡略的に実施 したため多少安全側の設計になっていたこと。

No.11



「効应屈服に関するアンケート(2/2) ④有効座屈長算出時の荷讃状態 ( ンエンのより) 〈 ケーブップ・レストレス 〈 活荷重全戰(魏荷重は主経向中央) ⑥有効胚屈長算出時に遭遇した問題点とその解決法 面内。有如座尾見、ういて 塔の新加强定に支配的水子有重。 載高かって、座屋見を強出し、うのにの、荷動かしついても 同い座屈見で なっない思走を引かていることい、疑肉を及いる。 ⑥各算出方法の違いによる問題点及び解決法 の全体構造として耐荷力の照査を行なった場合 · その他( 建塑性石碑多位解析 • 彈性有限変位解析 ・非弾性有限変位解析 解析方法 使用プログラム( EPASら 間瀰点とその解決法 の電素の設定(主扔一弹性望電幕) しろしまれか 見大部面しおしめ すれりも しなー 弾塑性指数面電影 最終的しい 強塑性指数面電影した。 ②荷重于2 初期市的开上残留成为の影定法 小な、中見、ここの論はんろん ③ 彩平、彩版法 · AASHTO 云 法用


(2/2) の有効座風長溝出時の商重状態 常時 X(D+P3+L+T+SD) 又は 10(D+P3+T+SD)+XL Lは着目部れの朝カが最大とする位置に影響線載荷 の有効座屈長算出時に遭遇した問題点とその解決法 垂直応力度が許容応力度と比較して小はす部村(例2位、動力の小なが 部時や曲げ圧縮応力度のやでゅうたう度のちめる割合の大きな部本すうては 有効座屈長が一種端に長くなり非現実的な座屈長をちえる。 工学的に安当と判断できる有効庭居を用いるれ、さもなくは弾塑性 有限受所解析を用いる。 ⑥各算出方法の違いによる問題点及び解決法 線型弾性座風解析ではかかり、危険度1の因有値をチえることかある。 実際の安全事は年四公団のモチ法による「面かい比較の実情に近いと思うれる、 Efの中にさらに局部座屋による・短限所商力の低減し含れたか望ましい. の全体構造として耐荷力の照査を行なった場合 ①非弹性有限变位解析 ・その他( 解析方法 • 弹性有限变位解析 使用プログラム く 問題点とその解決法 弹性有限变位解析了は. 好料 带绿翅の学物学が考虑了之外。 弹塑性有限变化解析も解析法かますますで、意颜性に疑問か残了。 市る程度なに認められた解析法を基準化が必要かすうう。

B--74



2. 丫型橋脚,有如座屈長

2.1 模訂、目町

本稿脚は形状が丫字形をレスおり、道路橋示方書の 定めるラーメンの有如座屈長を通用することは困難である。 したが、ス、ここで丫型橋脚を対象とした、線形弾性座屈 解析を行い、桂としての有効座屈長を決定することです。 検討は標準タイプ、右シフトタイプの2種類について 行行うものとする。

本橋脚は下段村と剛結構造となって、る。そんため、座屈時、水平初動にテオして、下段村は面内、面外ともにある 程度の打束如果を有していると考えらいる。ただし、下段村 の支町長、着目橋脚が端支点が中国支点が等により如果 のてきこが果なる。また、下校村か剛結の影響を考慮しない えが設計上安全側に評価できる。したが、て、検討に当って は下段村の問結の影響は考慮しないものとする。



B - 77

|                |        |      |      |          | (m)         |  |
|----------------|--------|------|------|----------|-------------|--|
| 透明琼别           | ÷1) IT | 面内有如 | 座居長  | 面外右如座屈長. |             |  |
| 1410-173.1     | 0114   | 該計式  | 解析值  | 該訪式      | 醉杯值         |  |
|                |        | 25.8 | 29.9 | 35.1     | 39.2        |  |
|                | (2)    | 25.8 | 29.6 | 35.1     | 34.5        |  |
| 標準柱            | (13)   | 32.8 | 32.1 | 46.8     | <u>45.8</u> |  |
| (P98)          | RI     | 18.8 | 16.5 | 25.6     | 22.5        |  |
|                | $R_2$  | 23.9 | 22.7 | 39.1     | 31.5        |  |
|                | C      | 51.5 | 48.2 | 53.8     | 50.0        |  |
|                |        | 23.8 | 21.5 | 32.9     | 31.1        |  |
| 右シフト柱<br>(P95) | (L2)   | 23.8 | 22.0 | 32.9     | 31.9        |  |
|                | (L3)   | 30.3 | 28.9 | 93.2     | 91.7        |  |
|                | RZ     | 21.9 | 19.8 | 30.5     | 25.6        |  |
|                | (C)    | 49.7 | 96.0 | 49.7     | 49.1        |  |

部村該計用、有如座屈長、座屈解开中、比較

## 参考資料

参-1. 標準柱の座屈解析

1) 解析モデル

標準柱として P98の骨組、剛度をモデル化する.



仮定剛度

|                 | 断面積                 | 面州断面2;元モナント | <b>闻外街面2次モ-メント</b> | わじり定数             |
|-----------------|---------------------|-------------|--------------------|-------------------|
| $ \rightarrow $ | H (m <sup>2</sup> ) | Iy (n')     | 12 (m')            | $\int (m^{\tau})$ |
|                 | 0.620               | 0.882       | 0.923              | 1.19              |
| (2)             | 0,572               | 0.814       | 0.848              | 1.08              |
| 3               | 0.644               | 0.916       | 0.960              | 1.29-             |
| (9)             | 0.629               | 0.403       | 0.801              | 0.652             |
| 5               | 0.299               | 0.198       | 0.377              | 0.314             |
| 6               | 0.354               | 0.290       | 0.4-60             | 0.399             |
| $\overline{)}$  | 0.324               | 0.219       | 0.418              | 0.357             |
| 8               | 0.315               | 0.186       | 0.380              | 0.336             |
| 9               | 0.275               | 0.166       | 0.316              | 0.283             |
| (10)            | 0.290               | 0:088       | 0.263              | 0.173             |

B-80

and the second second





## おれの平均剛度

| م مر  | 面内断面2次モメル | 面升的而2次モーメント |
|-------|-----------|-------------|
| 51 77 | Iy (m')   | $IE(m^{T})$ |
|       | 0.219     | 0.419       |
| (_2)  | 0.226     | 0.432       |
| (_3)  | 0.352     | 0.695       |
| . RI  | 0.198     | 0.377       |
| RZ    | 0.357     | 0.705       |
| C     | 0.854     | 0.892       |

B - 82

面内座屈

|      | 国有值   |             | 压缩轴力         | 座屈可重 (t) | 序屈长係数 | 柳座居长                                           |
|------|-------|-------------|--------------|----------|-------|------------------------------------------------|
| Case | α     | 却杯          | N: (†)       | Nor= aN  | β     | $le = \beta l(m)$                              |
|      |       |             | 1 000        | 76 260   | 3.84  | <u> 29.                                   </u> |
| 1    | 76.26 | (12)        | 1014         | 77 330   | 8.34  | 29.6                                           |
|      |       | <u>(L3)</u> | 929.4        | 70 880   | 5.26  | 32.1                                           |
|      |       | (C)         | 1000         | 76 260   | 5.29  | 48.2                                           |
|      |       | RI)         | 1.001        | 151_300  | 5.58  | 16.5                                           |
| 2    | 151.1 | R2          | <u>953.2</u> | 199 000  | 4.13  | 22.7                                           |
|      |       | C           | 1000         | 151 100  | 3.76  | 34.2                                           |

 $\beta = \frac{\pi}{l} \sqrt{\frac{EIy}{Ncr}}$ 

モード図



面外座屈

|      | 国有值   |             | 压缩抽力  | 座屈可重 (t) | 座屈長係数 | 柳座屈长              |
|------|-------|-------------|-------|----------|-------|-------------------|
| Case | α     | 部杆          | N (T) | Nor=aN   | β     | $le = \beta l(m)$ |
|      |       |             | 1000  | 74 020   | 5.39  | 3.9.2             |
| ,    | 74.02 | (L2)        | 1019  | 75 060   | _11.7 | 39.5              |
|      |       | <u>(L3)</u> | 929.4 | 68 7 90  | 7.50  | <u>45.8</u>       |
|      |       | $\bigcirc$  | 1000  | 74-020   | 5.49  | 50.0              |
|      |       | RI          | 1001  | 154 300  | 7.63  | 22.5              |
| 2    | 154.1 | R2          | 953.2 | 196 900  | 5.75  | 31.5              |
|      |       | $\bigcirc$  | 1000  | 159-100  | 3.80  | 39.6              |

 $\beta = \frac{\pi}{l} \sqrt{\frac{E I_2}{N_{cr}}}$ 

モード図





## 仮定剛度 .

|                          | 断面積      | 面内断面2次モーメント          | 面外断面2次モーメント          | ねじり定数               |
|--------------------------|----------|----------------------|----------------------|---------------------|
|                          | $A(m^2)$ | Iy (m <sup>4</sup> ) | Iz (m <sup>+</sup> ) | J (m <sup>4</sup> ) |
|                          | 0.596    | 0.848                | 0.885                | 1.13                |
| 2                        | 0.452    | 0.641                | 0.661                | 0.810               |
| 3                        | 0.819    | 1.11                 | 1.12                 | 1.32                |
| <u>(</u>                 | 0.675    | 0. 429               | 0.858                | 0.694               |
| 5                        | 0.374    | 0.259                | 0.988                | 0. 428              |
| 6                        | 0. 299   | 0. 198               | 0.377                | 0.314               |
| $\overline{\mathcal{T}}$ | 0. 269   | 0.177                | 0.336                | 0.272               |
| 8                        | 0.690    | 0.506                | 0.892                | 0.781               |
| 9                        | 0.383    | 0.298                | 0.508                | 0.981               |
| (0)                      | 0.301    | 0.233                | 0.392                | 0.353               |
| (1)                      | 0.257    | 0.153                | 0.303                | 0,265               |
| (12)                     | 0.213    | 0.079                | 0.230                | 0.150               |



## 3) 解析結果



部秋,平均删度

| 当林   | 国内港1面2次モ-メント<br>Iy (m4) | 面外断面2次2-++<br>Iz (m <sup>+</sup> ) |
|------|-------------------------|------------------------------------|
| (L)  | 0.188                   | 0.357                              |
| (_2) | 0.198                   | 0.377                              |
| (13) | 0.302                   | 0.592                              |
| R2   | 0.335                   | 0.578                              |
| C    | 0.859                   | 0.887                              |

面内座屈

|      | 国有值   |                   | 压精神力   | 座屈市重(1)   | 座屈長係数 | 有如座很长              |
|------|-------|-------------------|--------|-----------|-------|--------------------|
| Case | a     | 部村                | N (t)  | Ner = a N | β     | $le = \beta l(m)$  |
|      |       |                   | 1 000  | 89 150    | 3.39  | 21.5               |
| 1    | 89.15 | ( <i>L</i> 2)     | 1010   | 89-990    | 7.95  | 22.0               |
|      |       | $(\underline{3})$ | 923.3  | 77 700    | 4.01  | 28. <del>9</del> - |
|      |       | <u>(c)</u>        | 1000   | 89-150    | 6.28  | <i>4</i> 6.0       |
| 2    | 185.8 | R2                | .956.8 | 177.800   | 2.99  | 19.8               |
|      |       | (c)               | 1000   | 185 800   | 9.23  | 31.0               |

i s

 $\beta = \frac{\pi}{l} \sqrt{\frac{E I_y}{N_{cr}}}$ 

王-ド国



面外座屈

| Case | 固介值<br>α | 部村         | 厅::后轴力<br>N (t) | 症居前重 (1)<br>Nor=αN | 座屈長係数<br>β | 有如座肚长<br>le= Bl (m) |
|------|----------|------------|-----------------|--------------------|------------|---------------------|
|      |          |            | 1 000           | 76 3 I <u>O</u>    | 4.90       | 31.1                |
| ,    | 76.31    | (L2)       | 1010            | 77070              | 10.8       | .31.9               |
|      |          | (13)       | 923.3           | 70 460             | 5.90       | 41.7                |
|      |          | $\bigcirc$ | 1000            | 76 3 10            | 6.71       | <del>9</del> 9.1    |
| 2    | iai r    | (R2)       | 956.8           | 183 200            | 3.22       | 25,6                |
|      | 777.5    | <b>()</b>  | 1000            | 191 500            | 4.23       | 31.0                |

 $\beta = \frac{\pi}{l} \sqrt{\frac{E I_2}{N_{cr}}}$ 

モード四



B - 90



B--91

| 有効歴歴長に関するアンケート(2/2)                                     |
|---------------------------------------------------------|
| の有効感用度算由時の得重状態                                          |
| •固有値解析は常時荷重(D+L)の軸力のみが作用した状態で                           |
| 行った。                                                    |
| ( Ca、を求めるための解析であるので、軸力のみとに、実際には、)<br>(曲げモーメントの比率の方が大きい。 |
| ⑤有効照照期間時に週週した問題点とその解決法、線形座展を基本に                         |
| 道示の Giaは等断面の深・柱モデルより得ちれる有効座屈長をパラメーター                    |
| としているので、構造が複雑なものの安定照査にこのでを用いようと                         |
| すると有効座屈長の算出に際に抽出する部材の境界条件とか                             |
| 荷重の載荷条件が明確でなくなる。                                        |
| (解決)・・・両端をビンジド(て、定生側に吸う、                                |
| <b>の</b> 各第山方法の違いによる問題点及び解決法                            |
| 。 慣用法(道示,固有值解析)<br>。 타法 【 あえ し し ない し し し て あり          |
| EI=E「Cr/JEの「Cr が軸ろだけが作用(た値であることに<br>本質的な問題があると思われる。     |
| <br>の全体構造として耐荷力の照査を行なった場合                               |
| 解析方法 ・弾性有限変位解析 (非弾性有限変位解析) ・その他( )                      |
| 使用プログラム( 沢用の弾塑性有限)<br>問題点とその解決法 変位解析プログラム               |
| 問題を、荷重状態が限定される。                                         |
| 。局部控展の評価ができない.→連成定屈                                     |
| 降伏によるせん断抵抗の減少が評価できない。→せん断力が卓越                           |
| する断面については                                               |
| 解決 うなし できない。                                            |



座風固有値を用いて、債定した有効座風長

部校-1 面付 58.5 面外 267 "

部校-2 面内 115" 面外 700" 部校1~2の間は、ほとんど部校1と変わらない 部校2の付近で、急激に座点長が増加 有効 座屈長に関するアンケート(2/2)

④有効座屈長算出時の荷重状態

- 1. 死荷重,+地震倚重 (架設荷重を含む)
- 2.死倚重+風荷重 (架設倚重を含む)
- 3. 死倚重 (架設倚重を合む)

⑤有効座屈長算出時に遭遇した問題点とその解決法

載荷々重状態で動力の小とな部税は、座原長な要常によきくなったが、 完成時に発生する断面力により断面な、決定とれていたため、特に問題とはならなみった。

⑥各算出方法の違いによる問題点及び解決法

⑦全体構造として耐荷力の照査を行なった場合

解析方法 ・弾性有限変位解析 ・非弾性有限変位解析 ・その他( 使用プログラム())

問題点とその解決法

)



有効座屈長に関するアンケート(2/2)

④有効座屈長算出時の荷重状態

死倚重(プレストレスを含む)のみ.

\* 面外座魚解析用生橋モデルに対しても、主塔部のみの荷重載荷としている。→ 桁とケーブルは、弾性支持効果を再現するためにモテル化

⑤有効座屈長算出時に遭遇した問題点とその解決法

軸カカルとな部状については、座岳固育値なら算出される座岳長が異常 に大きくなる。しなし、これらの部状な、その程度の耐荷力しな育しないと同 考えられず、軸力支配の部状ではないことなら、異常値として無限する こととした。

⑥各算出方法の違いによる問題点及び解決法

同上

最終的には、モード形状より、理想柱と等価となる係数を設定して 座屈長を決定し、固角道なら求められる値と対応することを確認した。

)

⑦全体構造として耐荷力の照査を行なった場合

解析方法 ・弾性有限変位解析 ・非弾性有限変位解析 ・その他( 使用プログラム())

問題点とその解決法



|                                                                        | 反算田時の何里状態                                                                                                              | •                                                                                                                  |                                                                |                  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------|
| 建                                                                      | 生産原料を実施                                                                                                                | 上、小小、載行休夏                                                                                                          | 三化53 有列在尽景。                                                    |                  |
| ⑥有効座屈                                                                  | 長算出時に遭遇した問題点とそ                                                                                                         | の解決法                                                                                                               |                                                                |                  |
| ·<br>列生                                                                | 主体院的过 日余子子                                                                                                             | 病のデル対われま                                                                                                           | 文弦针事例之何,                                                       | 柏甸               |
| Æ                                                                      | T法田町12年す5 府纳/                                                                                                          | 「なな こて ブル かって                                                                                                      | 51 ( 0.8H ~                                                    | 24) ど            |
| [8                                                                     | 上使用すべての半(間)                                                                                                            | 国公。                                                                                                                |                                                                |                  |
|                                                                        |                                                                                                                        |                                                                                                                    |                                                                |                  |
|                                                                        |                                                                                                                        |                                                                                                                    | •                                                              |                  |
|                                                                        |                                                                                                                        |                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                          |                  |
|                                                                        |                                                                                                                        |                                                                                                                    |                                                                |                  |
| ⑧各算出方                                                                  | まの違いによる問題点及び解決                                                                                                         |                                                                                                                    |                                                                |                  |
| ⑥各算出方<br>↓                                                             | 去の違いによる問題点及び解決<br>角造計道と分って有多<br>トン「「現息点等」「把握<br>と想定し、二十七月度」し                                                           | 法<br>11 尽压音正定* に第2<br>-しし、13 初期不整日<br>塔。該計断面加正定2                                                                   | い fi-a2", 真土石:<br>=FS 休加田中モーメン<br>E.                           | 法a 建-12<br>}a 展生 |
| ③各算出方<br>〔<br>⑦全体構造                                                    | 去の違いによる問題点及び解決<br>角造剤 道と分って有多<br>トン 「「是夏点 等」「 把 握<br>と 想定し、 二++- 月度して<br>として耐荷力の服査を行なった                                | 法<br>17 寒康鲁正定以に第27<br>-ししいい- 初期不整日<br>塔。該計断面加正定的<br>場合 厨荷刀 g 照                                                     | い ガー a2", 算上不<br>= ら付加田 ポモーメン<br>E.<br>直は実施しいなー                | ×α建-12<br>tα层生   |
| ③各算出方<br>①全体構造<br>解析方法                                                 | 去の違いによる問題点及び解決<br>角造剤 道と、行って有多<br>トシ 「「是夏点 等」「F FE FE<br>と 想定し、 これを考慮して<br>・弾性有限変位解析 ・非                                | 法<br>加度底音正定以に報ご<br>-ししいい- 初期不整日<br>塔。設計断面加正定が<br>場合 両荷加 955<br>弾性有限変位解析 ・その(1)                                     | は fj-a2", 真王 オス<br>=FS 住 加田 中モーメン<br>E.<br>直は 実施しいなり-<br>L( )  | 宏a 建-11<br>}a 急生 |
| ③各算山方<br>〔①全体構造<br>解析方法                                                | 去の違いによる問題点及び解決<br>角造剤 道と分って有多<br>トン 「「是夏点 辛 F F F F F F F F F F F F F F F F F F                                        | 法<br>如 展展 展 正 定 K に 訳 Z<br>-ししいり- 初期不整日<br>塔 a 該計断面か 正定が<br>場合 府下所 a 照<br>弾性有限変位解析 · その(1<br>)                     | 11 fj-a2", 真王有<br>=F3 住加田中モーメン<br>E.<br>直は実施しいならっ<br>山()       | 坂の 建-11<br>Fa 発生 |
| <ol> <li>③各算山方</li> <li>①全体構造</li> <li>解析方法</li> <li>問題点とその</li> </ol> | 去の違いによる問題点及び解説<br>角 志 計 道 と ゲッ こ 有 多<br>トシ 「「 定夏点 辛 「F FC FE<br>と 想 定し、 これを 月度して<br>・弾性有限変位解析 ・ 非<br>使用プログラム (<br>の解決法 | 法<br>加度底音正定以に報ご<br>-ししいけー 初期不整日<br>塔。設計断面加正定が<br>場合 両有水の照<br>弾性有限変位解析 ・その(1)<br>)                                  | は fj-a2", 真王不<br>= F3 住加田中モーメン<br>F.<br>直は実施しいfj-<br>h()       | 宏《建-11<br>[a 急生  |
| <ol> <li>③各算山方</li> <li>①全体構造</li> <li>解析方法</li> <li>問題点とその</li> </ol> | 去の違いによる問題点及び解説<br>角 造 計 算 とっ行っ こ 有多<br>トシ 「「 発夏 点 等 FF FE FE<br>と 想 定 レ、 これを 房屋 い<br>・弾性有限変位解析 ・非<br>使用プログラム (<br>の解決法 | 法<br>加展展展正定*に報ご<br>-ししいい-初期不整い<br>塔。該計断面加正定が<br>場合 府町の照<br>弾性有限変位解析 ・その(1<br>)                                     | は fj- a2", 真王方:<br>=FS 住加田 f E-メン<br>E.<br>直は 実施 にいない<br>L ( ) | 坂の 建-11<br>Fa 発生 |
| ③各算山方<br>(①全体構造<br>解析方法<br>問題点とその)                                     | 去の違いによる問題点及び解説<br>角 志 引 道 と ゲッ こ 有 3<br>トシ 「「 定夏 点 辛 r f f f f f f f f f f f f f f f f f f                             | 法<br>如 尽压 悬 正 定 K に 訳 Z<br>-しし ~ 11- 初 期 不整 11<br>塔 a 設計 断面 か 正定 K<br>場合 <u>同下 所 不 a 既</u><br>弾性有限変位解析 · その(1<br>) | は fj-a2", 真王不<br>= F3 住 加田 中モーメン<br>F.<br>直は 実施 にいたう-<br>L( )  | 坂の選-112<br>Fa発生  |
| ③各算山方<br>(①全体構造<br>解析方法<br>問題点とその)                                     | 去の違いによる問題点及び解説<br>第1巻 朝 道 とっ行っ こ 有多<br>トシ 「「 実夏 点 羊 r F F F F F F F F F F F F F F F F F F                              | 法<br>加度底景正定以に報ご<br>-しし、リーネア現不整日<br>塔·電影計断面か正定が<br>場合 両方水の照<br>弾性有限変位解析 ·その低<br>)                                   | は fj-a2", 真王方<br>=FS 住 加田 中モーメン<br>E.<br>直は 実施 にいけー<br>山()     | 坂のぼ~11<br>トの発生   |

| ①解析した構造型式                                                                                                                     | ②百効匪屈畏の算用方法                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>- 鋼製橋脚</li> <li>2. 吊橋</li> <li>3. 斜張橋</li> <li>4. トラス</li> <li>(5) アーチ</li> <li>6. 方杖ラーメン</li> <li>7. その他</li> </ol> | 1. 道路橋示方書         2. 本四公団(平均防面を用いたE「法)<br>(使用プログラム )         3. 各防面毎の剛度を用いたE「法<br>(使用プログラム )         4. 弾性固有他解析<br>(使用プログラム NASTRAN )         5. その他 |
| ③モデル及び代表的部材の有効趣刷長                                                                                                             |                                                                                                                                                      |
|                                                                                                                               |                                                                                                                                                      |

計算モデルを図-1,2および表-1に示す。

当計算は図-1のようなニールセン単弦ローゼ桁橋が、道示で要求する面外座屈 安全性を保証でき、静的範囲で合理的、経済的に成り立つかどうかを調べるため に行ったものである。

ほかに、フィーレンディール横支材、トラス支材を有するタイプとの傾向比較 を行っている。(図-4)参照 ,床組は上下層ともタイと剛結した鋼床版

有効座屈長(1 e)は

当計算の場合 54.6m 道示によれば 43.2m 上層床長を仮想支間とする。 小松, 崎元式は 40。9m / パ 有効壓屈長に関するアンケート (2/2)

5

④育効亟屈長算由時の荷重状態

図-3に示す。

⑤有効壓屈長算由時に遭遇した問題点とその解決法

アーチ・リブの全部位断面は1 e を用いて、部材として設計(Sf>1.7) し、全体座屈安全率(Sf>2.0)は線形座屈解析の1次座屈荷重を用いて 検証することが、どれだけ一般性をもって確度のあるものか明確でない。が 計画上は、解析事例、施工事例もふまえて、安全側であることが言えれば 問題がない。アーチ橋ではこのような手法がよく用いられていること、後日 非弾性解析を行って照査するように注文をつけたこと、カネもないことから、 追求して終局強度まで検討していない。

⑥各算出方法の違いによる問題点及び解決法

道示、崎元式より、1 e が 3 0 %程度長くなった。 アーチ起拱部の固定条件が十分確保される場合だけ、このような簡用式が、 適用できるものと思われた。

①全体構造として耐荷力の肌直を行なった場合

| 解析方法  | ・弾性有限変位解析 | ①非弾性有限褒位解析 | ・その他( | )   | _ |
|-------|-----------|------------|-------|-----|---|
|       | 使用プログラム ( |            | )     |     |   |
| 問題点とそ | の解決法      |            |       | · · |   |

弾性座屈解折による面外座屈安全率の照査 (1) モデル化



スケルトンは以下の方針でモデル化する。

- 立体骨組モデルとする。こうすると、横梁と钢床版の横剛性、及び斜角の影響が評価される。面内・面外の座屈荷重を同一条件で調べることもできる。
- ② 上・下層の鋼床版はセン断剛性の等価なトラス斜材に置き換える。
- ③ 斜材(φ76-LCR)は抗圧、抗張の軸力部材(ROD)とし、一点に集めてモデ ルを簡単にする。

従って横桁はモデル化しない。補剛桁の捩り刚性は考慮しない。

- ④ 主構間隔はアーチリブ幅の変更により、原案より約1m拡げる必要があるが、アー チリブの内っつら間隔は一定であり、影響は小さいとみて一応原案の寸法を用いる。
- ⑤ 支点条件はP。橋脚側を橋軸方向平行に可動とする。

回転は全支点、全方向に自由とする。

⑥ 横梁断面の主軸は、水平一鉛直軸と一致する。



B-102

しえー() 仮定断面

アーチ・リブの仮定断面は小松・崎元の簡用式に基づいた試断面である。

(記号)

x, y, z:主軸 , l x 捩り刚度 (m<sup>4</sup>), tf,u,l フランジ厚 (mm) A x : 断面積 (m<sup>'</sup>), l y,z : 曲げ刚度 (m<sup>4</sup>), tw :腹板厚 (mm)

| 部材        | Wi                                                                                             | 101                                                                                       | A x                              | I *                      | l y               | I z                    |
|-----------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------|--------------------------|-------------------|------------------------|
| アーチ・リプ    | 11=tw=25 <sup>mm</sup><br>(リブ込み)<br>z<br>1w<br>Tw<br>T<br>1w<br>7<br>11<br>2<br>1w<br>7<br>4.2 | 00<br>小<br>小<br>小<br>小<br>小<br>小<br>小<br>小<br>小<br>小<br>小<br>小<br>小                       | アーチク<br>0.23<br>~<br>0.32<br>支点上 | ラウン<br>0.28<br>~<br>0.75 | 0.22<br>~<br>0.37 | ,<br>0.16<br>~<br>0.74 |
| 支点上       | 強変設計<br>レベル 2000<br>y tu                                                                       | Ps(则<br>tu=14,tL=30<br>5 - Rib 200 ×22<br>tw=10<br>7 - Rib 同上                             | 0.24                             | 0.14                     | 0.13              | 0.22                   |
| 横 梁       |                                                                                                | $P_{4}[W]$ $t_{u} = t_{L} = 14$ $5 - Rib 170 \times 19$ $t_{W} = 10$ $7 - Rib [ii] \perp$ | 0.18                             | 0.13                     | 0.11              | . 0.16                 |
| 上周        | 強度設計<br>レベル 2000<br>y lu                                                                       | P <sub>5</sub> 例<br>tu=26,tL=45<br>5 - Rib 200 ×22<br>tw=16<br>7 - Rib 同 上                | 0.33                             | 0.23                     | 0.18              | 0.32                   |
| 横 梁       |                                                                                                | P₄(W)<br>tu = tt = 14<br>5 - Rib 170 ×19<br>tw = 10<br>7 - Rib 同 上                        | 0.18                             | 0.13                     | 0.11              | 0.16                   |
| 上層<br>補剛桁 | 強度設計<br>レベル<br>1f = tw =10<br>Rib I60x 14                                                      | 1400<br>y<br>11<br>                                                                       | 0.090                            | 0.030                    | 0.026             | 0.028                  |
| 下周<br>補例衍 | 強度設計<br>レベル<br>1f=tw=19<br>Rib 170 x 19<br>00<br>2                                             | 1400<br>y<br>11                                                                           | 0.14                             | 0.075                    | 0.048             | 0.067                  |
| 调床版床组     | デッキプレート t = 12<br>スの斜材断面積に変換                                                                   | <sup>mm</sup> をWワーレントラ                                                                    | 0.16                             | Rod                      | 0                 | "I                     |
| 昂相        | 1 - ø76                                                                                        | L. C. R<br>R = 102                                                                        | 0.0040                           | Rod                      | 0                 |                        |



|         | Wdı | 5.58 t/m                | 主構・横梁                         |
|---------|-----|-------------------------|-------------------------------|
| 死荷重(D)  | Wdz | 6.56 <sup>t/m</sup>     | 床組・吊材・橋面工及添加物                 |
|         | Σwd | 37.4 <sup>t/m</sup> /Br |                               |
| 「「「「「」」 | Ψι  | 1.69 <sup>t/m</sup>     | 主載荷 5.5 m, 従載荷 11.5 m , 上下層共通 |
| 伯彻里(し)  | Σωι | 6.8 <sup>1/m</sup> /Br  | 等分布満載荷                        |
| 合計      |     | 44.2 L/m/Br             |                               |

座屈荷重は $P_{cr} = \alpha_{cr}$  (D+L) の形で求める。

但し ①線活荷重、衝撃及び活荷重の幅員方向偏倚は考慮しない。

②アプローチ橋の効果も考慮しない。

(図-4) 1次モードの比較



| ·<br>· · · · · · · · · · · · · · · · · · ·                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ①解析した構造型式                                                                                                                    | ②有 効 觃 尼 艮 の 算 山 方 法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ol> <li>- 鋼製橋脚</li> <li>2. 吊橋</li> <li>3) 斜張橋</li> <li>4. トラス</li> <li>5. アーチ</li> <li>6. 方杖ラーメン</li> <li>7. その他</li> </ol> | <ol> <li>道路橋示方書</li> <li>本四公団(平均断面を用いたEf法)<br/>(使用プログラム )</li> <li>各断面毎の剛度を用いたEf法<br/>(使用プログラム )</li> <li>弾性固育他解析<br/>(使用プログラム )</li> <li>その他</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                              | $   \begin{array}{c}     1.3 \ (A = 1.3) \\     1.3 \ ( & ) \\     1.3 \ ( & ) \\     1.3 \ ( & ) \\     1.7 \ (A = 1.2) \\   \end{array} $ $   \begin{array}{c}     Ill fat The total factors for the factors for t$ |
|                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| 有効座屈長に関するアン                                 | -ケート(2/2)                       |
|---------------------------------------------|---------------------------------|
| ④有効座凮艮算山時の荷重状態                              |                                 |
| D(死荷重) + PS(ルレストレス)                         |                                 |
| 塔面内,面9-24にD+PS                              |                                 |
|                                             |                                 |
| ⑤有効座屈長算山時に遭遇した問題点とその解決法                     |                                 |
| ・ 塔面内の上層部の動力かかさな部だ                          | 1日和瑞に有効座原長が大き(日                 |
| った。(Le= 3.0~ 4.0 L.) -> TIMOSHI<br>B=3.0~40 | ENKOの文献を参照し B=1.3 柱度を検討         |
| · 塔面内 / 次へ2次モート 図では チ<br>→ 3単性座唇解析結果をベース    | 、上廣部の反曲点か明確に理めれなか。<br>(= LZ ジ夫定 |
| (高次モート・国から推定でき                              | き方をかちんはししのとすか)                  |
| ⑥各算山方法の違いによる問題点及び解決法                        |                                 |
| 斜張橋の塔に対に Es法を明い<br>事が本当に必要なのか疑的が残り          | z 有效 座展長 E 算出 J3<br>3。          |
| ·····                                       |                                 |
| ①全体構造として耐荷力の照査を行なった場合<br>                   |                                 |
| 解析方法 · 弾性有限変位解析 · 非弾性有限変位解析                 | 斤・その他(    )                     |
|                                             | )                               |
| 問題点とその解決法                                   |                                 |
|                                             |                                 |
|                                             |                                 |
|                                             |                                 |
|                                             |                                 |
|                                             |                                 |

| No. 20                                                                                                                                                                                                                                    |                                                                                                                                                                                                                        |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 会社名                                                                                                                                                                                                                                       | 記入者                                                                                                                                                                                                                    |  |  |  |
| ①解析した構造型式                                                                                                                                                                                                                                 | ②有 効 座 屈 長 の 算 山 方 法                                                                                                                                                                                                   |  |  |  |
| <ol> <li>1. 鋼製橋脚</li> <li>2. 吊橋</li> <li>3. 斜張橋</li> <li>4. トラス</li> <li>5. アーチ (ニールセンローゼ)</li> <li>6. 方杖ラーメン</li> <li>7. その他</li> </ol>                                                                                                  | <ol> <li>道路橋示方書</li> <li>本四公団(平均断面を用いたEf法)<br/>(使用プログラム)</li> <li>各断面毎の剛度を用いたEf法<br/>(使用プログラム))</li> <li>弾性固有他解析<br/>(使用プログラム))</li> <li>弾性固有他解析<br/>(使用プログラム))</li> <li>その他</li> <li>ジー 空 性 座 屈 解れても 実 海 中</li> </ol> |  |  |  |
| ③モデル及び代表的部材の有効座屈長                                                                                                                                                                                                                         |                                                                                                                                                                                                                        |  |  |  |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                        |  |  |  |
| 他ニールセン橋の詳細設計時にとり行われ                                                                                                                                                                                                                       | 1たパラメトリック解析に基づき、上弦材の有                                                                                                                                                                                                  |  |  |  |
| 効座屈長は以下のように設定した。                                                                                                                                                                                                                          |                                                                                                                                                                                                                        |  |  |  |
| <ul> <li>(1) 面内有効座屈長</li> <li>1吊材間隔を有効座屈長とする。</li> <li>但し、L/r, &lt;600</li> <li>L :支間長</li> <li>r, :上弦材の面内断面 2次半径</li> <li>(2) 面外有効座屈長</li> <li>上支材間隔の70%を有効座屈長とする。</li> <li>但し、L/r<sub>2</sub> &lt;80、θ≤73°</li> <li>L :上支材間隔</li> </ul> |                                                                                                                                                                                                                        |  |  |  |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                        |  |  |  |
| <ul> <li>θ : 上弦材の傾斜角(本橋の場合69.444<sup>-</sup>)</li> </ul>                                                                                                                                                                                  |                                                                                                                                                                                                                        |  |  |  |

j,
| のための同時に                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9月刻座加及昇                                                                                                                                                                                                                                                                                                                    | 山時の荷重状態 (弾性座压解杆)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CAS                                                                                                                                                                                                                                                                                                                        | E-1: D+L(満載) — 活荷重G1桁着目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CAS                                                                                                                                                                                                                                                                                                                        | E-2: D+L(満載) ── 活荷重G2桁着目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CAS                                                                                                                                                                                                                                                                                                                        | E-3: D+L (半載) — 活荷重G1桁着目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CAS                                                                                                                                                                                                                                                                                                                        | E-4: D+L(半載) ─ 活荷重G2桁着目                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CAS                                                                                                                                                                                                                                                                                                                        | E-5: D+L(相反载荷)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CAS                                                                                                                                                                                                                                                                                                                        | E-6: D+W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5有効座 回長算                                                                                                                                                                                                                                                                                                                   | 山時に遭遇した問題点とその解決法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 以下にえ<br>ことが判明                                                                                                                                                                                                                                                                                                              | 示すように、弾性座屈解折に基づく有効座屈長は何れも長めに設定されている<br>明した。<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                            | Le / Ld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 面                                                                                                                                                                                                                                                                                                                          | $\overrightarrow{P}$ $\overrightarrow{C}$ |
|                                                                                                                                                                                                                                                                                                                            | G1 2.85 ~ 2.99 Le: オイラー座屈式による有効座屈長                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 面                                                                                                                                                                                                                                                                                                                          | 外         G 2         3.79         ~ 3.98         Ld :上弦材設計に用いた有効座屈長                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ①本                                                                                                                                                                                                                                                                                                                         | 橋の上弦材設計で設定された有効座屈長は、従来の手法と比して合理的設計                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ① 本<br>_ が可                                                                                                                                                                                                                                                                                                                | :橋の上弦材設計で設定された有効座屈長は、従来の手法と比して合理的設計<br>能。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ① 本<br>が可<br>② あ<br>てい                                                                                                                                                                                                                                                                                                     | :橋の上弦材設計で設定された有効座屈長は、従来の手法と比して合理的設計<br> 能。<br>くまでも、他橋詳細設計時におこなわれたパラメトリックスタデイに基づい                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ① 本<br>が可<br>② あ<br>て設                                                                                                                                                                                                                                                                                                     | 橋の上弦材設計で設定された有効座屈長は、従来の手法と比して合理的設計<br>能。<br>くまでも、他橋詳細設計時におこなわれたパラメトリックスタデイに基づい<br>定された有効座屈長であり、本橋での特性が必ずしも反映されている訳では<br>ため、本語においても確塑性解析による検知が不可な                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ① 本<br>が可<br>② あ<br>て設<br>ない<br>と言える                                                                                                                                                                                                                                                                                       | 橋の上弦材設計で設定された有効座屈長は、従来の手法と比して合理的設計<br>能。<br>くまでも、他橋詳細設計時におこなわれたパラメトリックスタデイに基づい<br>定された有効座屈長であり、本橋での特性が必ずしも反映されている訳では<br>ため、本橋においても弾塑性解折による検証が不可欠。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ① 本<br>が可<br>② あ<br>て設<br>ない<br>と言える                                                                                                                                                                                                                                                                                       | 橋の上弦材設計で設定された有効座屈長は、従来の手法と比して合理的設計<br>能。<br>くまでも、他橋詳細設計時におこなわれたパラメトリックスタデイに基づい<br>定された有効座屈長であり、本橋での特性が必ずしも反映されている訳では<br>ため、本橋においても弾塑性解折による検証が不可欠。<br>。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ①本<br>が可<br>②あ<br>て設<br>ない<br>と言える<br>①全体構造とし                                                                                                                                                                                                                                                                              | 「橋の上弦材設計で設定された有効座屈長は、従来の手法と比して合理的設計」 「能。 くまでも、他橋詳細設計時におこなわれたパラメトリックスタディに基づい 定された有効座屈長であり、本橋での特性が必ずしも反映されている訳では ため、本橋においても弾塑性解折による検証が不可欠。 ・ て耐荷力の照査を行なった場合                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ①本<br>が可<br>②あ<br>て設<br>ない<br>と言える<br>①全体構造とし<br>解析方法・                                                                                                                                                                                                                                                                     | <ul> <li>橋の上弦材設計で設定された有効座屈長は、従来の手法と比して合理的設計</li> <li>能。</li> <li>くまでも、他橋詳細設計時におこなわれたパラメトリックスタディに基づい</li> <li>定された有効座屈長であり、本橋での特性が必ずしも反映されている訳では</li> <li>ため、本橋においても弾塑性解折による検証が不可欠。</li> <li>て耐荷力の照査を行なった場合</li> <li>弾性有限変位解析 ・その他( )</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ①本<br>が可<br>②あ<br>て設<br>ない<br>と言える<br>①全体構造とし<br>解析方法・                                                                                                                                                                                                                                                                     | <ul> <li>「橋の上弦材設計で設定された有効座屈長は、従来の手法と比して合理的設計</li> <li>「能。</li> <li>「くまでも、他播詳細設計時におこなわれたパラメトリックスタディに基づい</li> <li>定された有効座屈長であり、本橋での特性が必ずしも反映されている訳では</li> <li>ため、本橋においても弾塑性解析による検証が不可欠。</li> <li>で耐荷力の照査を行なった場合</li> <li>弾性有限変位解析 ・その他())</li> <li>使用プログラム( EPACS)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ①本<br>が可<br>②あ<br>て設<br>ない<br>と言える<br>①全体構造とし<br>解析方法・<br>問題点とその解                                                                                                                                                                                                                                                          | 福の上弦材設計で設定された有効座屈長は、従来の手法と比して合理的設計   能。   くまでも、他橋詳細設計時におこなわれたパラメトリックスタディに基づい   定された有効座屈長であり、本橋での特性が必ずしも反映されている訳では   ため、本橋においても弾塑性解析による検証が不可欠。   て耐荷力の照査を行なった場合   弾性有限変位解析   ④非弾性有限変位解析   ・その他()   )   決法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ①本<br>が可<br>②あ<br>て設<br>ない<br>と言える<br>①全体構造とし<br>解析方法<br>・<br>問題点とその解<br>現在                                                                                                                                                                                                                                                | 福の上弦材設計で設定された有効座屈長は、従来の手法と比して合理的設計<br>能。<br>くまでも、他福詳細設計時におこなわれたパラメトリックスタディに基づい<br>定された有効座屈長であり、本橋での特性が必ずしも反映されている訳では<br>ため、本橋においても弾塑性解析による検証が不可欠。<br>・<br>て耐荷力の照査を行なった場合<br>弾性有限変位解析 ()非弾性有限変位解析 ・その他())<br>使用プログラム(EPACS))<br>決法<br>実施中であり、結論は出て、ない。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ①本<br>が可<br>② あ<br>て設<br>ない<br>と言える<br>①全体構造とし<br>解析方法<br>・<br>問題点とその解<br>見題、                                                                                                                                                                                                                                              | ボの上弦材設計で設定された有効座屈長は、従来の手法と比して合理的設計<br>能。<br>くまでも、他橋詳細設計時におこなわれたパラメトリックスタディに基づい<br>定された有効座屈長であり、本橋での特性が必ずしも反映されている訳では<br>ため、本橋においても弾塑性解析による検証が不可欠。<br>・<br>て耐荷力の照査を行なった場合<br>弾性有限変位解析 ()非弾性有限変位解析 ・その他())<br>使用プログラム(EPACS)<br>決法<br>実 次を中であり、結論ななて、ない。<br>え、                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ①本<br>が可<br>② あ<br>て設<br>なる<br>①全体構造とし<br>解析方法<br>の解<br>記題点とそ現<br>題<br>の<br>金<br>本可<br>な<br>で<br>な<br>な<br>る<br>で<br>し<br>な<br>の<br>で<br>し<br>な<br>の<br>の<br>た<br>で<br>の<br>な<br>の<br>の<br>た<br>で<br>の<br>の<br>の<br>で<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の                                          | 横の上弦材設計で設定された有効座囲長は、従来の手法と比して合理的設計<br>能。<br>くまでも、他橋詳細設計時におこなわれたバラメトリックスタディに基づい<br>定された有効座屈長であり、本橋での特性が必ずしも反映されている訳では<br>ため、本橋においても弾塑性解析による検証が不可欠。<br>・<br>て耐荷力の服査を行なった場合<br>弾性有限変位解析 ()非弾性有限変位解析 ・その他()<br>使用プログラム(EPACS)<br>決法<br>実 施中であり、結論は出ていない。<br>高、<br>須 か 非 半 二 一 っ と な る。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ①本<br>が可<br>② な<br>でで<br>なる<br>で<br>で<br>なる<br>の<br>全体構法<br>で<br>現<br>と<br>言える<br>の<br>全体構法<br>で<br>現<br>し<br>で<br>なる<br>の<br>で<br>なる<br>の<br>で<br>なる<br>の<br>で<br>なる<br>の<br>で<br>なる<br>の<br>で<br>なる<br>の<br>の<br>を<br>書える<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>で<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の | 横の上弦材設計で設定された有効座屈長は、従来の手法と比して合理的設計<br>能。<br>くまでも、他播詳細設計時におこなわれたパラメトリックスタディに基づい<br>定された有効座屈長であり、本橋での特性が必ずしも反映されている訳では<br>ため、本橋においても弾塑性解析による後距が不可欠。<br>。<br>て耐荷力の照査を行なった場合<br>弾性有限変位解析 ④非弾性有限変位解析 ・その他( )<br>使用プログラム(EPACS )<br>決法 )<br>実施中であり、結論は出て、ない。<br>え、<br>須 か 非ド常に与くなる。<br>法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ①本<br>が<br>②<br>で<br>な<br>で<br>な<br>る<br>で<br>な<br>る<br>で<br>な<br>る<br>で<br>な<br>る<br>で<br>な<br>る<br>で<br>で<br>な<br>る<br>で<br>で<br>な<br>る<br>で<br>で<br>な<br>る<br>で<br>し<br>合<br>体<br>間<br>法<br>の<br>の<br>の<br>で<br>の<br>の<br>で<br>の<br>で<br>の<br>の<br>で<br>の<br>の<br>で<br>の<br>の<br>の<br>の                                 | 構の上弦材設計で設定された有効座屈長は、従来の手法と比して合理的設計<br>能。<br>くまでも、他橋詳細設計時におこなわれたバラメトリックスタディに基づい<br>定された有効座屈長であり、本橋での特性が必ずしも反映されている訳では<br>ため、本橋においても彈塑性解析による検証が不可欠。<br>。<br>て耐荷力の服査を行なった場合<br>弾性有限変位解析 ④非弾性有限変位解析 ・その他( )<br>使用プログラム(EPACS )<br>決法 )<br>実施中であり、結論ななていない。<br>気、<br>頃 か 非半常に、一つくなる。<br>法<br>生座 風 解析 で 荷 室 ケース EM くし どの 結果から 3半型性 率気解析                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

No.21 ①解析した構造型式 ②有効座 加長の算出方法 1. 鋼製橋脚 1. 道路橋示方書 2. 吊橋 2. 本四公団(平均断面を用いたEf法) (使用プログラム ) 3. 斜張橋 3. 各断面毎の剛度を用いたEF法 (使用プログラム ④ 弾性固有他解析 ) 4. トラス (使用プログラム NASTRAN ) (5) アーチ 5. その他 6. 方杖ラーメン 7. その他 ③モデル及び代表的部材の有効座屈長 たまちないのたっとほどにた。 第1~2上横支材間 一面内 ly=21.8<sup>m</sup>, 2·d=21.3<sup>m</sup>, ly/2d=1.02 in · · 面外 Lz=31.4<sup>m</sup>, L=31.6<sup>m</sup>, Lz/L=0.99 ly, lz:固有值解析により求め有効座底長 d: ケーフル間隔 し:横支材間隔

有効座屈長に関するアンケート(2/2)

④有効座屈長算出時の荷重状態

(D+L), (D+L+W)の 25-ス

⑤有効座回長算山時に遭遇した問題点とその解決法

フィーレンディール形式の上横支材の本数に経済比較によりある程度決定できるが、 配置駅所を決定する手段として弾性目有値解析を利用したの部材と同程度の有効 座歴長となるように配置を行った。

また有効座底長に慣用的に用いられてきた面内でケーブル間照の2倍,面外で上横を材間隔を検討の上、採用した。

)

⑥各算山方法の違いによる問題点及び解決法

①全体構造として耐荷力の照査を行なった場合

解析方法 ・弾性有限変位解析 ・非弾性有限変位解析 ・その他( 使用プログラム ( )

問題点とその解決法



B-112

No. 23



B-114

有効座屈長に関するアンケート(2/2) ④有効座屈長算出時の荷重状態 新寺市室 深生わま落軸のと載行 ⑤有効座屈長算出時に遭遇した問題点とその解決法 ①道赤に記載245座在行歌教(座在し下より推定) O le = The Fer ジニー Per は弾性歴任氏色 (= 2N) こし 2万政により 夏家いに有効なななた、要ない ビシッス 通を持用 あってか判断に苦しむ ⑧各算出方法の違いによる問題点及び解決法 ①全体構造として耐荷力の服査を行なった場合 厨坊の 照直は行えいなり. ・弾性有限変位解析 ・非弾性有限変位解析 ・その他( ) 解析方法 使用プログラム( ) 問題点とその解決法

[各算出方法の違いによる問題点及び解決法]

・構造計算を行って有効座屈長を定めた訳ではないので算出方法の違いによる問題点等は把握していない。初期不整による付加曲げモーメントの発生を想定し、これを考慮して塔の設計断面力を定めた。

・現在のところ、橋梁の型式や規模ごとに算出方法を規定している基準がなく算出方法の決定が設計者 の判断に委ねられている。

・道路橋示方書では典型的な部材端条件を有する柱の有効座屈長を規定しているが、複雑な構造や吊り 構造等にこの規定をそのまま適用することは難しい。

・Ef法を使用する場合、弾性固有値解析の結果を利用しているために解の収束の安定性に問題があるように思われる。

・最終的には、モード形状より、理想柱と等価となる係数を設定して座屈長を決定し、固有値から求め られる値と対応することを確認した。

・線形弾性座屈解析では、かなり危険側の固有値を与えることがある。実際の安全率は本四公団のEf法 による値が比較的実情に近いと思われる。Efの中にさらに局部座屈による極限耐荷の低減を含めた方が 望ましい。

・慣用法(道示、固有値解析)、Ef法、両者とも基本的には同じでありEf=ETcr/TeのTcrが軸力だけが作用した値であることに本質的な問題があると思われる。

・斜張橋の塔に対して、Ef法(吊り橋に作られた)を用いて有効座屈長を算出することが本当に必要なのか疑問に残る。

・有効座屈長の決定について明確な基準がないため、比較的過大設計となりがちであるように思われる。

[全体構造として耐荷力の照査を行なった場合]

・解析方法:弾性有限変位解析・・・使用プログラム(KASUS(自社開発))

・問題点とその解決法:有限変位解析は固有値解析とは異なり座屈荷重、座屈モードを明確に求めるこ とができない。このため、解の収束の有無により座屈現象を判断しているが、計算の精度や制御方法な どにより座屈荷重が左右されるため信頼性に問題があると考えている。

計算の信頼性を確認するため、複数の解析コードで計算を行うことが望ましいと思われる。

・解析方法:弾性有限変位解析・・・使用プログラム (KASUS)

・問題点とその解析法:荷重増分法により耐荷力を照査したが、座屈部材は固有値解析の一次モード部 材と一致した。座屈荷重(座屈軸力)は荷重増分法/固有値解析=0.98であった。

解析方法:弾性有限変位解析・非弾性有限変位解析

・問題点とその解析法:弾性有限変位解析では材料非線形の影響が考慮できない。弾塑性有限変位解析 も解析法がまちまちで信頼性に疑問が残る。ある程度公に認められた解析法を基準化する必要があろう。

・解析方法:弾性有限変位解析・・・使用プログラム(当社オリジナル)

・問題点とその解決法:有限変位解析は、明確な座屈固有値及びモードを得ることができない。また立 体モデルを用いた解析は、そのプログラムの整備とともに非常に煩雑となるため、平面解析を行うこと によりチェック程度に使用しているのが現状である。

・解析方法:非弾性有限変位解析・・・使用プログラム(CRC所有の弾塑性有限)変位解析プログラム ・問題点とその解析法:

問題点 荷重状態が限定される。
 局部座標の評価ができない。==> 連成座屈
 降伏によるせん断抵抗の減少が評価できない。==> せん断力が卓越する断面については、実際にあった評価ができない。
 解決 なし

・解析方法:弾塑性有限変位解析・・・使用プログラム (CPASS)

・問題点とその解決法:

- 1. 要素の設定・・・主桁(弾性梁要素)、塔(弾塑性箱断面要素)とすると主桁が過大評価となるため、主桁も最終的には弾塑性箱断面要素とした。
- 2. 荷重ケース・・・初期たわみと残留応力の設定法。 小松・午尾・北田の論文になった。

3. 結果の評価法・・・AASHTOを流用

・解析方法:非弾性有限変位解析・・・使用プログラム (MARC)

・問題点とその解決法

弾塑性解析・・・本橋の基本設計断面に対して、非線形性の影響を照査した結果、設計荷重に対して その影響は微小であったので設計上はこれを無視しているが、念のため本橋の安全性と最終忍耐力の確 認を行うため、最小設計断面に対し汎用非線形解析プログラムMARCを用いて大変形弾塑性解析を行った。 図14に下り線P(7)橋脚側に活荷重を半載状態での最終耐荷力は設計荷重に対してv(ニュウ)=2. 3の安全率を確保していることがわかった。

また、その他の載荷状態に対しても2.5以上の安全率を確保していることを確認した。

## 参考文献

- 1) 日本道路協会:道路橋示方書・同解説, II 鋼橋編, 1994.2
- 2) 本州四国連絡橋公団:吊橋主塔設計要領(案)・同解説, 1989.4
- 3) 西野文雄・三木千寿・鈴木 篤:道路橋示方書・鋼橋編改訂の背景と運用,第13章ラーメン構造,橋梁と基礎,1981.10
- 4) 宇佐美勉:鋼骨組構造物の座屈設計法の問題点, SGST 拡大研究論文集, No.1, 1992.11
- 5) 依田照彦・広瀬 剛:平面骨組構造の有効座屈長に関する一考察,土木学会関東支部発表会,第 20回,1993.3
- 6) 宇佐美勉・伊藤義人・織田博孝:鋼骨組構造物の座屈設計法に関するフォーラム(上,下),橋梁 と基礎, 1994.12, 1995.1
- 7) 倉方慶夫・西野文雄・長谷川彰夫:骨組構造物における現行の座屈設計法の問題点(上,下),橋 梁と基礎, 1992.2, 1992.3
- 8) 土木学会 (倉西 茂編): 鋼構造物の終局強度と設計 (鋼構造シリーズ 6), 1994
- 9) 平山 博・野上邦栄・望月清彦・南野寿造・井浦雅司:骨組構造物の有効座屈長の算出法に関す る考察 – 理論,土木学会年次学術講演会,第50回,1995.9
- 10) 井浦雅司・南野寿造・野上邦栄・桜木隆司:骨組構造物の有効座屈長の算出法に関する考察 計 算例,土木学会年次学術講演会,第 50 回, 1995.9
- 11) 野上邦栄: ラーメン柱の有効座屈長算出法に関する一考察,構造工学論文集, Vol.39A, 1993.
- 12) 野上邦栄:構造全体系の固有値解析による骨組部材の合理的な有効座屈長の評価,土木学会論文 集, No.489/I-27, 1994.4.
- 13) 北田俊行:骨組構造物の種々の座屈設計法の問題点について, SGST 拡大論文集, No.2, 1993.1
- 14) 崎元達郎: E<sub>f</sub> 法, ζ 法に関するメモ,土木学会鋼構造委員会鋼構造終局強度研究小委員会終局 強度設計分科会資料,1991.9
- 15) 伊藤文人: 構造安定論, 技報堂出版, 1989.2