第2編 資料編

1章 総 則

1.1 本指針の特徴

- (1)[]内にSI単位を並記した。
- (2)有効数字は重力単位系については「道路橋示方書」に、SI単位系については「SI単位系移行に 関する参考資料」(日本道路協会)に準拠している。
- (3) S I 単位系換算係数,基準降伏点およびヤング係数については「S I 単位系移行に関する参考資料」 の考え方を踏襲している。
- (4)現行の道路橋示方書で有効数字末尾を「0」または「5」にそろえる考え方(二捨三入)をとってい る値についてはこれを踏襲するものとする。

2.1 表-2.2.1 軸方向引張強度・曲げ引張強度

鋼材の引張強度は基準降伏点としているが、SM570材については安全係数を1.7で処理するため、耐荷力曲線を4400 kgf / cm²(板厚40 mm以下の場合)で頭切りした値としている。

2.2 表-2.2.2 局部座屈を考慮しない軸方向圧縮強度

基準耐荷力曲線は道路橋示方書(以下,道示という)(解2.2.1)に準拠した。*l*/*r*の値は許容応力度法 と不変のはずであるが,結果として道示の値とは合致しなかった。これは道示では境界で計算結果が連 続するように(数字の丸めにより生じる不連続を防ぐために)*l*/*r*の値を何らかの方法で操作している ためだと思われる。しかしながら,道示の数値算出方法が明確でないため,計算結果をそのまま使用す ることにした。SI単位系についても計算結果は同様の傾向を示している。

表-2.2.2 局部座屈を考慮しない軸方向圧縮強度の算出

<SM570材以外の場合>

基準耐荷力曲線は道示(解2.2.1)を使用した。

$\sigma_{cr} / \sigma_{y} = 1.0$	($\lambda \leq$	0.2)
$\sigma_{cr} / \sigma_{y} = 1.109 - 0.545 \lambda = 1.0 - 0.545 (\lambda - 0.2)$	(0.2	$< \lambda \leq$	1.0)
$\sigma_{cr} / \sigma_{y} = 1.0 / (0.773 + \lambda^{2})$	(1.0	$<\lambda$)
$\mathbb{Z}\mathbb{Z}\mathbb{K}, \ \lambda = 1/\pi \times \sqrt{(\sigma_y/E)} \times l/r$			

 $\sigma_{cr} = \sigma_{y}$	($\lambda \leq$	0.2)
$\sigma_{cr} = \{1.0 - 0.545(1 / \pi \times \sqrt{(\sigma_y/E) \times l / r - 0.2})\} \times \sigma_y$	(0.2	$<\lambda \leq$	1.0)
$= \sigma_y - 0.545 \sigma_y / \pi \times \sqrt{(\sigma_y / E)} \times \{l / r - 0.2 \times \pi \times \sqrt{(E / \sigma_y)}\}$			
$\sigma_{cr} = \sigma_{y} / \{0.773 + (1/\pi \times \sqrt{(\sigma_{y}/E) \times l/r})^{2} \}$	(1.0	< <i>λ</i>)
$= \pi^{2} E / \{ 0.773 \pi^{2} E / \sigma_{y} + (l / r)^{2} \}$			

また,

λ=0.2のとき	$l/r = 0.2 \times \pi / \sqrt{(E/\sigma_y)}$
λ=1.0のとき	$l/r = 1.0 \times \pi / \sqrt{(E/\sigma_v)}$

〈SM570材の場合〉

		t	≦	40	のとき	$\sigma_{cr} / \sigma_{y} = 4400 / 4600 = 0.957(430 / 450 = 0.956)$
40	<	t	≦	75	のとき	$\sigma_{cr} / \sigma_{y} = 4200 / 4400 = 0.955(410 / 430 = 0.953)$
75	<	t	≦	100	のとき	$\sigma_{cr} / \sigma_{y} = 4100 / 4300 = 0.953(400 / 420 = 0.952)$
						()内はSI単位系を表示

重力単位系

道示(解2.2.1)は

	$\sigma_{cr} / \sigma_{y} = 1.0$	($\lambda \leq$	0.2)
1	$\sigma_{cr} / \sigma_{y} = 1.109 - 0.545 \lambda = 1.0 - 0.545 (\lambda - 0.2)$	(0.2	$< \lambda \leq$	1.0)
	$\sigma_{cr} / \sigma_{y} = 1.0 / (0.773 + \lambda^{2})$	(1.0	< λ)
	ここに, $\lambda = 1/\pi \times \sqrt{(\sigma_y/E) \times l/r}$			

ここで、①式について

	t	≦ 40	のとき	$\sigma_{cr}^{}/\sigma_{y}^{}$ = 0.957より	$\lambda = 0.279$
40	< t	≦ 75	のとき	$\sigma_{cr} / \sigma_{y} = 0.955$ より	$\lambda = 0.283$
75	< t	≦ 100	のとき	$\sigma_{cr} / \sigma_{y} = 0.953$ より	$\lambda = 0.286$

よって、道示 (解2.2.1)の直線部の式は次の2点を通る直線となる. $t \leq 40$ のとき $(\lambda, \sigma_{cr} / \sigma_{y}) = (0.279, 0.957)$, (1.000, 0.564) $40 < t \leq 75$ のとき $(\lambda, \sigma_{cr} / \sigma_{y}) = (0.283, 0.955)$, (1.000, 0.564) $75 < t \leq 100$ のとき $(\lambda, \sigma_{cr} / \sigma_{y}) = (0.286, 0.953)$, (1.000, 0.564)

よって、総括すると $t \leq 40 \mathcal{O}$ とき $\sigma_{cr} = 0.957 \sigma_{y}$ ($\lambda \leq 0.279$) $\sigma_{cr} = \{0.957 - 0.545(1/\pi \times \sqrt{(\sigma_{y}/E) \times l/r} - 0.279)\} \times \sigma_{y}$ (0.279 $< \lambda \leq 1.0$) $= 0.957 \sigma_{y} - 0.545 \sigma_{y}/\pi \times \sqrt{(\sigma_{y}/E) \times \{l/r} - 0.279 \times \pi \times \sqrt{(E/\sigma_{y})}\}}$ $\sigma_{cr} = \sigma_{y}/\{0.773 + (1/\pi \times \sqrt{(\sigma_{y}/E) \times l/r})^{2}\}$ (1.0 $< \lambda$) $= \pi^{2}E / \{0.773 \pi^{2}E / \sigma_{y} + (l/r)^{2}\}$

$$\begin{array}{ll} 40 < t \leq 75 \mathcal{O} \geq \mathfrak{F} \\ \sigma_{cr} = 0.955 \sigma_{y} & (& \lambda \leq 0.283) \\ \sigma_{cr} = \{ 0.955 - 0.545(1/\pi \times \sqrt{(\sigma_{y}/E) \times l/r} - 0.283) \} \times \sigma_{y} & (0.283 < \lambda \leq 1.0) \\ = 0.955 \sigma_{y} - 0.545 \sigma_{y}/\pi \times \sqrt{(\sigma_{y}/E) \times \{l/r - 0.283 \times \pi \times \sqrt{(E/\sigma_{y})} \}} \\ \sigma_{cr} = \sigma_{y}/\{ 0.773 + (1/\pi \times \sqrt{(\sigma_{y}/E) \times l/r})^{2} \} & (1.0 < \lambda &) \\ = \pi^{2} E / \{ 0.773 \pi^{2} E / \sigma_{y} + (l/r)^{2} \} \end{array}$$

$$\begin{array}{ll} 75 < t \leq 100 \ 0 \geq \ & \\ \sigma_{cr} = 0.953 \ \sigma_{y} & (& \lambda \leq 0.286) \\ \sigma_{cr} = \{ 0.953 - 0.545(1/\pi \times \sqrt{(\sigma_{y}/E) \times l/r} - 0.286) \} \times \sigma_{y} & (0.286 < \lambda \leq 1.0) \\ = 0.953 \ \sigma_{y} - 0.545 \ \sigma_{y}/\pi \times \sqrt{(\sigma_{y}/E) \times \{l/r} - 0.286 \times \pi \times \sqrt{(E/\sigma_{y})} \}} & \\ \sigma_{cr} = \sigma_{y}/\{ 0.773 + (1/\pi \times \sqrt{(\sigma_{y}/E) \times l/r})^{2} \} & (1.0 < \lambda) \\ = \pi^{2}E / \{ 0.773 \ \pi^{2}E / \sigma_{y} + (l/r)^{2} \} & (1.0 < 1.0) \\ \end{array}$$

SI単位系も同様に算出する。

計算結果(表-2.2.2)

式の形態 $\lambda \leq 0.2: \sigma_{cr} = A$ $0.2 < \lambda \leq 1.0: \sigma_{cr} = B - C(l/r - D)$ $1.0 < \lambda : \sigma_{cr} = E/\{F + (l/r)^2\}$

(重力単位系)

鋼種		SS400,SM400,SMA400W SM490					
板厚	mm	$t \leq 40$	40 <i><t< i=""> ≦75</t<></i>	$75 \le t \le 100$	t ≦40	$40 \le t \le 75$	$75 \le t \le 100$
σ,	kgf/cm ²	2400	2200	2200	3200	3000	3000
E(ヤング係数)	kgf/cm ²	2100000	2100000	2100000	2100000	2100000	2100000
λ		0.2	0.2	0.2	0.2	0.2	0.2
		1.0	1.0	1.0	1.0	1.0	1.0
$l/r(\lambda = 0.2)$		18.59	19.41	19.41	16.10	16.62	16.62
	(道示)	20.00	20.00	20.00	15.00	15.00	15.00
$l/r (\lambda = 1.0)$		92.93	97.06	97.06	80.48	83.12	83.12
	(道示)	93.00	97.00	97.00	80.00	83.00	83.00
A		2400	2200	2200	3200	3000	3000
В		2400	2200	2200	3200	3000	3000
С		14.08	12.35	12.35	21.67	19.67	19.67
D		18.59	19.41	19.41	16.10	16.62	16.62
	(道示)	20.00	20.00	20.00	15.00	15.00	15.00
E		20726169	20726169	20726169	20726169	20726169	20726169
F		6676	7282	7282	5007	5340	5340

鋼種		SM490	Y,SM520,SM	1A490W	SM570,SMA570W		
板厚	mm	$t \leq 40$	$40 \le t \le 75$	$75 \le t \le 100$	$t \leq 40$	40 <i>≤t</i> ≦75	$75 \le t \le 100$
σ,	kgf/cm ²	3600	3400	3300	4600	4400	4300
E(ヤング係数)	kgf/cm ²	2100000	2100000	2100000	2100000	2100000	2100000
λ		0.2	0.2	0.2	0.279	0.283	0.286
		1.0	1.0	1.0	1.0	1.0	1.0
$l/r (\lambda = 0.2)$		15.18	15.62	15.85	18.73	19.42	19.86
1	(道示)	14.00	14.00	14.00	18.00	18.00	18.00
l/r ($\lambda = 1.0$)		75.88	78.08	79.25	67.12	68.63	69.43
	(道示)	76.00	78.00	79.00	67.00	69.00	69.00
A		3600	3400	3300	4402	4202	4098
В		3600	3400	3300	4402	4202	4098
С	,	25.86	23.73	22.69	37.35	34.94	33.76
D		15.18	15.62	15.85	18.73	19.42	19.86
	(道示)	14.00	14.00	14.00	18.00	18.00	18.00
E		20726169	20726169	20726169	20726169	20726169	20726169
F		4450	4712	4855	3483	3641	3726

※(道示)は「道路橋示方書」の数値を示す

計算結果(表-2.2.2)

•

	式の形 <u>態</u>
$\lambda \leq 0.2$:	$\sigma_{cr} = A$
0.2<λ≦1.0:	$\sigma_{cr} = B - C(l/r - D)$
1.0< <i>\</i> :	$\sigma_{cr} = E / \{F + (l/r)^2\}$

(SI単位系)

鋼種		SS400	,SM400,SM/	4400W	SM490		
板厚	mm	<i>t</i> ≦40	40 <i><t< i=""> ≦75</t<></i>	$75 \le t \le 100$	$t \leq 40$	40 <i>≤t</i> ≦75	$75 \le t \le 100$
σ,	N/mm^2	235	215	215	315	295	295
E(ヤング係数)	N/mm^2	200000	200000	200000	200000	200000	200000
λ		0.2	0.2	0.2	0.2	0.2	0.2
		1.0	1.0	1.0	1.0	1.0	1.0
$l/r (\lambda = 0.2)$		18.33	19.16	19.16	15.83	16.36	16.36
	(資料)	18.00	19.00	19.00	16.00	16.00	16.00
$l/r (\lambda = 1.0)$		91.65	95.82	95.82	79.16	81.80	81.80
	(資料)	92.00	96.00	96.00	79.00	82.00	82.00
A		235	215	215	315	295	295
В		235	215	215	315	295	295
С		1.40	1.22	1.22	2.17	1.97	1.97
D		18.33	19.16	19.16	15.83	16.36	16.36
	(資料)	18.00	19.00	19.00	16.00	16.00	16.00
E		1973921	1973921	1973921	1973921	1973921	1973921
F		6493	7097	7097	4844	5172	5172

鋼種		SM490	SM490Y,SM520,SMA490W SM570,SMA570			0W	
板厚	mm	<i>t</i> ≦40	40< <i>t</i> ≦75	$75 \le t \le 100$	<i>t</i> ≦40	40 <i>≤</i> t ≦75	$75 \le t \le 100$
σ,	N/mm^2	355	335	325	450	430	420
E(ヤング係数)	N/mm^2	200000	200000	200000	200000	200000	200000
λ		0.2	0.2	0.2	0.281	0.286	0.288
		1.0	1.0	1.0	1.0	1.0	1.0
$l/r(\lambda = 0.2)$		14.91	15.35	15.59	18.61	19.38	19.74
	(資料)	15.00	15.00	16.00	18.00	17.00	17.00
$l/r (\lambda = 1.0)$		74.57	76.76	77.93	66.23	67.75	68.56
	(資料)	75.00	77.00	78.00	67.00	69.00	69.00
A		355	335	325	430	410	400
В		355	335	325	430	410	400
С		2.59	2.38	2.27	3.70	3.46	3.34
D'		14.91	15.35	15.59	18.61	19.38	19.74
	(資料)	15.00	15.00	16.00	18.00	17.00	17.00
E		1973921	1973921	1973921	1973921	1973921	1973921
F		4298	4555	4695	3391	3548	3633

※(資料)は「SI単位系移行に関する参考資料」の数値を示す

表-2.2.1と同じ。

2.4 表-2.2.3 (b) 曲げ圧縮強度

基準耐荷力曲線は道示(解2.2.2)に準拠した。1/rの値は許容応力度法と不変のはずであるが,結果 として道示の値とは合致しなかった。これは道示では境界で計算結果が連続するように(数字の丸めに より生じる不連続を防ぐために)1/rの値を何らかの方法で操作しているためだと思われる。しかしな がら,道示の境界での数値算出方法が明確でないため,計算結果をそのまま使用することにした。1/b の上限値(たとえばSM400では1/b=30)は道示における算出方法が不明であるため,道示の値をその まま使用した。SI単位系についても計算結果は同様の傾向を示している。

表-2.2.3 (b) 曲げ圧縮強度の算出

<SM570材以外の場合>

基準耐荷力曲線は道示(解2.2.2)を使用する。

$\sigma_{cr}/\sigma_{y} = 1.0$	($\alpha \leq$	0.2)
$\sigma_{cr} / \sigma_{y} = 1.0 - 0.412(\alpha - 0.2)$	(0.2	$< \alpha$)
ここに, $\alpha = 2/\pi \times K \times \sqrt{(\sigma_y/E) \times l/b}$,
<i>K</i> = 2	($A_W/A_C \leq$	2)
$K = \sqrt{\{3 + A_W / (2A_C)\}}$	(2	$\langle A_w / A_c$)
· · · · · · · · · · · · · · · · · · ·			,

$$\begin{array}{cccc} & \sigma_{cr} = \sigma_{y} & (& \alpha \leq & 0.2) \\ & \sigma_{cr} = \{1.0 - 0.412(2K/\pi \times \sqrt{(\sigma_{y}/E)} \times l/b - 0.2)\} \times \sigma_{y} & (0.2 & < \alpha &) \\ & = \sigma_{y} - 0.824K\sigma_{y}/\pi \times \sqrt{(\sigma_{y}/E)} \times \{l/b - 0.2\pi/(2K) \times \sqrt{(E/\sigma_{y})}\} & (& A_{w}/A_{c} \leq & 2) \\ & = \sigma_{y} - 0.824\sigma_{y}/\pi \times \sqrt{(\sigma_{y}/E)} \times \{Kl/b - 0.2\pi/(2\times\sqrt{(E/\sigma_{y})})\} & (2 &$$

また,

$$\alpha = 0.2$$
のとき $l/b = 0.2 \times \pi/(2K) \times \sqrt{(E/\sigma_{y})}$

くSM570材の場合>

 $T \leq 40$ のとき $\sigma_{cr} / \sigma_y = 4400 / 4600 = 0.957(430 / 450 = 0.956)$ $40 < T \leq 75$ のとき $\sigma_{cr} / \sigma_y = 4200 / 4400 = 0.955(410 / 430 = 0.953)$ $75 < T \leq 100$ のとき $\sigma_{cr} / \sigma_y = 4100 / 4300 = 0.953(400 / 420 = 0.952)$

()内はSI単位系を表示

重力単位系

追不	(解2.2.2)は			
1	$\sigma_{cr} / \sigma_{y} = 1.0$ $\sigma_{cr} / \sigma_{y} = 1.0 - 0.412(\alpha - 0.2)$ $z \geq k, \alpha = 2/\pi \times K \times \sqrt{(\sigma_{y}/E) \times l/b}$	((0.2	$\begin{array}{c} \alpha & \leq \\ < & \alpha \end{array}$	0.2))
	K = 2 $K = \sqrt{\left\{3 + A_W / (2A_c)\right\}}$	((2	$A_w / A_c \leq \\ < A_w / A_c$	2))

-114-

ここで、①式について

		$t \leq 40$	のとき	$\sigma_{cr}^{}/\sigma_{y}^{}$ = 0.957より	$\alpha = 0.304$
40	<	$t \leq 75$	のとき	$\sigma_{cr}^{}/\sigma_{y}^{}$ = 0.955より	$\alpha = 0.309$
75	<	$t \leq 100$	のとき	$\sigma_{cr} / \sigma_y = 0.953$ μ υ	$\alpha = 0.314$

よって、道示 (解2.2.1)の直線部の式は次の2点を通る直線となる. $t \leq 40$ のとき $(\alpha, \sigma_{cr}/\sigma_{y}) = (0.304, 0.957)$, (1.000, 0.670) $40 < t \leq 75$ のとき $(\alpha, \sigma_{cr}/\sigma_{y}) = (0.309, 0.955)$, (1.000, 0.670) 75 < $t \leq 100$ のとき $(\alpha, \sigma_{cr}/\sigma_{y}) = (0.314, 0.953)$, (1.000, 0.670)

ゆえに

$$t \leq 40 \quad \text{のとき} \quad \sigma_{cr} / \sigma_{y} = (0.670 - 0.957) / (1.000 - 0.304) \times (\alpha - 0.304) + 0.957$$
$$= 0.957 - 0.412(\alpha - 0.304)$$
$$40 < t \leq 75 \quad \text{のとき} \quad \sigma_{cr} / \sigma_{y} = (0.670 - 0.955) / (1.000 - 0.309) \times (\alpha - 0.309) + 0.955$$
$$= 0.955 - 0.412(\alpha - 0.309)$$
$$75 < t \leq 100 \quad \text{のとき} \quad \sigma_{cr} / \sigma_{y} = (0.670 - 0.953) / (1.000 - 0.314) \times (\alpha - 0.314) + 0.953$$
$$= 0.953 - 0.412(\alpha - 0.314)$$

よって,総括すると t ≦ 40のとき $\sigma_{cr} = 0.957 \sigma_{y}$ $\alpha \leq 0.304$) ($\sigma_{cr} = \{0.957 - 0.412(2 / \pi \times K \times \sqrt{(\sigma_y/E) \times l/b} - 0.304)\} \times \sigma_y$ (0.304 $< \alpha$) $= 0.957 \sigma_y - 0.824 \sigma_y / \pi \times 2 \times \sqrt{(\sigma_y/E)} \times \{l/b - 0.304/4 \times \pi \times \sqrt{(E/\sigma_y)}\}$ $A_W/A_C \leq$ (2) $=0.957 \sigma_y - 0.824 \sigma_y / \pi \times K \times \sqrt{(\sigma_y/E)} \times \{l/b - 0.304/(2K) \times \pi \times \sqrt{(E/\sigma_y)}\}$ $\langle A_w / A_c \rangle$ (2)

$$75 < t \le 1000 \ge 3$$

$$\sigma_{cr} = 0.953 \sigma_{y} \qquad (\qquad \alpha \le 0.314)$$

$$\sigma_{cr} = \{0.953 - 0.412(2/\pi \times K \times \sqrt{(\sigma_{y}/E)} \times l/b - 0.314)\} \times \sigma_{y} \qquad (0.314 < \alpha)$$

$$= 0.953 \sigma_{y} - 0.824 \sigma_{y}/\pi \times 2 \times \sqrt{(\sigma_{y}/E)} \times \{l/b - 0.314/4 \times \pi \times \sqrt{(E/\sigma_{y})}\} \qquad (\qquad A_{w}/A_{c} \le 2)$$

$$= 0.953 \sigma_{y} - 0.824 \sigma_{y}/\pi \times K \times \sqrt{(\sigma_{y}/E)} \times \{l/b - 0.314/(2K) \times \pi \times \sqrt{(E/\sigma_{y})}\} \qquad (2 \qquad$$

SI単位系も同様に算出する。

計算結果(表-2.2.3)

式の形態

 $\alpha \leq 0.2$: $\sigma_{cr} = A$

0.2< a	:	$\sigma_{cr} = B - C(l/b - D)$	$A_w / A_c \leq 2$
0.2< a	:	$\sigma_{cr} = E - F(Kl/b - G)$	$A_w / A_c > 2$

(重力単位系)

鋼種		SS400,SM400,SMA400W				SM490	
板厚	mm	$t \leq 40$	$40 \le t \le 75$	$75 \le t \le 100$	$t \leq 40$	$40 \le t \le 75$	$75 \le t \le 100$
σ,	kgf/cm ²	2400	2200	2200	3200	3000	3000
E(ヤング係数)	kgf/cm^2	2100000	2100000	2100000	2100000	2100000	2100000
α		0.2	0.2	0.2	0.2	.0.2	0.2
$l/b(A_w A_c \leq 2)$		4.65	4.85	4.85	4.02	4.16	4.16
	(道示)	4.50	5.00	5.00	4.00	4.00	4.00
$l/b(A_w/A_c>2)$	$\times 1/K$	9.29	9.71	9.71	8.05	8.31	8.31
	(道示)	9.00	10.00	10.00	8.00	8.00	8.00
A		2400	2200	2200	3200	3000	3000
В		2400	2200	2200	3200	3000	3000
С		42.56	37.35	37.35	65.53	59.48	59.48
D		4.65	4.85	4.85	4.02	4.16	4.16
	(道示)	4.50	5.00	5.00	4.00	4.00	4.00
E		2400	2200	2200	3200	3000	3000
F		21.28	18.68	18.68	32.76	29.74	29.74
G		9.29	9.71	9.71	8.05	8.31	8.31
	(道示)	9.00	10.00	10.00	8.00	8.00	8.00

鋼種		SM490	Y,SM520,SM	1A490W	SM	1570,SMA57	0W
板厚	mm	<i>t</i> ≦40	$40 \le t \le 75$	$75 \le t \le 100$	$t \leq 40$	40 <i>≤</i> t <i>≦</i> 75	$75 \le t \le 100$
σ,	kgf/cm^2	3600	3400	3300	4600	4400	4300
E(ヤング係数)	kgf/cm^2	2100000	2100000	2100000	2100000	2100000	2100000
α		0.2	0.2	0.2	0.304	0.309	0.314
$l/b(A_w/A_c \leq 2)$		3.79	3.90	3.96	5.10	5.30	5.45
	(道示)	3.50	4.00	4.00	5.00	5.00	5.00
$l/b (A_w/A_c > 2)$	$\times 1/K$	7.59	7.81	7.93	10.20	10.60	10.90
	(道示)	7.00	8.00	8.00	10.00	10.00	10.00
A		3600	3400	3300	4402	4202	4098
В		3600	3400	3300	4402	4202	4098
С		78.19	71.77	68.62	112.94	105.65	102.07
D	1	3.79	3.90	3.96	5.10	5.30	5.45
	(道示)	3.50	4.00	4.00	5.00	5.00	5.00
E		3600	3400	3300	4402	4202	4098
F		39.10	35.88	34.31	56.47	52.83	51.04
G		7.59	7.81	7.93	10.20	10.60	10.90
	(道示)	7.00	8.00	8.00	10.00	10.00	10.00

※(道示)は「道路橋示方書」の数値を示す

計算結果(表-2.2.3)

式の形態

 $\alpha \leq 0.2$: $\sigma_{cr} = A$

 $0.2 < \alpha \qquad : \quad \sigma_{cr} = B - C(l/b - D)$ $0.2 < \alpha \qquad : \quad \sigma_{cr} = E - F(Kl/b - G)$ $\begin{array}{c} A_w / A_c \leq 2 \\ A_w / A_c > 2 \end{array}$

(SI単位系)

鋼種		SS400	SS400,SM400,SMA400W			SM490	
板厚	mm	$t \leq 40$	$40 \le t \le 75$	$75 \le t \le 100$	t≦40	40 <i>≤t</i> ≦75	$75 \le t \le 100$
σ,	N/mm^2	235	215	215	315	295	295
E(ヤング係数)	N/mm^2	200000	200000	200000	200000	200000	200000
α		0.2	0.2	0.2	0.2	0.2	0.2
$l/b (A_w/A_c \leq 2)$		4.58	4.79	4.79	3.96	4.09	4.09
	(資料)	4.50	5.00	5.00	4.00	4.00	4.00
$l/b (A_w/A_c > 2)$	$\times 1/K$	9.16	9.58	9.58	7.92	8.18	8.18
	(資料)	9.00	10.00	10.00	8.00	8.00	8.00
A		235	215	215	315	295	295
В		235	215	215	315	295	295
С		4.23	3.70	3.70	6.56	5.94	5.94
D		4.58	4.79	4.79	3.96	4.09	4.09
	(資料)	4.50	5.00	5.00	4.00	4.00	4.00
E		235	215	215	315	295	295
F		2.11	1.85	1.85	3.28	2.97	2.97
G		9.16	9.58	9.58	7.92	8.18	8.18
	(資料)	9.00	10.00	10.00	8.00	8.00	8.00

鋼種		SM490	SM490Y,SM520,SMA490W			1570,SMA57	0 W
板厚	mm	$t \leq 40$	$40 \le t \le 75$	$75 \le t \le 100$	<i>t</i> ≦40	$40 \le t \le 75$	$75 \le t \le 100$
σ,	N/mm^2	355	335	325	450	430	420
E(ヤング係数)	N/mm^2	200000	200000	200000	200000	200000	200000
α		0.2	0.2	0.2	0.307	0.314	0.317
$l/b (A_w/A_c \leq 2)$		3.73	3.84	3.90	5.08	5.32	5.43
	(資料)	3.50	4.00	4.00	5.00	4.50	4.50
$l/b (A_w/A_c > 2)$	$\times 1/K$	7.46	7.68	7.79	10.17	10.64	10.87
	(資料)	7.00	8.00	8.00	10.00	9.00	9.00
A		355	335	325	430	410	400
В		355	335	325	430	410	400
С		7.85	7.19	6.87	11.22	10.48	10.12
D		3.73	3.84	3.90	5.08	5.32	5.43
	(資料)	3.50	4.00	4.00	5.00	4.50	4.50
E		355	335	325	430	410	400
F		3.92	3.60	3.44	5.61	5.24	5.05
G		7.46	7.68	7.79	10.17	10.64	10.87
	(資料)	7.00	8.00	8.00	10.00	9.00	9.00

※(資料)は「SI単位系移行に関する参考資料」の数値を示す

2.5 表-2.2.4 両縁支持板の局部座屈強度

基準耐荷力曲線は道示(解3.2.1)に準拠した。*l*/*r*の値は許容応力度法と不変のはずであるが,結果 として道示の値とは合致しなかった。これは道示では境界で計算結果が連続するように(数字の丸めに より生じる不連続を防ぐために)*l*/*r*の値を何らかの方法で操作しているためだと思われる。しかしな がら,道示の境界での数値算出方法が明確でないため,計算結果をそのまま使用することにした。*b*/*t* の上限値は,道示の値(80f)をそのまま使用した。SI単位系についても計算結果は同様の傾向を示し ている。

表-2.2.4 両縁支持板の局部座屈強度の算出

くSM570材以外の場合>

基準耐荷力曲線は道示(解3.2.1)を使用する。

$\sigma_{cr} / \sigma_{y} = 1.0$	($R \leq$	0.7)
$\sigma_{cr} / \sigma_{y} = 0.5 / R^{2}$	(0.7	< R)
ここに, $R = b / t \times \sqrt{\{\sigma_{1} / E \times 12(1 - \mu^{2}) / (\pi^{2}k)\}}$			

 $\sigma_{cr} = \sigma_{y}$	($R \leq$	0.7)
$\sigma_{cr} = \{0.5 / (b / t \times \sqrt{(\sigma_y / E \times 12(1 - \mu 2) / (\pi 2k))})2\} \times \sigma_y$	(0.7	< R)
$= 0.5 E \pi^2 k / \{12(1-\mu^2)\} \times (t/b)^2$			

$$R = 0.7$$
のとき $b/t = 0.7 \times \sqrt{\{E/\sigma_v \times \pi^2 k / (12(1-\mu^2))\}}$

〈SM570材の場合〉

		$t \leq 40$	のとき	$\sigma_{cr} / \sigma_{y} = 4400 / 4600 = 0.957 (430 / 450 = 0.956)$
40	<	$t \leq 75$	のとき	$\sigma_{cr} / \sigma_{y} = 4200 / 4400 = 0.955 (410 / 430 = 0.953)$
75	<	$t \leq 100$	のとき	$\sigma_{cr} / \sigma_{y} = 4100 / 4300 = 0.953 (400 / 420 = 0.952)$

()内はSI単位系を表示

重力単位系

道示 (解3.2.1) は $\sigma_{cr}/\sigma_{y} = 1.0$ (R ≦ 0.7) ① $\sigma_{cr}/\sigma_{y} = 0.5/R^{2}$ (0.7 < R) ここに, $R = b/t \times \sqrt{\{\sigma_{y}/E \times 12(1 - \mu^{2})/(\pi^{2}k)\}}$

ここで、①式について

		$t \leq 40$	のとき	$\sigma_{\it cr}$ / $\sigma_{\it y}$ = 0.957より	R = 0.723
40	<	$t \leq 75$	のとき	$\sigma_{cr} / \sigma_{y} = 0.955$ より	R = 0.724
75	<	$t \leq 100$	のとき	$\sigma_{cr} / \sigma_{y} = 0.953$ より	R = 0.724

よって、総括すると				
t \leq 40のとき				
$\sigma_{cr} = 0.957 \sigma_y$	(R	≦	0.723)
$\sigma_{cr} = 0.5 E \pi^2 k / \{12(1-\mu^2)\} \times (t/b)^2$	(0.723	< <i>R</i>)
$40 < t \leq 750 \text{ bis}$				
$\sigma_{cr} = 0.955 \sigma_{y}$	(R	≦	0.724)
$\sigma_{cr} = 0.5 E \pi^2 k / \{12(1-\mu^2)\} \times (t/b)^2$	(0.724	< <i>R</i>)
75 < $t \leq 100$ のとき				
$\sigma_{cr} = 0.953 \sigma_{y}$	(R	≦	0.724)
$\sigma_{cr} = 0.5 E \pi^2 k / \{12(1-\mu^2)\} \times (t/b)^2$	(0.724	< R)

計算結果(表-2.2.4)

式の形態

$$R \leq 0.7: \quad \sigma_{cr} = A$$

0.7 < R :
$$\sigma_{cr} = B \times (tf/b)^2$$

(重力単位系)

鋼種		SS400,SM400,SMA400W			SM490			
板厚	mm	$t \leq 40$	$40 \le t \le 75$	$75 \le t \le 100$	t ≦40	$40 \le t \le 75$	$75 \le t \le 100$	
σ,	kgf/cm ²	2400	2200	2200	3200	3000	3000	
E(ヤング係数)	kgf/cm ²	2100000	2100000	2100000	2100000	2100000	2100000	
R		0.700	0.700	0.700	0.700	0.700	0.700	
k		4.0	4.0	4.0	4.0	4.0	4.0	
μ		0.3	0.3	0.3	0.3	0.3	0.3	
<i>b / t</i>		39.37	41.12	41.12	34.10	35.21	35.21	
	(道示)	39.60	41.10	41.10	34.00	35.50	35.50	
A		2400	2200	2200	3200	3000	3000	
В		3796002	3796002	3796002	3796002	3796002	3796002	

		SM490Y,SM520,SMA490W			SM	1570,SMA570W		
板厚	mm	<i>t</i> ≦40	$40 \le t \le 75$	$75 \le t \le 100$	<i>t</i> ≦40	40 <i>≤</i> t ≦75	$75 \le t \le 100$	
σ,	kgf/cm ²	3600	3400	3300	4600	4400	4300	
E(ヤング係数)	kgf/cm^2	2100000	2100000	2100000	2100000	2100000	2100000	
R		0.700	0.700	0.700	0.723	0.724	0.724	
k		4.0	4.0	4.0	4.0	4.0	4.0	
μ	· · · · · · · · · · · · · · · · · · ·	0.3	0.3	0.3	0.3	0.3	0.3	
b/t		32.15	33.08	33.58	29.37	30.07	30.42	
	(道示)	32.40	33.20	33.60	29.10	29.70	30.00	
A		3600	3400	3300	4402	4202	4098	
В		3796002	3796002	3796002	3796002	3796002	3796002	

※(道示)は「道路橋示方書」の数値を示す

式の形態

$$R \leq 0.7: \quad \sigma_{cr} = A$$

0.7 < R :
$$\sigma_{cr} = B \times (tf/b)^2$$

<u>(SI単位系)</u>

鋼種		SS400,SM400,SMA400W SM490					
板厚	mm	$t \leq 40$	40 <i><t< i=""> ≦75</t<></i>	$75 \le t \le 100$	<i>t</i> ≦40	$40 < t \leq 75$	$75 \le t \le 100$
σ,	N/mm^2	235	215	215	315	295	295
E(ヤング係数)	N/mm^2	200000	200000	200000	200000	200000	200000
R		0.700	0.700	0.700	0.700	0.700	0.700
k		4.0	4.0	4.0	4.0	4.0	4.0
μ		0.3	0.3	0.3	0.3	0.3	0.3
b/t		38.83	40.59	40.59	33.54	34.66	34.66
	(資料)	38.70	41.00	41.00	33.70	34.60	34.60
A		235	215	215	315	295	295
B		361524	361524	361524	361524	361524	361524

鋼種		SM490Y,SM520,SMA490W			SM570,SMA570W		
板厚	mm	t ≦40	$40 \le t \le 75$	$75 \le t \le 100$	t ≦40	$40 \le t \le 75$	$75 \le t \le 100$
σ,	N/mm^2	355	335	325	450	430	420
E(ヤング係数)	N/mm^2	200000	200000	200000	200000	200000	200000
R		0.700	0.700	0.700	0.723	0.724	0.725
k		4.0	4.0	4.0	4.0	4.0	4.0
μ		0.3	0.3	0.3	0.3	0.3	0.3
b/t		31.59	32.52	33.02	28.98	29.69	30.08
	(資料)	31.60	32.80	33.30	28.70	29.30	29.60
A		355	335	325	430	410	400
В		361524	361524	361524	361524	361524	361524

※(資料)は「SI単位系移行に関する参考資料」の数値を示す

2.6 表-2.2.5 自由突出板の局部座屈に対する強度

基準耐荷力曲線は道示(解3.2.1)に準拠した。*l*/*r*の値は許容応力度法と不変のはずであるが,結果 として道示の値とは合致しなかった。これは道示では境界で計算結果が連続するように(数字の丸めに より生じる不連続を防ぐために)*l*/*r*の値を何らかの方法で操作しているためだと思われる。しかしな がら,道示の境界での数値算出方法が明確でないため,計算結果をそのまま使用することにした。SI 単位系についても計算結果は同様の傾向を示している。

表-2.2.5 自由突出板の局部座屈に対する強度の算出

<S M570材以外の場合>

基準耐荷力曲線は、道示(解3.2.1)を使用する。

($R \leq$ 0.7 $\sigma_{cr} / \sigma_{v} = 1.0$ (0.7 < R) $\sigma_{cr} / \sigma_{v} = 0.5/R^{2}$) ここに (1) $R = b/t \times \sqrt{\{(\sigma_v / E \times 12(1 - \mu^2) / (\pi^2 k)\}}$ k=0.43 よって, $R \leq$ 0.7) ($\sigma_{cr} = \sigma_{v}$ < R $\sigma_{cr} = 0.5E \pi^2 k / \{12 (1 - \mu^2)\} \times (t/b)^2$ (0.7)) また, R=0.7の場合 $b/t=0.7 \times \sqrt{\{E/\sigma_v \times \pi^2 k/(12(1-\mu^2))\}}$

t≦40の場合で考えると 0.957=0.5/*R*²より, *R*=0.723となる。 これを式①に代入し, *b*/*t*=9.63となる。(同様に板厚区分ごとに計算する)

計算結果(表-2.2.5)

式の形態

$$R \leq 0.7: \quad \sigma_{cr} = A$$

0.7 < R :
$$\sigma_{cr} = B \times (t/b)^2$$

(重力単位系)

鋼種	,	SS400,SM400, SMA400W				SM490			
板厚	mm	t≦40	40 <t< b="">≦75</t<>	75 <t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td><u>75<t≦100< u=""></t≦100<></u></td></t≦75<></td></t≦100<>	t≦40	40 <t≦75< td=""><td><u>75<t≦100< u=""></t≦100<></u></td></t≦75<>	<u>75<t≦100< u=""></t≦100<></u>		
σ,	kgf/cm ²	2,400	2,200	2,200	3,200	3,000	3,000		
E(ヤング係数)	kgf/cm^2	2,100,000	2,100,000	2,100,000	2,100,000	2,100,000	2,100,000		
R		0.70	0.70	0.70	0.70	0.70	0.70		
k		0.43	0.43	0.43	0.43	0.43	0.43		
μ	1	0.3	0.3	0.3	0.3	0.3	0.3		
b/t		12.91	13.48	13.48	11.18	11.55	11.55		
	(道示)	13.10	13.60	13.60	11.20	11.70	11.70		
A	T	2,400	2,200	2,200	3,200	3,000	3,000		
В		408,070	408,070	408,070	408,070	408,070	408,070		

鋼種		SM490Y, SM520, SMA490W			SM570,SMA570W			
板厚	mm	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<></td></t≦75<>	75 <t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<>	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<>	75 <t≦100< td=""></t≦100<>	
σ	kgf/cm ²	3,600	3,400	3,300	4,600	4,400	4,300	
E(ヤング係数)	kgf/cm^2	2,100,000	2,100,000	2,100,000	2,100,000	2,100,000	2,100,000	
R		0.70	0.70	0.70	0.72	0.72	0.73	
k		0.43	0.43	0.43	0.43	0.43	0.43	
μ		0.3	0.3	0.3	0.3	0.3	0.3	
b/t		10.54	10.85	11.01	9.63	9.86	9.99	
	(道示)	10.70	11.00	11.10	9.60	9.80	9.90	
A		3,600	3,400	3,300	4,400	4,200	4,100	
В		408,070	408,070	408,070	408,070	408,070	408,070	

※(道示)は「道路橋示方書」の数値を示す

式の形態

 $R \leq 0.7: \quad \sigma_{cr} = A$ 0.7 < R : $\sigma_{cr} = B \times (t/b)^2$

(SI単位系)

		SS400), SM400, SN	1A400W	SM490		
板厚	mm	t≦40	<u>40<t≦75< u=""></t≦75<></u>	75 <t≦100< th=""><th>t≦40</th><th>40<t≦75< th=""><th>75<t≦100< th=""></t≦100<></th></t≦75<></th></t≦100<>	t≦40	40 <t≦75< th=""><th>75<t≦100< th=""></t≦100<></th></t≦75<>	75 <t≦100< th=""></t≦100<>
σ,	N/mm^2	235	215	215	315	295	295
E(ヤング係数)	N/mm^2	200,000	200,000	200,000	200,000	200,000	200,000
R		0.70	0.70	0.70	0.70	0.70	0.70
k		0.43	0.43	0.43	0.43	0.43	0.43
μ		0.3	0.3	0.3	0.3	0.3	0.3
b/t		12.73	13.31	13.31	11.00	11.36	11.36
	(資料)	12.80	13.60	13.60	11.20	11.50	11.50
<u>A</u>		235	215	215	315	295	295
<u> </u>		38,863	38,863	38,863	38,863	38,863	38,863

鋼種		SM490Y, SM520, SMA490W			SM570,SMA570W			
板厚	mm	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<></td></t≦75<>	75 <t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<>	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<>	75 <t≦100< td=""></t≦100<>	
σ_{y}	N/mm^2	355	335	325	450	430	420	
<u>E(ヤング係数)</u>	N/mm^2	200,000	200,000	200,000	200,000	200,000	200,000	
R		0.70	0.70	0.70	0.72	0.72	0.72	
k		0.43	0.43	0.43	0.43	0.43	0.43	
μ		0.3	0.3	0.3	0.3	0.3	0.3	
b/t		10.36	10.66	10.83	9.50	9.73	9.85	
	(資料)	10.50	10.90	11.00	9.50	9.70	9.80	
A		355	335	325	430	410	400	
В		38,863	38,863	38,863	38,863	38,863	38,863	

※(資料)は「SI単位系移行に関する参考資料」の数値を示す

2.7 表-2.2.6 補剛板の局部座屈に対する強度

基準耐荷力曲線は道示(解3.2.3)に準拠した。*l*/*r*の値は許容応力度法と不変のはずであるが,結果 として道示の値とは合致しなかった。これは道示では境界で計算結果が連続するように(数字の丸めに より生じる不連続を防ぐために)*l*/*r*の値を何らかの方法で操作しているためだと思われる。しかしな がら,道示の境界での数値算出方法が明確でないため,計算結果をそのまま使用することにした。*b*/*t* の上限値は,道示の値(80f)をそのまま使用した。SI単位系についても計算結果は同様の傾向を示し ている。

表-2.2.6 補剛板の局部座屈に対する強度の算出 基準耐荷力曲線は、道示(解3.2.3)を使用する。

$\sigma_{cr} / \sigma_{y} = 1.0$	($R_R \leq$	0.5)
$\sigma_{cr}/\sigma_{y}=1.5-R_{R}$	(0.5	$< R_R \leq$	1.0)
$\sigma_{cr}/\sigma_y=0.5/R_R^2$	(1.0	$< R_R$)
ここに、			

```
(1) R_R = b/t \times \sqrt{\{\sigma_y/E \times 12(1-\mu^2)/(\pi^2 k_R)\}}
k_R = 4 n^2
```

道示では補剛板の幅厚比の制限値に80fを採用しているが、実際に基準耐荷力曲線のRmax=1.4で計算 すると下記のようになる。

1.4= $b/t \times \sqrt{\{\sigma_y/E \times 12(1-\mu^2)/(\pi^2 k_R)\}}$ b/t=79fn

<S M570材以外の場合>

$\sigma_{cr} = \sigma_y$	($R_R \leq$	0.5)
$\sigma_{cr}=1.5 \sigma_{y}-\sigma_{y} \times R_{R}$	(0.5	$< R_R \leq$	1.0)
=1.5 $\sigma_y - b/t \sqrt{\{(\sigma_y/E \times 12(1-\mu^2)/(\pi^2 k_R))\}}$			
$\sigma_{cr}=0.5 \times \sigma_{y}/R_{R}^{2}$	(1.0	$< R_R$)
= $(0.5 \times \sigma_v)/\{b/t \times \sqrt{(\sigma_v/E \times 12(1-\mu^2)/(\pi^2 k_R))}\}$			

<SM570材の場合>

<i>t</i> ≦40の場合	σ_{cr} / σ_{y} = 4400 / 4600 = 0.957 (430 / 450 = 0.956)
40 <t≦75の場合< td=""><td>σ_{cr} / σ_{y} = 4200 / 4400 = 0.955 (410 / 430 = 0.953)</td></t≦75の場合<>	σ_{cr} / σ_{y} = 4200 / 4400 = 0.955 (410 / 430 = 0.953)
75 <t≦100の場合< td=""><td>$\sigma_{\it cr}/\sigma_{\it y}$ = 4100 / 4300 = 0.953 (400 / 420 = 0.952)</td></t≦100の場合<>	$\sigma_{\it cr}/\sigma_{\it y}$ = 4100 / 4300 = 0.953 (400 / 420 = 0.952)
	()内はSI単位系を表示

t≦40の場合で考えると σ_{cr}/σ_{y} =1.5– R_{R} =0.957より, R_{R} =0.777となる。 これを式①に代入し, *b/tfn*=22.05となる。また式①から R_{R} =1.0の時は, *b/tfn*=40.6となる。(同様に板厚区 分ごとに計算する)

計算結果(表-2.2.6)

式の形態

$$R_R \leq 0.5$$
: $\sigma_{cr} = A$
 $0.5 < R_R \leq 1.0$: $\sigma_{cr} = A - B$ (b/tfn - C)
 $1.0 < R_R$: $\sigma_{cr} = D \times (tfn/b)^2$

(重力単位系)

鋼種		SS400	SS400,SM400, SMA400W			SM490			
板厚	mm	.t≦40	40 <t≦75< th=""><th>75<t≦100< th=""><th>t≦40</th><th>40<t≦75< th=""><th>75<t≦100< th=""></t≦100<></th></t≦75<></th></t≦100<></th></t≦75<>	75 <t≦100< th=""><th>t≦40</th><th>40<t≦75< th=""><th>75<t≦100< th=""></t≦100<></th></t≦75<></th></t≦100<>	t≦40	40 <t≦75< th=""><th>75<t≦100< th=""></t≦100<></th></t≦75<>	75 <t≦100< th=""></t≦100<>		
σ,	kgf/cm ²	2,400	2,200	2,200	3,200	3,000	3,000		
E(ヤング係数)	kgf/cm ²	2,100,000	2,100,000	2,100,000	2,100,000	2,100,000	2,100,000		
k _R		4n	4n	4n	4 n	4n	4n		
μ		0.3	0.3	0.3	0.3	0.3	0.3		
$b/t (R_R = 0.5)$		28.12	29.37	29.37	24.35	25.15	25.15		
	(道示)	28.00	28.00	28.00	24. <u>00</u>	24.00	24.00		
$b/t (R_R = 1.0)$		56.24	58.74	58.74	48.71	50.31	50.31		
	(道示)	56.00	58.00	58.00	48. <u>00</u>	50.00	50.00		
A		2,400	2,200	2,200	3,200	3,000	3,000		
В		42.67	37.45	37.45	65.70	59.63	59.63		
С		28.12	29.37	29.37	24.35	25.15	25.15		
_	(道示)	28.00	28.00	28.00	24.00	24.00	24.00		
D		3,796,002	3,796,002	3,796,002	3,796,002	3,796,002	3,796,002		

鋼種		SM490	Y,SM520,SM	/IA490W	SM570,SMA570W				
板厚	mm	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<></td></t≦75<>	75 <t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<>	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<>	75 <t≦100< td=""></t≦100<>		
σ,	kgf/cm ²	3,600	3,400	3,300	4,600	4,400	4,300		
E(ヤング係数)	kgf/cm^2	2,100,000	2,100,000	2,100,000	2,100,000	2,100,000	2,100,000		
k _R			4n	4n	4n	4n	4n		
μ		0.3	0.3	0.3	0.3	0.3	0.3		
$b/t \ (R_R = 0.5)$		22.96	23.63	23.98	22.06	22.64	22.98		
	(道示)	22.00	22.00	22.00	22.00	22.00	22.00		
$b/t \ (R_R = 1.0)$		45.92	47.25	47.96	40.62	41.54	42.02		
	(道示)	46.00	46.00	48.00	40.00	40.00	42.00		
A		3,600	3,400	3,300	4,400	4,200	4,100		
В		78.39	71.95	68.8	113.23	105.92	95.28		
С		22.96	23.63	23.98	22.08	20.76	24.60		
	(道示)	22.00	22.00	22.00	22.00	22.00	22.00		
D		3,796,002	3,796,002	3,796,002	3,796,002	3,796,002	3,796,002		

※(道示)は「道路橋示方書」の数値を示す

計算結果(表-2.2.6)

式の形態

 $R_{R} \leq 0.5 : \sigma_{cr} = A$ $0.5 \leq R_{R} \leq 1.0 : \sigma_{cr} = A - B (b/tfn - C)$ $1.0 \leq R_{R} : \sigma_{cr} = D \times (tfn/b)^{2}$

(SI単位系)

鋼種		SS400),SM400,SM	A400W		SM490	
板厚	mm	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td><u>75<t≦100< u=""></t≦100<></u></td></t≦75<></td></t≦100<></td></t≦75<>	75 <t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td><u>75<t≦100< u=""></t≦100<></u></td></t≦75<></td></t≦100<>	t≦40	40 <t≦75< td=""><td><u>75<t≦100< u=""></t≦100<></u></td></t≦75<>	<u>75<t≦100< u=""></t≦100<></u>
σ,	N/mm^2	235	215	215	315	295	295
E(ヤング係数)	N/mm^2	200,000	200,000	200,000	200,000	200,000	200,000
k _R		4n	4n	4n	4n	4n	4n
μ		0.3	0.3	0.3	0.3	0.3	0.3
$b/t \ (R_R = 0.5)$		27.73	28.99	28.99	23.96	24.75	24.75
	(資料)	28.00	28.00	28.00	24.00	24.00	24.00
$b/t \ (R_R = 1.0)$		55.46	57.99	57.99	47.91	49.51	49.51
	(資料)	56.00	58.00	58.00	48.00	50.00	50.00
A		235	215	215	315	295	295
В		4.23	3.71	3.71	6.57	5.96	5.96
С		27.73	28.99	28.99	23.96	24.75	24.75
	(資料)	28.00	28.00	28.00	24.00	24.00	24.00
D		361,523	361,523	361,523	361,523	361,523	361,523

鋼種		SM490Y,SM520, SMA490W			SN	1570,SMA57	70 W
板厚	mm	t≦40	40 ≤ t≦75	75 <t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<>	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<>	75 <t≦100< td=""></t≦100<>
σ,	N/mm^2	355	335	325	450	430	420
E(ヤング係数)	N/mm^2	200,000	200,000	200,000	200,000	200,000	200,000
k _R		4n	4n	4n	4n	4n	4n
μ		0.3	0.3	0.3	0.3	0.3	0.3
$b/t \ (R_R = 0.5)$		22.57	23.23	23.58	21.81	22.43	22.74
	(資料)	22.00	22.00	22.00	22.00	22.00	22.00
$b/t \ (R_R = 1.0)$		45.13	46.46	47.17	40.08	41.01	41.49
	(資料)	46.00	46.00	48.00	40.00	42.00	42.00
A		355	335	325	430	410	400
В		7.87	7.21	6.89	10.49	9.76	9.41
C		22.57	23.23	23.58	23.36	24.07	24.45
	(資料)	22.00	22.00	22.00	22.00	22.00	22.00
D		361,523	361,523	361,523	361,523	361,523	361,523

※(資料)は「SI単位系移行に関する参考資料」の数値を示す

2.8 表-2.2.7 構造用鋼材のせん断強度および支圧強度

せん断強度

 $\tau_v = \sigma_v / \sqrt{3}$

支圧強度

・鋼板と鋼板との間の支圧強度

 $\sigma_{bv} = \sigma_v \times 1.5$

鋼種によってはσ_bが鋼材の引張強度以上になるものもあるが計算値をそのまま使用している。 参考までに鉄道構造物等設計標準・同解説では『σ_{b ma}=鋼材の引張強度』としている。

・ヘルツ公式で算出する場合

本来は σ_{by} =ブリネルかたさ(H_b)であり、現道示においては σ_{ba} =約 $\sigma_{by}/2$ としてしているが安全係数を1.7で処理するため、支圧強度を $\sigma_{bv}=\sigma_{ba}\times 1.7$ とした。

2.9 表-2.2.8 鋳鍛造品の強度

支承その他に用いる鋳鍛造品の軸方向強度,曲げ強度およびせん断力は下記グループ内の圧延鋼の強 度と同等とした。

			· · · ·	
名称	S S400グループ	S S490グループ	SM490グループ	SM520グループ
種類				
厚延鋼	SS400, SM400		SM490	SM490Y,SM490
鍛鋼品	SF490A	SF540A		
鋳鋼品	SC450, SCW410	SCW480, SCMn1A	SCMn2A	
機械構造用鋼			S35CN	S45CN

表-資 2.9.1 鋳鍛造品のグループ

SS490グループについてはJISの降伏点を参照した。

支圧強度

・すべりのない平面接触

 $\sigma_{by} = \sigma_y \times 1.5$

・すべりのある平面接触

 $\sigma_{by} = \sigma_y \times 1.5/2$

・ヘルツ公式で算出する場合

本来は σ_{by} =ブリネルかたさ(H_b)であり現道示においては σ_{ba} =約 $\sigma_{by}/2$ (安全率は2以上)としてしているが安全係数を1.7で処理するため、支圧強度を σ_{by} = σ_{ba} ×1.7とした。

ブリネルかたさ(*H*_b)の値は現道示の数値をそのまま引用した。

※FC250の許容応力度算出根拠は不明のため、現道示の数値×1.7で算出している。

2.10 表-2.2.9 溶接部の強度

溶接部の強度は鋼板と同様。

2.11 表-2.2.10 摩擦接合用高力ボルトのすべり耐力

摩擦接合用高力ボルトおよび摩擦接合用トルシア形高力ボルトのすべり耐力

 $\rho = \mu N \quad \mu : 0.4$

N:設計ボルト軸力

現道示においてはρ=μΝ/ν(ν:安全率=1.7)としている。

2.12 表-2.2.11 支圧接合用高力ボルトのせん断強度

せん断強度

 $\tau_y = \tau_a \times 1.7$

現道示においては下記としている。

 $\tau_a = \sigma_B / \sqrt{3} / \nu$ $\sigma_B : 高力ボルトの引張強度$

ν:安全率=3.0

2.13 表-2.2.12 支圧接合用高力ボルトの支圧強度

支圧強度

許容支圧応力度=鋼材の降伏応力度であるが、支圧強度については、疲労試験の結果より降伏点強 度を上回る強度が期待できるため、道示の規定に準拠し、支圧強度を保証降伏点強度の1.7倍とした。

2.14 表-2.2.13 アンカーボルト, ピンの強度

せん断強度

現道示の数値×1.7

降伏点

S35CNはSM490相当, S45CNはSM520相当

曲げ強度

現道示の数値×1.7

支圧強度

回転を伴う場合は回転を伴わない場合の50%(接触面ですべりを生じる)。

2.15 表-2.2.14 仕上げボルトの強度

降伏点および耐力

現道路橋示方書(表-解2.2.9)のとおり。

せん断強度

 $\tau_y = \sigma_y / \sqrt{3}$

支圧強度

 $\sigma_b = \sigma_v \times 1.7$

2.16 表-2.2.15 鉄筋コンクリート用棒鋼の強度

JIS規格および鋼構造物設計指針に示す値とした。

2.17 表-2.2.16 局部座屈に対する圧縮強度

鋼構造物設計指針(土木学会)(解5.20)の式では現道路橋示方書の式が導けない。 したがって、以下のとおりとした。

強度の基本値は表-2.2.1のとおりとする。*R/ αt*の範囲は重力単位系については「道示」の値を適用し, SI単位系については「SI単位計移行に関する参考資料」の値を適用した。強度計算式の係数は、重 力単位系では現道示の係数に1.7を乗じて下1桁まで示した。またSI単位系では先に示した数値に9.81 を乗じて下1桁まで示した。

表-2.2.16 局部座屈に対する圧縮強度の算出

相法二	1400	:	$R/\alpha t \leq 50$
况但小	$\frac{1}{1400-4.3(R/\alpha t-50)}$:	$50 < R/\alpha t \leq 200$
	Ļ		
年十五十五	2400	:	$R/\alpha t \leq 50$
里刀甲位希	$\frac{2400-7.3(R/\alpha t-50)}{2400-7.3(R/\alpha t-50)}$:	$50 \le R/\alpha t \le 200$
	235	:	$R/\alpha t \leq 50$
SI単位系	1 235-0.7(<i>R</i> / αt -50)	:	$50 \leq R/\alpha t \leq 200$

* $4.3 \times 1.7 = 7.31 \rightarrow 7.3$

2.18 表-2.2.17 せん断強度

・補剛材を設けない場合

重力単位系では現道示に1.7を乗じて3桁目を「0」か「5」(二捨三入)とした。 SI単位系では上記強度に9.81を乗じ2桁目または3桁目を「0」か「5」(二捨三入)とした。

・補剛材を設ける場合

鋼構造物設計指針(土木学会)(解5.23)の式では現道路橋示方書の式が導けない。 従って,以下のとおりとした。

R/*at*の範囲は重力単位系については「道示」の値を適用し、SI単位系については「SI単位 計移行に関する参考資料」の値を適用した。なお数字の丸めにより境界で計算結果が不連続になっ ているが、無視することにした。強度の基本値は表-2.2.7のとおり。

強度計算式 75000/(*R*/*t*)-90 (現道示)は重力単位系では現道示の係数に1.7を乗じて有効数字4 桁で丸め,127500/(*R*/*t*)-150 とした。またSI単位系では 127500/(*R*/*t*)-150 に9.81を乗じて有効数 字3桁で丸め,12500/(*R*/*t*)-15 とした。

強度計算式の係数は、重力単位系では現道示の係数に1.7を乗じて下3桁まで示した。またSI単

表-2.2.17 せん断強度の算出

用道云	$800-0.019(R/t)^2$:	$R/t \leq 125$
先但小	¹ 75000/(<i>R/t</i>)-90	:	$125 \leq R/t \leq 200$
	,↓		
重力単位	L系{ ^{1400-0.032(R/t)²}	:	$R/t \leq 125$
	127500/(<i>R/t</i>)-150	:	$125 \leq R/t \leq 200$
ст 用竹	$(135-0.003(R/t)^2)$:	$R/t \leq 120$
SI単位	- ^m { 12500/(<i>R</i> / <i>t</i>)-15	:	$120 \leq R/t \leq 200$

* $75000 \times 1.7 = 127500$ $90 \times 1.7 = 153 \rightarrow 150$

 $0.019 \times 1.7 = 0.0323 \rightarrow 0.032$

3章 荷重の組合せと安全係数

3.1 荷重係数の設定について

A活荷重対応橋または既設橋のうち、支間長が30mから90mの非合成直線桁橋については、これ までの研究成果^{1),2)}を踏まえ、表-資3.1.1に示す荷重の組合せ、安全係数および荷重係数を用いること ができる。ただし、床組の設計には適用してはならない。

	1)							_	荷		重		係		数				_			
荷重の組合せ	全体					P						S				ΡP					ΡA	
	安全	D	Ŀ	I ²⁾	PS	CR	SH	Ē	HP	U	W	T	EQ	SW1 ³⁾	SW2 ³⁾	GD	SD	WP	CF	BK	ER40	00
	係数		T	L																		
しを対象とした組合せ	1. 30	1.0	3.1	1.7					1.0	1.0	-	+	-	1.0	1.0	1.0			1.0	. –	+	-
P+PP								l														
Tを対象とした組合せ	1. 30	1.0	1.6	0.9					1.0	1.0	-	1.0		1.0	-	1.0			1.0	-	-	-
P+PP+T						_																
▼を対象とした組合せ	1.40	1.0	-	-					1.0	1.0	1. 0	-	-	1.0	-	1.0			1.0	-	-	-
P(except L+I)+PP+W																						
四を対象とした組合せ	1. 15	1.0	-	-					-	-	-	-	1.0	-	- 1	-	-	-	-	-		-
P(except L+I)+EQ																						
00を対象とした組合せ	1.00	1.0	1.6	0.9					1.0	1.0	1	-	-	1.0	-				1.0	-	-	1.0
P+PP+C0																						
施工時	1. 35							架 彰	と条	件	にノ	応 じ	こて	考	慮	する	5 —					
ER																						

表-責3.1.1 荷重の組合せ、安全係数および荷重係数

注¹⁾ 全体安全係数は荷重係数以外の安全係数を表す。また、今後の検討により橋梁、部材の重要度および限界状態の特 性などにより、異なる複数の係数が設定されることも考えられる。

注²⁾ 活荷重の規格値および活荷重係数は、今後、道路区分などにより、複数の値を設定することも考えられる。

注³⁾ SW1は圧雪荷重,SW2は冬期通行不能期間の積雪荷重である。P+PPの組合せで,SW1とSW2とは同時 に組合せないものとする。SW2を考慮する場合はL+Iを組合せないものとする。

注⁴⁾ BKが必要な場合は適宜荷重の組合せを考慮するものとする。

注⁵⁾表中,一印はその荷重を照査から除くことを表している。また,空欄は荷重係数が未定であることを表している。

- 日本道路協会橋梁委員会限界状態設計法分科会荷重検討班:限界状態設計法分科会荷重検討班第1次報告書,1986年,第2次報告書,1989年.
- 2) 守矢,入部,塚原,中西,長崎,依田:鋼桁橋における現行設計法と限界状態設計法のキャリブレーション,橋梁 と基礎, 97-1, 1997 年 1 月.

4章 限界状態の照査

4.1「合成応力度の照査」と「二軸応力状態の照査」とにおける断面力表記について

限界状態設計法による書式に変更するにあたっては、従来の応力度表記を断面力による表記に変 更することが原則である。本項においても、それぞれの照査式を断面力表記とするかどうかについ て検討を行った。

以下に検討の結果を示す。

(1)「合成応力度の照査」

通常行われている断面計算における合成応力度の照査は、曲げモーメントによる垂直応力度の照 査と、せん断力によるせん断応力の照査との一連の組合せによって行われる。このとき、曲げモー メント、せん断力を受ける部材の照査では既に断面力を用いて照査されているため、合成応力度の 照査式を断面力による照査式に変更しても混乱は生じず、むしろ設計実務上では無理がないと判断 し、断面力表記の式に変更した。これに伴い、「合成応力度」は「合成力」と表現を変更した。

(2)「二軸応力状態の照査」

本来,合成応力度の照査式,二軸応力状態の照査式ともせん断弾性ひずみエネルギーー定説(Von Mises の降伏条件式)を根拠としたもの¹⁾であり,対象が一軸応力状態の場合に合成応力度の照査 式で,これを二軸応力状態に拡張したものが二軸応力状態の照査式である。しかし,二軸応力状態 の照査は,主桁フランジと横げたフランジが直接連結される場合などのように限定的かつ局所的な ポイント照査であること,照査には3次元的な考えを要し,断面力表記とした場合に照査式が極め て煩雑なものになり設計実務上混乱を来しかねないことが懸念された。よって「二軸応力状態の照 査」については今後の課題として現行の応力度表示のまま残すことにした。

8章床版

8.1 プレストレスト床版の設計曲げモーメント算定式

現行の道路橋示方書・同解説 II 鋼橋編(平成8年12月)(以下,「道示II」という)にはPC 床版の設計曲げモーメント算出式が明記されておらず,現状では道路橋示方書・同解説 III(平成8年12月)(以下「道示III」という)を参照しているのが実状である。しかし,鋼橋におけるプレストレスト床版(以下、PC 床版と言う。)の需要が,今後ますます大きくなっていくことが予測されることから,本検討では道示IIにもPC 床版の設計曲げモーメントの算定式を表記することとした。

道示 Ⅱでは, PC 床版の設計曲げモーメントの算出式は表記されておらず,適用床版支間も 4mに制限されている。一方,道示Ⅲにおいては鉄筋コンクリート(以下、RC と言う。), PC 共に設計曲げモーメントの算定式が明記されており,適用床版支間は最大 6m (PC 床版の場合)としている。よって,本検討では PC 床版に関する設計曲げモーメント算定式を,原則的に道示Ⅲの式から取り込むこととして作業をすすめることとした。

連続版の設計曲げモーメントの算定式は微妙に異なっているが、これについて道示Ⅲ(昭和 53 年 1 月)の中で、コンクリート橋の床版に従来より使用していた設計曲げモーメントを算出する式と道示 Ⅱの算定式ではその結果に大差はないとし、基本的に道示Ⅱの算定式に従うと解説されている。ただ し、支点曲げモーメントにおいては、支持桁の支点拘束条件が鋼橋のそれとことなることから従来通 りのコンクリート橋の床版の設計曲げモーメント算定式を使うこととしていると示されている。

これにより、本検討では RC 床版の設計曲げモーメント算定式は道示 Ⅱのものを使用することとした。 さらに、「床版の支間方向が車両進行方向に直角の場合の単純版および連続版の主鉄筋方向の曲げモ ーメントの割増し係数」について、支間 2~6mの範囲で無限単純支持等方性版の理論式を用いて算出 した断面力と道示式によって算出した断面力の比較資料を参考に検討を行った。これによると、道示 の式で与えられる単純版のT荷重に対する曲げモーメントの値は、床版支間が 2~6mの間全てにおい て理論値に対し約 10~20%安全をみた値となってくる。(図-解 8.1.1、表-解 8.1.1 参照) このことから、 割り増し係数を道示 II に示される式の適用範囲を 6mまで延長しても問題はないことが分かったが、今 回改正された現行道示Ⅲが床版支間 4~6mの係数を新たに示したことから、本件は今後の課題とし、 今回の改訂案の割増し係数は道示Ⅲに従うものとした。

また、「床版支間方向が車両進行方向に直角な場合の片持版の支持方向曲げモーメントの割増し係 数」についても同様とし、道示Ⅲに従うものとした。

衣	-貝 0.1.1 早	祀版の「印重	「しちる目こう	ニー ノノト(国)	手床奴てう思	1/		
	主筋7	ち向曲げモー	メント	配力筋方向曲げモーメント				
床放文间	理論値	道示式	安全率	理論値	道示式	安全率		
2.0	2.16	2.48	1.15	1.65	1.92	1.16		
2.5	2.74	2.96	1.08	2.17	2.32	1.07		
3.0	3.20	3.44	1.08	2.55	2.72	1.07		
3.5	3.54	3.92	1.11	2.85	3.12	1.09		
4.0	4.07	4.40	1.08	3.29	3.52	1.07		
5.0	4.86	5.36	1.10	3.95	4.32	1.09		
6.0	5.85	6.32	1.08	4.74	5.12	1.08		

表-資 8.1.1 単純版のT荷重による曲げモーメント(衝撃係数を考慮)

道路橋示方書·同解説Ⅱ鋼橋編(H8.12)

表-6.1.1 T荷重(衝撃を含む)による床版の単位幅(1m)あたりの設計曲げモーメント

 $(kgf \cdot m/m)$

版 の 曲げモーメ		E-×	床版の支間の方向	車両進行方向に	直角の場合	車両進行方向に平行の 場合		
区分	ントの	の種類	ーメント の方向 適用 範囲(m)	主鉄筋方向の 曲げモーメン ト	配力鉄筋方 向の曲げモ ーメント	主鉄筋方向 の曲げモー メント	配力鉄筋方 向の曲げモ ーメント	
単純版	支間的 ーメン	曲げモ ント	$0 < L \leq 4$	+ $(0.12L + 0.07) P$	+ (0.10L + 0.04) P	+ (0.22 L + 0.08) P	+ (0.06 L + 0.06) P	
連	支間曲	中 間 支 間		+(単純版の	+(単純版	+ (単純版 の80%)	+ (単純版 と同じ)	
続	メント	端支閒	$0 < L \leq 4$	80%)	の80%)	+ (単純版 の90%)	+ (単純版 と同じ)	
版	支点曲 げモー メント	中 間 支 点		ー(単純版の 80%)		ー(単純版 の80%)		
片枝	支	点	0 < 1 < 1 5	$-\frac{PL}{(1.30L+0.25)}$	· · · · ·	-(0.70L + 0.22)P		
版	先端	付近	$0 < L \ge 1.3$		+ (0.15L + 0.13) P		+ (0.16 L + 0.07) P	

ここに,

L:6.1.3 に示すT荷重に対する床版の支間(m)

P:共通編2.1.3 に示すT荷重の片側荷重(10,000kgf)

版の	曲 げ	構	床版の支 間の方向 (注)	車両進行フ	ち向に直角	車両進行フ	方向に平行
区分	の種類	造	週 用 曲げモーメ 範 囲	支間方向	支 間 に 直角方向	支間方向	支 間 に 直角方向
単純	支間曲げ	RC	0≤/≤4	+ (0.121	+ (0.10/	+ (0.221	+ (0.06/
版	モーメント	PC	0≦ <i>l</i> ≦6	+0.07) <i>P</i>	+0.04) P	+0.08) <i>P</i>	+0.06) <i>P</i>
	支間曲げ	RC	0≦/≦4	+(単純版	+(単純版	+(単純版	+(単純版
連結	モーメント	PC	0≤l≦6	の80%)	Ø80%)	の80%)	の80%)
版	支点曲げ	RC	0≤l≤4	- (0.15/	-	-(単純版	_
	モーメント	PC	0≦≀≦6	+0.125) <i>P</i>		の80%)	
		RC	0≤ <i>l</i> ≤1.5	$\frac{-P \cdot l}{1.30l+0.25}$			
片	支点曲げ		0≤ <i>l</i> ≤1.5	1.007 - 0.20	-	- (0.71	
持	モーメント	PC	1.5<1≦3.0	- (0.6 <i>l</i> -0.22) <i>P</i>		+0.22) <i>P</i>	
版	先端付近	RC	0≤ <i>l</i> ≤1.5		+ (0.151		+ (0.16/
	曲 げ モーメント	PC	0≤1≤3.0		+0.13) <i>P</i>	_	+0.07) <i>P</i>

表-5.5.1 T荷重(衝撃を含む)による床版の単位幅(1m)あたりの設計曲げモーメント (kgf・m/m)

ここに、RC:鉄筋コンクリート床版

PC:プレストレストコンクリート床版

1:5.3に規定するT荷重に対する床版の支間(m)

P:共通編2.1.3に示すT荷重の片側荷重(10,000 kgf)

(注)床版支間の方向は、図-5.4.1による。

10章 プレートガーダー

10.1 応力度表示について

プレートガーダーにおいては,腹板や垂直補剛材の項のように座屈に対する安全性の照査を目的 とした規定が多い。これらの座屈に関する照査式や数値は応力度表示による座屈照査式が基本式と なっており,断面力表示に変更した場合の数値の書き換えが困難であった。また,二軸応力状態の 照査のように直接的に応力度で表現した方がその部分の耐荷力を評価しやすい場合がある。

これらを考慮し、10章 プレートガーダーにおいては発生応力度の算出方法と抵抗曲げモーメントの算出方法について規定する等、応力度表示、断面力表示のどちらの限界状態の照査式でも対応できるようにした。

10.2 腹板厚の規定について

道路橋示方書の解説によれば,表-8.4.1 (本編:表-10.4.1) プレートガーダーの最小板厚は,座 屈照査式 (解-8.4.6~8.4.8)を純曲げ状態と曲げとせん断が同時に作用する状態について計算した 結果をまとめたものとされている。しかし,解説に記された内容では,どの決定状態(位置や荷重状態)を採用したのか明確でない。また,設計法を限界状態設計法へ移行していくためには,各種安全 率をそれぞれ分割し明確にしめす必要がある。

そこで,今回の限界状態設計法研究部会では,この表の数値の根拠となる座屈照査の計算を実行し, 各種安全率を明確にすることを試みたが,時間的制約もあり具体的な数値をしめすことは出来なかっ た。しかしながら今後の資料として活用する機会を期待して検討結果を掲載する事にした。

──検討結果──

(1) 座屈照査式の展開

曲げモーメントとせん断力を受ける板の座屈照査式は次式で与えられる。

$$\frac{1+\psi}{4} \cdot \frac{\sigma_c}{\sigma_{cr}} + \sqrt{\left(\frac{3-\psi}{4} \cdot \frac{\sigma_c}{\sigma_{cr}}\right)^2 + \left(\frac{\tau}{\tau_{cr}}\right)^2} = R^2$$
 (# 8.4.2)

また, σ_{r}, τ_{r} はそれぞれ次式で与えられる。

$$\sigma_{cr} = k_{\sigma} \cdot \frac{\pi^2 E}{12(1-\mu^2)} \cdot \left(\frac{t}{b}\right)^2$$
$$\tau_{cr} = k_{\tau} \cdot \frac{\pi^2 E}{12(1-\mu^2)} \cdot \left(\frac{t}{b}\right)^2$$

(解 8.4.4)

ここで、
$$K^2 = \frac{\pi^2 E}{12(1-\mu^2)}$$
 とし、 (解 8.4.2) に代入すると

$$R^2 = \frac{1}{\left(\frac{t}{b}\right)^2 \cdot K^2} \left\{ \frac{\sigma_c(1+\psi)}{4k_\sigma} + \sqrt{\left(\frac{3-\psi}{4k_\sigma}\right)^2 \cdot \sigma_c^2 + \left(\frac{1}{k_\tau}\right)^2 \cdot \tau^2} \right\}$$

また、
$$\eta = \frac{\tau}{\sigma}$$
とすると

$$R^{2} = \frac{\sigma_{c}}{\left(\frac{t}{b}\right)^{2} \cdot K^{2}} \left\{ \frac{1+\psi}{4k_{\sigma}} + \sqrt{\left(\frac{3-\psi}{4k_{\sigma}}\right)^{2} + \left(\frac{\eta}{k_{\tau}}\right)^{2}} \right\}$$

ここで、
$$E=2.1 \times 10^{6} \text{kgf/cm}^{2}$$
、 $\mu = 0.3 とすると$

$$K^{2} = \frac{\pi^{2}E}{12(1-\mu^{2})} = 1.898 \times 10^{6}$$
, $K = \sqrt{1.898 \times 10^{6}} = 1377.6$

となり,式(解 8.4.5)を導くことが出来た。また,この式には重力単位が含まれていることが判 明した。

$$\left(\frac{t}{b}\right)^2 \ge \frac{v_B \sigma_c}{\left(1,378R\right)^2} \left\{ \frac{1+\psi}{4k_\sigma} + \sqrt{\left(\frac{3-\psi}{4k_\sigma}\right)^2 + \left(\frac{\eta}{k_\tau}\right)^2} \right\}$$
(# 8.4.5)

ただし、作用荷重_のにて無次元化されているため、SI単位への変換は可能であるといえる。

(2) 座屈照査式の計算

水平補剛材のある場合においては,式(解 8.4.5)と同様に各区間ごとに計算され,式(解-8.4.6), (解-8.4.7),(解-8.4.8)としてまとめられている。これらの基本式を用いて(b/t)を計算した結果を表-資10.2.1,表-資10.2.2,表-資10.2.3にしめす。

ただし,

$$v_{\rm B} = 1.25 + (0.3 + 0.15\psi)\exp^{-4.3\eta}$$

 $\psi = \sigma_{\rm I}/\sigma$
 $R = 0.90 - 0.10\psi \le 1.0$

 $k_{\sigma} = 23.9 \left(\frac{1-\psi}{2}\right)^{2} \qquad : -7 \leq \psi \leq -1 \quad \cdots \quad \text{座屈設計ガイドラインの提案式}$ $k_{\sigma} = 10\psi^{2} - 6.264\psi + 7.636 \quad : -1 \leq \psi < 0 \quad \cdots \quad \text{DIN4114}$ $k_{\sigma} = \frac{8.4}{11+\psi} \qquad : \quad 0 \leq \psi \leq 1 \quad \cdots \quad \text{DIN4114}$ $k_{\tau} = 5.34 + 4.00 \left(\frac{b}{a}\right)^{2} \qquad : \quad 1 \leq \frac{a}{b}$ $k_{\tau} = 4.00 + 5.34 \left(\frac{b}{a}\right)^{2} \qquad : \quad 1 > \frac{a}{b}$

荷重ケースは以下とした。

ケース1. 純曲げの場合:作用応力度は、 σ_a (= σ_y /1.7)を使用 ケース2. 曲げとせん断: $\sigma = \sigma_a$ 、 $\tau = 0.45 \tau_a$ を使用 ケース3. 曲げとせん断: $\sigma = 0.45 \sigma_a$ 、 $\tau = \tau_a$ を使用

計算結果から,道示の表-8.4.1における規定値と最も近い値を示したのは,純曲げ状態で,せん断応力が働かないケース1であった。

ただし、"水平補剛材を2段用いるとき"においては、SM490、SM520、SM570級材料の値が最小値 を採用していないこともあり、規定値の決定根拠が不明確であった。

表-資10.2.1 (b/t)の計算:ケース1.純曲げの場合

	純曲げの	場合	$K \sigma = 23$.9(上限))の場合		
		0段	1	段		2段	
		全	上	下	上	中	下
	SM400	152	268	255	363	318	475
	SM490	131	230	219	312	273	408
	SM520	124	219	208	297	260	388
ĺ	SM570	112	197	187	267	234	349
	σ1/σ	1.00	1.00	0.60	1.00	0.72	0.28
	φ1	-1.000	0.600	-1.667	0.720	0.388	-3.571
	R	1.000	0.840	1.000	0.828	0.861	1.000
	η	0	0	0	0	0	0
	kσ	23.9	4.9	23.9	4.6	5.6	23. 9
	kτ	5.3	5.3	5.3	5.3	5.3	5.3
	νΒ	1.40	1.64	1.30	1.66	1.61	1.25

	σ 1, 400 1, 900 2, 100 2, 600	τ 0 0 0 0	
見 見	定値と最	もも近い	ものを示す。
規定値 SM400 SM490 SM520 SM570	0 段 152 130 123 110	1 段 256 220 209 188	2 段 310 310 294 262

 $\overset{ au}{0}$

0000

τ 0 0

0 0

σ 1, 400

1, 900 1, 900 2, 100 2, 600

σ 1, 400 1, 900 2, 100 2, 600

σ

1,400 1,900 2,100 2,600

.

純曲げの場合 Κσ:上限をガイドライン提案式の場合

	0段	1	段	2段		
	全	上	下	上	中	下
SM400	152	268	340	363	318	1087
SM490	131	230	292	312	273	933
SM520	124	219	277	297	260	887
SM570	112	197	249	267	234	797
σ1/σ	1.00	1.00	0.60	1.00	0.72	0.28
φ1	-1.000	0.600	-1.667	0.720	0.388	-3. 571
R	1.000	0.840	1.000	0.828	0.861	1.000
η	0	0	0	0	0	0
kσ	23. 9	4.9	42.5	4.6	5.6	124.8
k τ	5.3	<u>5. 3</u>	5.3	5.3	5.3	5.3
νΒ	1.40	1.64	1.30	1.66	1.61	1.25

純曲げの	場合	Kσ: ガ	<u>イドライン提</u>	案式, νE	B= <u>1.4固定</u>	の場合
	0段	1	段		2段	
	全	上	下	上	中	下
SM400	152	291	327	395	341	1027
SM490	131	249	281	339	293	881
SM520	124	237	267	323	279	838
SM570	112	213	240	290	250	754
σ1/σ	1.00	1.00	0.60	1.00	0.72	0.28
φ1	-1.000	0.600	-1.667	0.720	0.388	-3.571
R	1.000	0.840	1.000	0.828	0.861	1.000
η	0	0	0	0	0	0
kσ	23.9	4.9	42.5	4.6	5.6	124.8
kτ	5.3	5.3	5.3	5.3	5.3	5.3
νΒ	1.40	1.40	1.40	1.40	1.40	1.40

純曲げの場合 Kσ:提案式,νB=1.4,R=1.0の場合						
	0段	1	段			
	全	上	下	上	中	下
SM400	152	346	327	478	396	1027
SM490	131	297	281	410	340	881
SM520	124	282	267	390	323	838
SM570	112	254	240	350	291	754
σ1/σ	1.00	1.00	0.60	1.00	0.72	0.28
$\phi 1$	-1.000	0.600	-1.667	0.720	0.388	-3.571
R	1.000	1.000	1.000	1.000	1.000	1.000
η	0	0	0	0	0	0
kσ	23. 9	4.9	42.5	4.6	5.6	124.8
kτ	5.3	5.3	5.3	5.3	5.3	5.3
νΒ	1.40	1.40	1.40	1.40	1.40	1.40

表-資10.2.2 (b/t)の計算:ケース2.曲げとせん断: $\sigma = \sigma a$, $\tau = 0.45 \tau a を使用$

曲げ+せん断 Kσ:提案式,a/b=1.0の場合

	0段	1	段	-	2段			
	全	上	一下	上	中	下	σ	
SM400	144	291	237	395	344	315	1,400	3
SM490	124	250	204	339	296	271	1,900	49
SM520	118	237	194	323	281	258	2,100	54
SM570	106	213	174	290	253	231	2,600	61
σ1/σ	1.00	1.00	0.60	1.00	0.72	0.28		
φ1	-1.000	0.600	-1.667	0.720	0.388	-3. 571		
R	1.000	0.840	1.000	0.828	0.861	1.000		
η	0.260	0.260	0. 433	0.260	0.361	0.928		
kσ	23.9	4.9	42.5	4.6	5.6	124.8		
kτ	9.3	9.3	9.3	9.3	9.3	9.3		
ν B	1.30	1.38	1.26	1. 38	1.33	1. 25		

曲げ+せん断 Kσ:提案式,a/b=1.5の場合

	0段	1	段		2段			
	全	E	T	上	中	下	σ	τ
SM400	137	289	211	393	340	274	1,400	364
SM490	118	248	181	337	292	235	1,900	494
 SM520	112	236	173	321	278	224	2, 100	546
SM570	101	212	155	288	250	201	2,600	676
σ1/σ	1.00	1.00	0.60	1.00	0.72	0.28		
$\phi 1$	-1.000	0.600	-1. 667	0.720	0.388	-3. 571		
_R	1.000	0.840	1.000	0.828	0.861	1.000		
η	0.260	0.260	0. 433	0.260	0.361	0.928		
kσ	23. 9	4.9	42.5	4.6	5.6	124.8		
kτ	7.1	7.1	7.1	7.1	7.1	7.1		
νB	1.30	1.38	1.26	1.38	1.33	1.25		

表-資10.2.3 (b/t)の計算:ケース3.曲げとせん断: $\sigma = 0.45 \sigma a$, $\tau = \tau a を使用$

曲ii+せん断 $K\sigma$:提案式, a/b=1.0の場合 0段 1段 2段

	0 72	L	12		4 12	
	全	上	下	上	中	下
SM400	130	401	166	551	425	208
SM490	111	344	143	473	364	179
<u>SM520</u>	106	327	136	449	347	170
SM570	95	294	122	404	312	153
σ1/σ	1.00	1.00	0.60	1.00	0.72	0.28
φ1	-1.000	0.600	-1.667	0.720	0.388	-3. 571
<u>R</u>	1.000	0.840	1.000	0.828	0.861	1.000
η	1.283	1.283	2.138	1.283	1.782	4.582
<u>k σ</u>	23.9	4.9	42.5	4.6	5.6	124.8
kτ	9.3	9.3	9.3	9.3	9.3	9.3
νΒ	1.25	1.25	1.25	1.25	1.25	1, 25

σ	τ
630	808
855	1,097
945	1,213
1,170	1,501

曲げ+せん断 Kσ:提案式, a/b=1.5の場合

	0段	1段		2段			
	全	<u>۲</u>	下	<u> </u>	中	下	
SM400	114	377	145	520	390	181	
SM490	98	324	125	446	335	156	
SM520	93	308	119	424	318	148	
SM570	84	277	107	381	286	133	
σ1/σ	1.00	1.00	0.60	1.00	0.72	0.28	
φ1	-1.000	0.600	-1.667	0.720	0.388	-3.571	
<u>R</u>	1.000	0.840	1.000	0.828	0.861	1.000	
η	1.283	1.283	2.138	1.283	1.782	4.582	
ko	23.9	4.9	42.5	4.6	5.6	124.8	
<u> </u>	7.1	7.1	7.1	7.1	7.1	7.1	
νΒ	1.25	1.25	1.25	1.25	1.25	1.25	

σ	τ
630	808
855	1,097
945	1,213
1,170	1, 501

10.3 垂直補剛材の間隔の規定について

腹板厚の規定と同様に、今回の限界状態設計法研究部会では、表-8.5.1 (本編:表-10.5.1) および式(8.5.1~8.5.6) (本編:式(10.5.1~10.5.6))の数値の根拠となる座屈照査の計算を実行し、 各種安全率を明確にしめすことを試みたが、時間的制約もあり明確に数値をしめすことは出来なかった。これも今後の資料として活用する機会を期待して検討結果を掲載する。

——検討結果——

基本応力度

	SM400	SM490	SM520	SM570
σy:降伏応力度	2400	3200	3600	4600
$\tau y = \sigma y / 3^{0.5}$	1386	1848	2078	2656
σa:許容応力度	1400	1900	2100	2600
$\tau a = \sigma a / 3^0.5$	808	1097	1213	1501
安全率 ν	1.714	1.684	1.714	1. 769

(1) 水平補剛材を用いない場合

	SM400	SM490	SM520	SM570	備考
φ1	-1.0	-1.0	-1.0	-1.0	
R	1.000	1.000	1.000	1.000	
a/b	9. 0E+09	9. 0E+09	9. 0E+09	9. 0E+09	無限大
τ	808	1, 097	1, 213	1,501	τα
σ	630	855	945	1, 170	0.45σa
η	1.3	1.3	1, 3	1.3	
kσ	23.90	23.90	23.90	23.90	\bigcirc
<u>kτ</u>	5.34	5.34	5.34	5.34	
<u>ν</u> B	1.25	1.25	1.25	1.25	座屈安全率
$(t/b)^{2}$	1.012E-04	1.373E-04	1.518E-04	1.879E-04	
(t/b)	1.006E-02	1.172E-02	1.232E-02	<u>1.371E-02</u>	
B∕t	99.4	85.3	81. 2	<u>72. 9</u>	2
E	2. 10E+06	2.10E+06	2. 10E+06	2.10E+06	
μ	0.30	0.30	0.30	0.30	
K	189.8	189.8	189.8	189.8	式(解 8.5.4)の分母数値
<u>Κ</u> /νΒ	151.8	151.8	151.8	151.8	3
σk	3, 627	3, 627	3, 627	3, 627	①×③ 3,650 照査式の
τ k 1	810	810	810	810	5.34×③ 810 分母数值
τ k 2	607	607	607	607	4.00×③ 610 規定値

上表より、照査式の分母数値は材質に依存しないことが解る。 また、その数値は座屈安全率と座屈係数および弾性係数、ポアソン比によって決定される。

ここで、②のB/tが道示の表-8.5.1と異なることから道示に記す"幾分安全を見込んで"の数値を推定する。

	SM400	SM490	SM520	SM570	備考
ν B	2.50	2,50	2.50	2.50	座屈安全率
B∕t	70.3	60.4	57.4	51.6	0
規定値	70	60	57	50	B/t 規定値
σk	1, 814	1, 814	1,814	1,814	①×③ 照査式の分母数値
<u>τ k l</u>	405	405	405	405	5.34×3
τ k 2	304	304	304	304	4.00×3

座屈安全率を2倍の2.50とすることで、 大値」の規定値と最も近い値をしめした。

「垂直補剛材を省略しうるフランジの純間隔の最

(2) 水平補剛材を1段,2段用いる場合

日補剛材と引張側フランジにて囲まれる区間にて検討する。 材質に依存しないことから、全てSM400材にて計算する。

	水平補剛	材 1段	水平補剛	材 2段	備考
	SM400		SM400		
φ2	-1.667		-3. 570		
R	1.000		1.000		
a/b	0.80		0.64		
τ	808		808		τа
σ1	378		176		$0.45 \sigma a \times (0.6, 0.28)$
η	2.14		4.58		
kσ	23.90		23.90		
	0.60		0. 28		 す1の係数
	62.25		208.31		(1) $(b/a)^2 \times k \sigma / 1$
kτ'	5.34		5.34		せん断座屈係数
k τ"	4.00		4.00		
	8.34		13.04		② $(b/a)^{2} \times k \tau'$
	6.25		9.77		(a) $(b/a)^{2} \times k_{\tau}$
νΒ	1.25		1.25		座屈安全率
K / ν	151.8	規定値	151.8	規定値	3
σk	9, 452	9, 500	31,630	31,500	①×③ 照査式の分母数値
τ k 1	1, 267	1, 270	1, 980	1, 970	@×3
τ k2	949	950	1, 483	1, 480	4×3

$$v_B^2\left(\frac{b}{t}\right)^4\left\{\frac{12(1-\mu^2)}{\pi^2 E}\right\}^2\left\{\left(\frac{\sigma}{k_\sigma}\right)^2+\left(\frac{\tau}{k_\tau}\right)^2\right\}\le 1$$

$$v_B^2 \left(\frac{b}{100t}\right)^4 \left\{ \left(\frac{\sigma}{190k_{\sigma}}\right)^2 + \left(\frac{\tau}{190k_{\tau}}\right)^2 \right\} \le 1 \qquad \cdots (\mathfrak{M} \ 8.5.4)$$

- ここで、照査式の分母数値には以下を考慮して計算した。 1) 式(解 8.5.4)における k_{o, τ}は、(a/b)²の関数であるからa/bが0.8,0.64 の場合、その数値の2乗を代入した。 ただし、 r の第2項には(a/b)²が表現されているため、補剛材無しの時と 同値である。
 - 2) パネル部分の発生応力と照査応力との比率を代入した。

計算例) 水平補剛材1段の場合(σの項)

	ν B=	1.25
$\left(\left(a\right) \right) ^{2}$	a/b=	0.80
$\left(\frac{a}{b}\right) 0.6 \sigma$	$k \sigma =$	23. 9
$190k\left(\frac{1}{1}\right)$		
$\left(v_{B} \right)$	0.8 ^ 2*0.6=	0.38
	190/1.25 =	152
	23. 9*152/0. 38=	9,450

(3) SI単位系による数値の算出

基本応力度

	SM400	SM490	SM520	SM570
σy:降伏応力度	235	315	355	430
$\tau y = \sigma y / 3^0.5$	136	182	205	248
σa:許容応力度	137	187	207	243
$\tau a = \sigma a / 3^{\circ} 0.5$	79	108	120	140
安全率 v	1.714	1.684	1.714	1.769

① 水平補剛材を用いない場合

	SM400	SM490	SM520	SM570	備考
φ1	-1.0	-1.0	-1.0	-1.0	
R	1.000	1.000	1,000	1.000	
a/b	9.0E+09	9. 0E+09	9. 0E+09	9.0E+09	無限大
τ	79	108	120	140	τα
σ	62	84	93	109	0.45σa
η	1. 3	1.3	1. 3	1.3	
kσ	23.90	23.90	23.90	23.90	1
k τ	5.34	5.34	5.34	5.34	
νΒ	1. 25	1. 25	1.25	1.25	座屈安全率
E	2. 00E+05	2.00E+05	2.10E+05	2.10E+05	2.0,2.1の2種類にて計算
μ	0.30	0. 30	0.30	0.30	
σk	345	345	363	363	①×③ 照査式の分母数値
τ k 1	77	77	81	81	5.34×3
τ k 2	58	58	61	61	4.00×3

② 水平補剛材を1段,2段用いる場合

	나 고 나는 떠네	++ + = =0.	1	++ 0 ET.	/#
		<u> 1段</u>		村 2段	
	SM400	SM400	SM400	SM400	
φ2	-1.667	-1.667	-3.570	-3. 570	
R	1.000	1.000	1.000	1.000	
a/b	0.80	0.80	0.64	0.64	
τ	79	108	79	108	τα
σ1	37	51	17	24	$0.45 \sigma a \times (0.6, 0.28)$
η	2.14	2.14	4. 58	4.58	
kσ	23.90	23.90	23.90	23.90	
	0.60	0.60	0.28	0.28	①'σ1の係数
	62.25	62.25	208.31	208.31	(1) $(b/a)^2 \times k \sigma / (1)'$
kτ'	5.34	5.34	5.34	5.34	せん断座屈係数
<u>k</u> τ"	4.00	4.00	4.00	4.00	
	8.34	8.34	13.04	13.04	② (b/a)^2×kτ'
	6.25	6.25	9.77	9.77	(b/a) $2 \times k \tau$ "
νΒ	1.25	1.25	1.25	1.25	座屈安全率
Е	2.00E+05	2.10E+05	2.00E+05	2.10E+05	2.0,2.1の2種類にて計算
μ	0.30	0. 30	0. 30	0.30	
Κ / ν	14.46	15.18	14.46	15, 18	3
σk	900	945	3, 012	3, 163	①×③ 照査式の分母数値
τ k 1	121	127	189	198	2×3
τ k 2	90	95	141	148	(4)×(3)

11章 合成げた

11.1 合成桁照査式の断面力表記について

限界状態設計法による書式に変更するにあたっては,従来の応力度表記を断面力による表記に変 更することが原則である。しかし,本検討では以下に示す検討結果により合成げたの照査式を断面 力表記とすることを今後の課題として見送ることとした。

合成げたの設計における照査項目は、合成前、合成後、さらにクリープ時、乾燥収縮時、温度変 化考慮時と多岐にわたり、それぞれの照査項目においての断面力は異なるものとなっている。また これらに対して、床版天端、上フランジ上端、下フランジ下端の3点での照査がそれぞれ必要であ り、計算ケースは比較的多い。

本照査は、応力度表記による照査であれば各照査項目においてそれぞれの応力度を算出した後で、 これらを合計する比較的簡略な照査であった。しかし、断面力表記による照査においてはどの照査 時においても常に合成前断面力と合成後断面力が連動して必要であり、さらに各照査時における対 象断面が異なることから、常にこれらの断面力を照査する状態の断面力への換算が必要である。

例えば、合成後の照査時には合成前と断面形状が異なるため合成前荷重により発生する断面力は、 合成後の状態でのものに換算し(資 11.1.1,資 11.1.2),別途求める合成後荷重による断面力と 併せて照査を行うこととなる。

合成前曲げモーメント(上フランジ照査時)(合成後換算値)

$$M_{Su} = \frac{\sigma_{Su}}{y_{Vu}} \cdot I_{V} = \frac{I_{V}}{I_{S}} \cdot \frac{y_{Su}}{y_{Vu}} \cdot M_{S}$$
 (資 11.1.1)

合成後曲げモーメント(下フランジ照査時)(合成後換算値)

$$M_{Sl} = \frac{\sigma_{sl}}{y_{\nu l}} \cdot I_{\nu} = \frac{I_{\nu}}{I_{s}} \cdot \frac{y_{sl}}{y_{\nu l}} \cdot M_{s}$$
 (資 11.1.2)

ここで、

$$M_s$$
:合成前曲げモーメント
 I_s :合成前断面 2 次モーメント
 I_{ν} :合成後断面 2 次モーメント
 $\sigma_{su} = \frac{M_s}{I_s} \cdot y_{su}$:合成前上フランジ応力
 $\sigma_{sl} = \frac{M_s}{I_s} \cdot y_{sl}$:合成前下フランジ応力

同様に、合成げたの各照査時(クリープ,温度収縮,温度変化など)においても、それぞれ上記 の作業を繰り返す必要があり、許容応力度での照査に比べて設計作業が煩雑になることが予想され る。よって、本検討では合成げたの照査の断面力表記は見送ることとした。 参考までに断面力表記による合成げたの照査式を以下に示す。

<u>(参考)断面力表記による合成げたの照査式</u>

1)合成前の照査

$$\frac{M_s}{M_{sa}} \leq 1 \tag{§ 11.1.4}$$

ここで、

v:安全係数

 M_s :合成前死荷重曲げモーメント M_{sa} :合成前終局曲げモーメント

2)合成後の照査

 $\frac{\nu(M_{\nu_{D}} + M_{\nu_{L}})}{M_{\nu_{a}}} \leq 1$ (資 11.1.5) $M_{\nu_{a}} = (\sigma_{\nu_{a}} - \sigma_{s}) \frac{I_{\nu}}{y_{\nu}} \cdot n_{\gamma}$ (資 11.1.6)

ここで,

 $M_{\nu D}$:合成後死荷重曲げモーメント $M_{\nu L}$:合成後活荷重曲げモーメント $\sigma_{\nu a}$:合成後許容応力度 σ_{s} :合成前死荷重応力度 I_{ν} :合成後断面2次モーメント y_{ν} :合成後中立軸からの距離 n_{τ} :鋼=1, コンクリート=7

3)クリープによる影響の照査

$$\frac{vM_{\nu_1}}{M_{\nu_{1a}}} \leq 1 \qquad (\ragge 11.1.7)$$

$$M_{\nu_1} = -\frac{1}{n_1} \cdot \left(\frac{P_1}{A_{\nu_1}} \cdot \frac{I_{\nu_1}}{y_{\nu_1}} + M_1\right) + \frac{E_{C1} \cdot \sigma_{\nu_{Cu}} \cdot \varphi_1}{E_C} \cdot \frac{I_{\nu_1}}{y_{\nu_1}} \qquad (\rg \ 11.1.8)$$

ここで,

 n_1 :鋼=1, コンクリート= $\frac{E_s}{E_{c_1}}$ P_1 :クリープによる軸力 M_1 :クリープによる曲げモーメント I_{ν_1} :クリープによる応力算出用合成断面2次モーメント A_{ν_1} :クリープによる応力算出用合成断面面積 y_{ν_1} :クリープによる応力算出用合成断面の中立軸からの距離 E_s :鋼のヤング係数

$$M_{\nu_{1a}} = \left\{ \sigma_{\nu_{1a}} - \left(\sigma_{s} + \sigma_{\nu_{D}} + \sigma_{\nu_{L}} \right) \right\} \frac{I_{\nu_{1}}}{y_{\nu_{1}}} \cdot n_{14}$$

(資 11.1.9)

ここで,

 $\sigma_{\nu_{la}}$:クリープ影響時の重ね合わせ許容応力度 $\sigma_{\nu_{D}}$:合成後死荷重応力度 $\sigma_{\nu_{L}}$:合成後活荷重応力度 n_{14} :鋼=1, コンクリート=14

4)乾燥収縮による影響の照査

$$\frac{M_{\nu_2}}{M_{\nu_{2a}}} \leq 1 \qquad (\mathring{g} \quad 11.1.10)$$
$$M_{\nu_2} = -n_2 \cdot \left(\frac{P_2}{A_{\nu_2}} \cdot \frac{I_{\nu_2}}{y_{\nu_2}} + M_2\right) + E_{c_2} \cdot \varepsilon_s \cdot \frac{I_{\nu_2}}{y_{\nu_2}} \qquad (\mathring{g} \quad 11.1.11)$$

ここで,

$$n_2$$
:鋼=1, コンクリート= $\frac{E_s}{E_{c2}}$
 P_2 :乾燥収縮による軸力
 M_2 :乾燥収縮による曲げモーメント
 I_{v2} :乾燥収縮による応力算出用合成断面2次モーメント
 A_{v2} :乾燥収縮による応力算出用合成断面面積
 y_{v2} :乾燥収縮による応力算出用合成断面の中立軸からの距離
 $E_{c2} = E_c / (1+\varphi_2 / 2)$
 φ_2 :乾燥収縮による応力度算出用に用いるクリープ係数
 ε_s :鋼=1, コンクリート=乾燥収縮による応力度算出に用いる最終収縮度

$$M_{\nu_{1a}} = \left\{ \sigma_{\nu_{1a}} - \left(\sigma_{s} + \sigma_{\nu_{D}} + \sigma_{\nu} + \sigma_{\nu_{1}} \right) \right\} \frac{I_{\nu_{2}}}{y_{\nu_{2}}} \cdot n_{21}$$
 (\empsymbol{\empsymbol{\empsymbol{0}}} 11.1.12)

ここで、

 $\sigma_{\nu_{2a}}$:乾燥収縮影響時の重ね合わせ許容応力度 $\sigma_{\nu_{1}}$:クリープによる応力度 n_{21} :鋼=1, コンクリート=21

$$\frac{vM_{t}}{M_{ta}} \leq 1 \qquad (資 11.1.13)$$

$$M_{t} = -n_{7} \left(\frac{P_{t}}{A_{\nu}} \cdot \frac{I_{\nu}}{y_{\nu}} + M_{t} \right) + E_{c} \cdot \varepsilon_{t} \cdot \frac{I_{\nu}}{y_{\nu}} \qquad (資 11.1.14)$$
ここで,
$$P_{t} : 温度差による軸力$$

 M_t :温度差による曲げモーメント

$$\varepsilon_t = \alpha \cdot t$$

- *t* : 温度差
- α :線膨張係数

$$M_{ta} = \left\{ \sigma_{ta} - \left(\sigma_{s} + \sigma_{\nu D} + \sigma_{\nu L} + \sigma_{\nu 1} + \sigma_{\nu 2} \right) \right\} \frac{I_{\nu}}{y_{\nu}} \cdot n_{\gamma}$$
 (資 11.1.15)

ここで,

 σ_{ta} :温度差影響時の重ね合わせ許容応力度

 σ_{ν_2} :乾燥収縮応力度

6)降伏に対する安全度の照査

$$\frac{M}{M_a} \leq 1 \tag{§ 11.1.16}$$

$$M = (\sigma_s + \sigma_{\nu_D} + \sigma_{\nu_L} + \sigma_{\nu_1} + \sigma_{\nu_2} + \sigma_t) \frac{I_{\nu}}{y_{\nu}}$$
 (\mathcal{G} 11.1.17)

ここで,

 σ_t :温度差影響時応力度

$$M_a = \sigma_a \frac{I_v}{y_v} \tag{(§ 11.1.18)}$$

ここで,

σ_a:降伏に対する安全度の照査に用いる鋼材の降伏点

11.2 降伏に対する安全度の照査に用いる係数について

道路橋示方書・同解説 Ⅱ 鋼橋編(平成8年12月)によれば、合成げたの降伏に対する安全度の照 査に用いられる係数は以下の通りとされている。

・活荷重および衝撃に対して2倍

・死荷重に対して1.3倍

一方,道路橋示方書・同解説 Ⅲ コンクリート橋編(平成8年12月)(以下道示Ⅲ)では,終局荷重 作用時の荷重の組合せを以下の通り示されている。

・1.3×(死荷重)+2.5×(活荷重+衝撃)

・1.0×(死荷重)+2.5×(活荷重+衝撃)

1.7×(死荷重+活荷重+衝撃)

このため、両者の係数の統一がはかれないかという観点において検討を行ったが、両者の初めて規定 された時に参考とした文献(鋼橋; ASSHO, プレストレストコンクリート橋: DIN)が異なることが わかり、今後の検討課題の一つとしてあげるにとどめることした。

以下に、本検討で調査した、鋼橋、プレストレストコンクリート橋それぞれの規定の経緯を示す。

鋼橋 関 連	コンクリート橋関連
	○昭和 30 年(1955 年) 「プレストレストコンクリート設計施工指針」※ ・2.0× (D+L)
○昭和 34 年(1959) 「鋼道路橋の合成桁設計施工指針」 ・1.6× (D+L+I)	
	 ○昭和 36 年 (1961) 「プレストレストコンクリート設計施工指針」※ • 1.3 × D+2.5 ×L • 1.3 × (D+E) ○昭和 36 年 (1961)
	「プレストレストコンクリート道路橋の設計につい て」 ・1.3×D+2.5×L ・1.3× (D+E) ・1.8 [1.7] × (D+E) ・1.5 [1.4] × (D+E) 「] 内は、施工管理が特に良好の場合
 ○昭和 40 年 (1965) 「鋼道路橋の合成ゲタ設計施工指針」 ・1.3 ×D+2.0× (L+1) 	
<<以降改正無し>>	 ○昭和 43 年 (1968) 「プレストレストコンクリート道路橋示方書」 •1.3×D+2.5×L •1.3×(D+L) •1.3×(D+E) ○昭和 53 年 (1978) 「道路橋示方書・同解説 Ⅲ コンクリート橋編」 •1.3×D+2.5×(L+I) •1.0×D+2.5×(L+I) •1.7×(D+L+I) •1.0×D+1.3×E
	・1.3× (D+E) (RC についても照査を規定) <<以下改正無し>>

表-資 11.2.1 降伏に対する活荷重および死荷重の照査係数の変遷

表中 D:死荷重(静荷重),L:活荷重(動荷重),E:地震荷重,I:衝撃 ※土木学会関連

(1)鋼橋に関する規定の変遷

鋼橋に関しては、「鋼道路橋の合成桁設計施工指針」(昭和 34 年)に初めて合成げたの降伏点に対す る安全性の照査が盛り込まれている。

合成桁の降伏点に対する安全度 22条

活荷重応力(衝撃を含む)と死荷重応力との和の 1.6 倍と架設方法によるプレストレスト応力 との最も不利な組合せに対し、鋼桁のフランジ応力度は 2,300kg/cm²を、コンクリート断面の縁 応力度は σ_{38} の 3/5 をこえてはならない。ただしこの場合 n =7.0 を用いるものとする。

(「鋼道路橋の合成桁設計施工指針」(昭和 34 年)より抜粋) この時,係数の設定根拠については解説されていない。

次に「鋼道路橋の合成ゲタ設計施工指針」(昭和40年)において、本規定の改訂がなされた。

合成ゲタの降伏点に対する安全度 23条

活荷重応力(衝撃を含む)の2倍と死荷重の1.3倍ならびにプレストレストによる応力と収縮, クリープによる応力との最も不利な組合せに対し,鋼ゲタのフランジ応力度は使用鋼材の降伏点 応力度を,コンクリート断面の圧縮縁応力度は σ₂₈の 3/5 をこえてはならない。ただしこの場合 nの値は 16条によるものとする。

(「鋼道路橋の合成ゲタ設計施工指針」(昭和40年)より抜粋)

この時も荷重係数についての解説は無かったが、「道路橋示方書・同解説Ⅱ 鋼橋編」(昭和47年)で、 AASHO(1971)他の考え方によったことが解説されている。

以降,現行道示Ⅱに至るまで改正は行われていない。

(2) プレストレストコンクリート橋に関する規定の変遷

コンクリート橋に関しては、「プレストレストコンクリート設計施工指針」(昭和 30 年)に初めて破 壊にたいする安全度の規定が盛り込まれた。

50条 破壊にたいする安全度

曲げ破壊にたいしては,静荷重,動荷重および温度変化の最も不利な組合せの荷重状態の2倍 にたいして安全であることを確かめなければならない。

(「プレストレストコンクリート設計施工指針」(昭和30年)より抜粋) この時の安全度2の根拠として,DIN4227 での1.75 の安全度を同指針の別項で述べられている仮定 に従って摺り合わせを行った値であると解説されている。

次に「プレストレストコンクリート設計施工指針」(昭和36年)で,第1回目の改正が行われている。

55条 破壊に対する安全度

破壊に対しては、次の荷重状態に対して断面が安全であることを確かめなければならない。 1.3×(静荷重)+2.5×(動荷重)

および

1.3×(静荷重および地震荷重の最も不利な組合せ)

(「プレストレストコンクリート設計施工指針」(昭和36年)より抜粋) この時の解説として,一断面における破壊曲げ抵抗モーメントと弾性理論による設計曲げモーメン トとを比較して安全度を検討したとしている。

以上は土木学会関連の規定であり、「建設省道路局長通達 プレストレストコンクリート道路橋の設計について」(昭和 36 年)で、先の「プレストレストコンクリート設計施工指針」に追加する形で、初めて建設省(日本道路協会)関連から規定が示された。

二)破壊に対する安全度

指針 55 条第1項による安全度を確かめるほか,次の荷重状態に対しても断面が安全であることを確かめなければならない。

1.8×(静荷重+動荷重)

また, 地震時については, 次の荷重状態に対して断面が安全であることを確かめなければならない。

1.5×(静荷重および地震荷重の最も不利な組合せ)

ただし,施工管理が得に良好である場合には,1.8 を 1.7 まで,1.5 を 1.4 まで減ずることがで きる。

(「建設省道路局長通達 プレストレストコンクリート道路橋の設計について」(昭和36年)より抜粋) これについても,解説は示されていない。

「プレストレストコンクリート道路橋示方書・解説」(昭和 43 年)では,先の道路局長通達の内容を 整理する形で改正が行われた。

5.2.1 破壊に対する断面の安全度

破壊に対しては、次の荷重状態で断面が安全であることを確かめなければならない。
(a) 1.3×(死荷重) +2.5×(活荷重)
(b) 1.8×(死荷重+活荷重)
(c) 1.3×(死荷重と地震の影響の最も不利な組合せ)

(「プレストレストコンクリート道路橋示方書・解説」(昭和 43 年)より抜粋)

これについても、各係数の決定根拠に関する解説は示されていない。

「道路橋示方書・同解説Ⅲ コンクリート橋編」(昭和 53 年)では、新たに照査式を追加し、活荷重 に対して衝撃を考慮するなどの改正が行われた。

2.1.1 設計計算の原則

(1)	部材の設計にあたっては,原則として設計荷重作用時および終局荷重作用時に対してそれぞれ部材断面の
応	な力度等を照査し,部材が安全であることを確かめなければならない。
(2)	(1)項に規定する設計荷重作用時および終局荷重作用時の荷重の組合せは,それぞれ次の通りとする。
1)) 設計荷重作用時の荷重の組合せは,共通編2.2に規定する荷重の組合せとする。
2) 終局荷重作用時の組合せは、次の通りとする。

- (a) 1.3×(死荷重) +2.5×(活荷重+衝撃)
- (b) 1.0×(死荷重) +2.5× (活荷重+衝撃)
- (c) 1.7× (死荷重+活荷重+衝撃)
- (d) 1.3×(死荷重+地震の影響)
- (e) 1.0×(死荷重)+1.3×(地震の影響)

(「道路橋示方書・同解説皿 コンクリート橋編」(昭和 53 年)より抜粋)

この時の解説では、全ての荷重について合理的な係数を与える程十分な資料が得られてないとし、 従来のプレストレストコンクリート部材の設計で用いられていた範囲の荷重について、従来と同様な 値を用いるとしている。ただし、(c)については別項で施工に関する規定を設けたことで係数を減じ、 さらに死荷重の係数が 1.0 の場合の方が危険となる場合もあることからこれらの2つの照査を追加した としている。

以降,現行の道示Ⅲに至るまで改正は行われていない。