第2編 資料編

1章 総 則

1.1 本指針の特徴

- (1) []内にSI単位を並記した。
- (2) 有効数字は重力単位系については「道路橋示方書」に、SI単位系については「SI単位系移行に関する参考資料」(日本道路協会)に準拠している。
- (3) S I 単位系換算係数,基準降伏点およびヤング係数については「S I 単位系移行に関する参考資料」 の考え方を踏襲している。
- (4)現行の道路橋示方書で有効数字末尾を「0」または「5」にそろえる考え方(二捨三入)をとっている値についてはこれを踏襲するものとする。

2章 材料の強度

2.1 表-2.2.1 軸方向引張強度・曲げ引張強度

鋼材の引張強度は基準降伏点としているが、SM570材については安全係数を1.7で処理するため、耐荷力曲線を4400 kgf/cm²(板厚40 mm以下の場合)で頭切りした値としている。

2.2 表-2.2.2 局部座屈を考慮しない軸方向圧縮強度

基準耐荷力曲線は道路橋示方書(以下,道示という)(解2.2.1)に準拠した。l/rの値は許容応力度法と不変のはずであるが,結果として道示の値とは合致しなかった。これは道示では境界で計算結果が連続するように(数字の丸めにより生じる不連続を防ぐために)l/rの値を何らかの方法で操作しているためだと思われる。しかしながら,道示の数値算出方法が明確でないため,計算結果をそのまま使用することにした。S I 単位系についても計算結果は同様の傾向を示している。

表-2.2.2 局部座屈を考慮しない軸方向圧縮強度の算出

〈SM570材以外の場合〉

基準耐荷力曲線は道示(解2.2.1)を使用した。

$$\begin{array}{lll} \sigma_{cr}/\sigma_{y} = 1.0 & (& \lambda \leq & 0.2) \\ \sigma_{cr}/\sigma_{y} = 1.109 - 0.545 \, \lambda = 1.0 - 0.545 (\lambda - 0.2) & (0.2 & < \lambda \leq & 1.0) \\ \sigma_{cr}/\sigma_{y} = 1.0 \, / \, (0.773 + \lambda^{2}) & (1.0 & < \lambda &) \\ & & \subset \mathcal{L}, & \lambda = 1 \, / \, \pi \times \sqrt{\left(\, \sigma_{y}/E \right) \times l \, / \, r} \end{array}$$

$$\begin{array}{lll} \therefore & \sigma_{cr} = \sigma_{y} & (& \lambda \leq & 0.2) \\ & \sigma_{cr} = \{1.0 - 0.545(1/\pi \times \sqrt{(\sigma_{y}/E) \times l/r} - 0.2)\} \times \sigma_{y} & (0.2 & < \lambda \leq & 1.0) \\ & = \sigma_{y} - 0.545 \, \sigma_{y}/\pi \times \sqrt{(\sigma_{y}/E) \times \{l/r} - 0.2 \times \pi \times \sqrt{(E/\sigma_{y})}\} \\ & \sigma_{cr} = \sigma_{y}/\{0.773 + (1/\pi \times \sqrt{(\sigma_{y}/E) \times l/r})^{2}\} & (1.0 & < \lambda &) \\ & = \pi^{2}E/\{0.773 \, \pi^{2}E/\sigma_{y} + (l/r)^{2}\} & (1.0 & < \lambda &) \end{array}$$

また.

$$\lambda$$
=0.2のとき $l/r = 0.2 \times \pi / \sqrt{(E/\sigma_y)}$
 λ =1.0のとき $l/r = 1.0 \times \pi / \sqrt{(E/\sigma_y)}$

〈SM570材の場合〉

$$t \leq 40$$
 のとき $\sigma_{cr}/\sigma_{y} = 4400/4600 = 0.957(430/450 = 0.956)$ $40 < t \leq 75$ のとき $\sigma_{cr}/\sigma_{y} = 4200/4400 = 0.955(410/430 = 0.953)$ $75 < t \leq 100$ のとき $\sigma_{cr}/\sigma_{y} = 4100/4300 = 0.953(400/420 = 0.952)$ ()内はS I 単位系を表示

重力単位系

道示 (解2.2.1) は

$$\begin{array}{lll} \sigma_{cr}/\sigma_{y} = 1.0 & (& \lambda \leq & 0.2) \\ \text{(1)} & \sigma_{cr}/\sigma_{y} = 1.109 - 0.545 \, \lambda = 1.0 - 0.545 (\lambda - 0.2) & (0.2 & < \lambda \leq & 1.0) \\ & \sigma_{cr}/\sigma_{y} = 1.0 \, / \, (0.773 + \lambda^{2}) & (1.0 & < \lambda &) \\ & & \mathcal{L} \mathcal{L} \mathcal{L}, & \lambda = 1 \, / \, \pi \times \sqrt{\left(\sigma_{y}/E\right) \times l \, / r} & \end{array}$$

ここで、①式について

$$t \le 40$$
 のとき $\sigma_{cr}/\sigma_{y} = 0.957$ より $\lambda = 0.279$
 $40 < t \le 75$ のとき $\sigma_{cr}/\sigma_{y} = 0.955$ より $\lambda = 0.283$
 $75 < t \le 100$ のとき $\sigma_{cr}/\sigma_{y} = 0.953$ より $\lambda = 0.286$

よって、道示(解2.2.1)の直線部の式は次の2点を通る直線となる.

$$t \leq 40$$
 のとき $(\lambda, \sigma_{cr}/\sigma_{y}) = (0.279, 0.957)$, $(1.000, 0.564)$ $40 < t \leq 75$ のとき $(\lambda, \sigma_{cr}/\sigma_{y}) = (0.283, 0.955)$, $(1.000, 0.564)$ $75 < t \leq 100$ のとき $(\lambda, \sigma_{cr}/\sigma_{y}) = (0.286, 0.953)$, $(1.000, 0.564)$

よって,総括すると

$$\begin{array}{lll} t \leq 40 \mathcal{O} \ \, \succeq \ \, \sigma_{cr} = 0.957 \, \sigma_{y} & (& \lambda \leq 0.279) \\ \sigma_{cr} = \{ 0.957 - 0.545 (1/\pi \times \sqrt{(\sigma_{y}/E) \times l/r} - 0.279) \} \times \, \sigma_{y} & (0.279 \ \, < \lambda \leq 1.0) \\ = 0.957 \, \sigma_{y} - 0.545 \, \sigma_{y}/\pi \times \sqrt{(\sigma_{y}/E) \times \{l/r} - 0.279 \times \pi \times \sqrt{(E/\sigma_{y})} \} \\ \sigma_{cr} = \, \sigma_{y}/\{ 0.773 + (1/\pi \times \sqrt{(\sigma_{y}/E) \times l/r})^{2} \} & (1.0 \ \, < \lambda) \\ = \pi^{2}E/\{ 0.773 \, \pi^{2}E/\sigma_{y} + (l/r)^{2} \} & (1.0 \ \, < \lambda) \end{array}$$

 $40 < t \le 75$ のとき

$$\begin{array}{lll} \sigma_{cr} &= 0.955 \ \sigma_{y} & (& \lambda \leq 0.283) \\ \sigma_{cr} &= \{0.955 - 0.545(1/\pi \times \sqrt{(\sigma_{y}/E) \times l/r} - 0.283)\} \times \sigma_{y} & (0.283 \ < \lambda \leq 1.0) \\ &= 0.955 \ \sigma_{y} - 0.545 \ \sigma_{y}/\pi \times \sqrt{(\sigma_{y}/E) \times \{l/r} - 0.283 \times \pi \times \sqrt{(E/\sigma_{y})}\} \\ \sigma_{cr} &= \sigma_{y}/\{0.773 + (1/\pi \times \sqrt{(\sigma_{y}/E) \times l/r})^{2}\} & (1.0 \ < \lambda) \\ &= \pi^{2}E/\{0.773 \ \pi^{2}E/\sigma_{y} + (l/r)^{2}\} \end{array}$$

 $75 < t \le 100$ のとき

$$\begin{array}{lll} \sigma_{cr} &= 0.953 \ \sigma_{y} & (& \lambda & \leq & 0.286) \\ \sigma_{cr} &= & \{ 0.953 - 0.545 (1/\pi \times \sqrt{(\sigma_{y}/E) \times l/r} - 0.286) \} \times \sigma_{y} & (0.286 & < & \lambda & \leq & 1.0) \\ &= & 0.953 \ \sigma_{y} - 0.545 \ \sigma_{y}/\pi \times \sqrt{(\sigma_{y}/E) \times \{l/r} - 0.286 \times \pi \times \sqrt{(E/\sigma_{y})} \} & \\ \sigma_{cr} &= & \sigma_{y}/\{0.773 + (1/\pi \times \sqrt{(\sigma_{y}/E) \times l/r})^{2} \} & (1.0 & < & \lambda &)) \\ &= & \pi^{2}E/\{0.773 \ \pi^{2}E/\sigma_{y} + (l/r)^{2} \} & (1.0 & < & \lambda &) \end{array}$$

SI単位系も同様に算出する。

計算結果(表-2.2.2)

式の形態

 $\lambda \leq 0.2$: $\sigma_{cr} = A$ $0.2 < \lambda \leq 1.0$: $\sigma_{cr} = B - C(l/r - D)$

1.0 $<\lambda$: $\sigma_{cr} = E/\{F + (l/r)^2\}$

(重力単位系)

<u>(主力平位水)</u>								
鋼種		SS400	,SM400,SM		SM490			
板厚	mm	<i>t</i> ≤40	40< <i>t</i> ≦75	$75 < t \le 100$	t ≤ 40	40< <i>t</i> ≦75	$75 \le t \le 100$	
σ_y	kgf/cm ²	2400	2200	2200	3200	3000	3000	
E(ヤング係数)	kgf/cm ²	2100000	2100000	2100000	2100000	2100000	2100000	
λ		0.2	0.2	0.2	0.2	0.2	0.2	
		1.0	1.0	1.0	1.0	1.0	1.0	
$l/r(\lambda = 0.2)$		18.59	19.41	19.41	16.10	16.62	16.62	
	(道示)	20.00	20.00	20.00	15.00	15.00	15.00	
$l/r (\lambda = 1.0)$		92.93	97.06	97.06	80.48	83.12	83.12	
	(道示)	93.00	97.00	97.00	80.00	83.00	83.00	
A		2400	2200	2200	3200	3000	3000	
В		2400	2200	2200	3200	3000	3000	
С		14.08	12.35	12.35	21.67	19.67	19.67	
D		18.59	19.41	19.41	16.10	16.62	16.62	
	(道示)	20.00	20.00	20.00	15.00	15.00	15.00	
E		20726169	20726169	20726169	20726169	20726169	20726169	
\overline{F}		6676	7282	7282	5007	5340	5340	

鋼種		SM490	Y,SM520,SM	IA490W	SM570,SMA570W			
板厚	mm	t ≤ 40	40< <i>t</i> ≤75	$75 < t \le 100$	<i>t</i> ≤40	40< <i>t</i> ≦75	$75 \le t \le 100$	
σ_y	kgf/cm ²	3600	3400	3300	4600	4400	4300	
E (ヤング係数)	kgf/cm ²	2100000	2100000	2100000	2100000	2100000	2100000	
λ		0.2	0.2	0.2	0.279	0.283	0.286	
		1.0	1.0	1.0	1.0	1.0	1.0	
$l/r (\lambda = 0.2)$		15.18	15.62	15.85	18.73	19.42	19.86	
1	(道示)	14.00	14.00	14.00	18.00	18.00	18.00	
$l/r (\lambda = 1.0)$		75.88	78.08	79.25	67.12	68.63	69.43	
	(道示)	76.00	78.00	79.00	67.00	69.00	69.00	
A	,	3600	3400	3300	4402	4202	4098	
В		3600	3400	3300	4402	4202	4098	
С	,	25.86	23.73	22.69	37.35	34.94	33.76	
\overline{D}		15.18	15.62	15.85	18.73	19.42	19.86	
	(道示)	14.00	14.00	14.00	18.00	18.00	18.00	
E		20726169	20726169	20726169	20726169	20726169	20726169	
\overline{F}		4450	4712	4855	3483	3641	3726	

※(道示)は「道路橋示方書」の数値を示す

計算結果(表-2.2.2)

式の形態

 $\lambda \leq 0.2$: $\sigma_{cr} = A$ $0.2 < \lambda \leq 1.0$: $\sigma_{cr} = B - C(l/r - D)$

1.0 $< \lambda$: $\sigma_{cr} = E/\{F + (l/r)^2\}$

(SI単位系)

鋼種		SS400	,SM400,SM	4400W	SM490			
板厚	mm	<i>t</i> ≦40	40< <i>t</i> ≤75	75 <t td="" ≤100<=""><td><i>t</i> ≦40</td><td>40<<i>t</i> ≤ 75</td><td>$75 \le t \le 100$</td></t>	<i>t</i> ≦40	40< <i>t</i> ≤ 75	$75 \le t \le 100$	
σ_{y}	N/mm ²	235	215	215	315	295	295	
E(ヤング係数)	N/mm ²	200000	200000	200000	200000	200000	200000	
λ		0.2	0.2	0.2	0.2	0.2	0.2	
		1.0	1.0	1.0	1.0	1.0	1.0	
$l/r (\lambda = 0.2)$		18.33	19.16	19.16	15.83	16.36	16.36	
	(資料)	18.00	19.00	19.00	16.00	16.00	16.00	
$l/r (\lambda = 1.0)$		91.65	95.82	95.82	79.16	81.80	81.80	
•	(資料)	92.00	96.00	96.00	79.00	82.00	82.00	
A		235	215	215	315	295		
В		235	215	215	315	295	295	
С		1.40	1.22	1.22	2.17	1.97	1.97	
\overline{D}		18.33	19.16	19.16	15.83	16.36	16.36	
	(資料)	18.00	19.00	19.00	16.00	16.00	16.00	
\overline{E}		1973921	1973921	1973921	1973921	1973921	1973921	
\overline{F}		6493	7097	7097	4844	5172	5172	

鋼種		SM490	Y,SM520,SM	1A490W	SM570,SMA570W			
板厚	mm	<i>t</i> ≦40	40< <i>t</i> ≤75	75 <t td="" ≤100<=""><td>t ≤40</td><td>40<<i>t</i> ≦75</td><td>$75 \le t \le 100$</td></t>	t ≤ 40	40< <i>t</i> ≦75	$75 \le t \le 100$	
σ,	N/mm ²	355	335	325	450	430	420	
E(ヤング係数)	N/mm ²	200000	200000	200000	200000	200000	200000	
λ		0.2	0.2	0.2	0.281	0.286	0.288	
		1.0	1.0	1.0	1.0	1.0		
$l/r (\lambda = 0.2)$		14.91	15.35	15.59	18.61	19.38	19.74	
	(資料)	15.00	15.00	16.00	18.00	17.00	17.00	
$l/r (\lambda = 1.0)$		74.57	76.76	77.93	66.23	67.75	68.56	
	(資料)	75.00	77.00	78.00	67.00	69.00		
A		355	335	325	430	410		
В		355	335	325	430	410		
С		2.59	2.38	2.27	3.70	3.46		
D^{\cdot}		14.91	15.35	15.59	18.61	19.38		
	(資料)	15.00	15.00	16.00	18.00	17.00	17.00	
E		1973921	1973921	1973921	1973921	1973921	1973921	
\overline{F}		4298	4555	4695	3391	3548	3633	

※(資料)は「SI単位系移行に関する参考資料」の数値を示す

2.3 表-2.2.3 (a) 曲げ圧縮強度

表-2.2.1と同じ。

2.4 表-2.2.3 (b) 曲げ圧縮強度

基準耐荷力曲線は道示(解2.2.2)に準拠した。l/rの値は許容応力度法と不変のはずであるが、結果 として道示の値とは合致しなかった。これは道示では境界で計算結果が連続するように(数字の丸めに より生じる不連続を防ぐために)1/rの値を何らかの方法で操作しているためだと思われる。しかしな がら,道示の境界での数値算出方法が明確でないため,計算結果をそのまま使用することにした。l/bの上限値(たとえばSM400ではI/b=30)は道示における算出方法が不明であるため、道示の値をその まま使用した。SI単位系についても計算結果は同様の傾向を示している。

表-2.2.3 (b) 曲げ圧縮強度の算出

〈SM570材以外の場合〉

基準耐荷力曲線は道示 (解2.2.2) を使用する。

$$\alpha = 0.2$$
のとき $l/b = 0.2 \times \pi/(2K) \times \sqrt{(E/\sigma_y)}$

〈S M570材の場合〉

$$T \leq 40$$
 のとき $\sigma_{cr}/\sigma_{y} = 4400/4600 = 0.957(430/450 = 0.956)$
 $40 < T \leq 75$ のとき $\sigma_{cr}/\sigma_{y} = 4200/4400 = 0.955(410/430 = 0.953)$
 $75 < T \leq 100$ のとき $\sigma_{cr}/\sigma_{y} = 4100/4300 = 0.953(400/420 = 0.952)$

()内はSI単位系を表示

重力単位系

道示(解2.2.2)は

$$\sigma_{cr}/\sigma_{y} = 1.0 \qquad (\alpha \leq 0.2)$$

$$(0.2 < \alpha)$$

$$C \subset C, \quad \alpha = 2/\pi \times K \times \sqrt{(\sigma_{y}/E)} \times l/b$$

$$K = 2 \qquad (A_{w}/A_{c} \leq 2)$$

$$K = \sqrt{\{3 + A_{w}/(2A_{c})\}} \qquad (2 < A_{w}/A_{c})$$

ここで、①式について

$$t \leq 40 \quad \text{のとき} \quad \sigma_{cr}/\sigma_{y} = 0.957 \text{ より} \qquad \alpha = 0.304$$

$$40 \quad < t \leq 75 \quad \text{のとき} \quad \sigma_{cr}/\sigma_{y} = 0.955 \text{ より} \qquad \alpha = 0.309$$

$$75 \quad < t \leq 100 \quad \text{のとき} \quad \sigma_{cr}/\sigma_{y} = 0.953 \text{ より} \qquad \alpha = 0.314$$

よって、道示(解2.2.1)の直線部の式は次の2点を通る直線となる.

$$t \leq 40 \quad \text{のとき} \quad (\alpha, \sigma_{cr}/\sigma_y) = (0.304, 0.957) , (1.000, 0.670)$$

$$40 \quad < t \leq 75 \quad \text{のとき} \quad (\alpha, \sigma_{cr}/\sigma_y) = (0.309, 0.955) , (1.000, 0.670)$$

$$75 \quad < t \leq 100 \quad \text{のとき} \quad (\alpha, \sigma_{cr}/\sigma_y) = (0.314, 0.953) , (1.000, 0.670)$$

ゆえに

$$t \leq 40 \quad \text{のとき} \quad \sigma_{cr}/\sigma_y = (0.670-0.957)/(1.000-0.304) \times (\alpha-0.304) + 0.957$$

$$= 0.957 - 0.412(\alpha-0.304)$$

$$40 \quad < t \leq 75 \quad \text{のとき} \quad \sigma_{cr}/\sigma_y = (0.670-0.955)/(1.000-0.309) \times (\alpha-0.309) + 0.955$$

$$= 0.955 - 0.412(\alpha-0.309)$$

$$75 \quad < t \leq 100 \quad \text{のとき} \quad \sigma_{cr}/\sigma_y = (0.670-0.953)/(1.000-0.314) \times (\alpha-0.314) + 0.953$$

$$= 0.953 - 0.412(\alpha-0.314)$$

よって、総括すると

 $t \le 40$ のとき

$$\sigma_{cr} = 0.957 \,\sigma_{y} \qquad (\qquad \alpha \leq 0.304)
\sigma_{cr} = \{0.957 - 0.412(2/\pi \times K \times \sqrt{(\sigma_{y}/E) \times l/b} - 0.304)\} \times \sigma_{y} \qquad (0.304 < \alpha)
= 0.957 \,\sigma_{y} - 0.824 \,\sigma_{y}/\pi \times 2 \times \sqrt{(\sigma_{y}/E) \times \{l/b} - 0.304/4 \times \pi \times \sqrt{(E/\sigma_{y})}\} \qquad (\qquad A_{w}/A_{c} \leq 2)
= 0.957 \,\sigma_{y} - 0.824 \,\sigma_{y}/\pi \times K \times \sqrt{(\sigma_{y}/E) \times \{l/b} - 0.304/(2K) \times \pi \times \sqrt{(E/\sigma_{y})}\} \qquad (2 \, < A_{w}/A_{c})$$

40 < t ≤ 75のとき

$$\begin{array}{lll} \sigma_{cr} &= 0.955 \ \sigma_{y} & (& \alpha \leq 0.309) \\ \sigma_{cr} &= \{0.955 - 0.412(2/\pi \times K \times \sqrt{(\sigma_{y}/E) \times l/b} - 0.309)\} \times \sigma_{y} & (0.309 < \alpha &) \\ &= 0.955 \ \sigma_{y} - 0.824 \ \sigma_{y}/\pi \times 2 \times \sqrt{(\sigma_{y}/E) \times \{l/b} - 0.309/4 \times \pi \times \sqrt{(E/\sigma_{y})}\} & (& A_{W}/A_{c} \leq & 2) \\ &= 0.955 \ \sigma_{y} - 0.824 \ \sigma_{y}/\pi \times K \times \sqrt{(\sigma_{y}/E) \times \{l/b} - 0.309/(2K) \times \pi \times \sqrt{(E/\sigma_{y})}\} & (2 < A_{W}/A_{c} &) \end{array}$$

 $75 < t \le 100$ のとき

$$\begin{array}{lll} \sigma_{cr} = 0.953 \ \sigma_{y} & (& \alpha \leq 0.314) \\ \sigma_{cr} = \{0.953 - 0.412(2/\pi \times K \times \sqrt{(\sigma_{y}/E) \times l/b} - 0.314)\} \times \sigma_{y} & (0.314 < \alpha &) \\ = 0.953 \ \sigma_{y} - 0.824 \ \sigma_{y}/\pi \times 2 \times \sqrt{(\sigma_{y}/E) \times \{l/b} - 0.314/4 \times \pi \times \sqrt{(E/\sigma_{y})}\} & (& A_{w}/A_{c} \leq 2) \\ = 0.953 \ \sigma_{y} - 0.824 \ \sigma_{y}/\pi \times K \times \sqrt{(\sigma_{y}/E) \times \{l/b} - 0.314/(2K) \times \pi \times \sqrt{(E/\sigma_{y})}\} & (2 < A_{w}/A_{c} &) \end{array}$$

SI単位系も同様に算出する。

計算結果(表-2.2.3)

式の形態

 $\alpha \leq 0.2$: $\sigma_{cr} = A$

 $0.2 < \alpha \qquad : \quad \sigma_{cr} = B - C(l/b - D) \qquad \qquad A_w/A_c \le 2$ $0.2 < \alpha \qquad : \quad \sigma_{cr} = E - F(Kl/b - G) \qquad \qquad A_w/A_c > 2$

(重力単位系)

(里刀里似术)								
鋼種		SS400	,SM400,SM		SM490			
板厚	mm	<i>t</i> ≦40	40< <i>t</i> ≦75	$75 < t \le 100$	t ≤ 40	40< <i>t</i> ≦75	75 <t td="" ≤100<=""></t>	
σ_{y}	kgf/cm ²	2400	2200	2200	3200	3000	3000	
E(ヤング係数)	kgf/cm ²	2100000	2100000	2100000	2100000	2100000	2100000	
α		0.2	0.2	0.2	0.2	.0.2	0.2	
$l/b (A_w/A_c \le 2)$		4.65	4.85	4.85	4.02	4.16	4.16	
	(道示)	4.50	5.00	5.00	4.00	4.00	4.00	
$l/b (A_w/A_c > 2)$	$\times 1/K$	9.29	9.71	9.71	8.05	8.31	8.31	
	(道示)	9.00	10.00	10.00	8.00	8.00	8.00	
A		2400	2200	2200	3200	3000	3000	
В		2400	2200	2200	3200	3000	3000	
С		42.56	37.35	37.35	65.53	59.48	59.48	
D		4.65	4.85	4.85	4.02	4.16	4.16	
•	(道示)	4.50	5.00	5.00	4.00	4.00	4.00	
E		2400	2200	2200	3200	3000	3000	
F		21.28	18.68	18.68	32.76	29.74	29.74	
G		9.29	9.71	9.71	8.05	8.31	8.31	
	(道示)	9.00	10.00	10.00	8.00	8.00	8.00	

鋼種		SM490	Y,SM520,SM	1A490W	SM570,SMA570W			
板厚	mm	<i>t</i> ≦40	40< <i>t</i> ≦75	75 <t td="" ≤100<=""><td><i>t</i> ≦40</td><td>40<<i>t</i> ≦75</td><td>$75 \le t \le 100$</td></t>	<i>t</i> ≦40	40< <i>t</i> ≦75	$75 \le t \le 100$	
σ,	kgf/cm ²	3600	3400	3300	4600	4400	4300	
E (ヤング係数)	kgf/cm ²	2100000	2100000	2100000	2100000	2100000	2100000	
α		0.2	0.2	0.2	0.304	0.309	0.314	
$l/b (A_w/A_c \leq 2)$		3.79	3.90	3.96	5.10	5.30	5.45	
,, ,	(道示)	3.50	4.00	4.00	5.00	5.00	5.00	
$l/b (A_w/A_c > 2)$	$\times 1/K$	7.59	7.81	7.93	10.20	10.60	10.90	
., .	(道示)	7.00	8.00	8.00	10.00	10.00	10.00	
\overline{A}		3600	3400	3300	4402	4202	4098	
В		3600	3400	3300	4402	4202	4098	
С		78.19	71.77	68.62	112.94	105.65	102.07	
D		3.79	3.90	3.96	5.10	5.30	5.45	
	(道示)	3.50	4.00	4.00	5.00	5.00	5.00	
E		3600	3400	3300	4402	4202	4098	
\overline{F}		39.10	35.88	34.31	56.47	52.83		
\overline{G}		7.59	7.81	7.93	10.20	10.60	10.90	
	(道示)	7.00	8.00	8.00	10.00	10.00	10.00	

※(道示)は「道路橋示方書」の数値を示す

計算結果(表-2.2.3)

式の形態

 $\alpha \leq 0.2$: $\sigma_{cr} = A$

 $0.2 < \alpha \qquad : \quad \sigma_{cr} = B - C(l/b - D) \qquad A_w/A_c \le 2$ $0.2 < \alpha \qquad : \quad \sigma_{cr} = E - F(Kl/b - G) \qquad A_w/A_c > 2$

(SI単位系)

(31年区水/							
鋼種		SS400	,SM400,SM		SM490		
板厚	mm	<i>t</i> ≤40	40< <i>t</i> ≤75	75 <t≤100< th=""><th>t ≤40</th><th>40<<i>t</i> ≦75</th><th>$75 \le t \le 100$</th></t≤100<>	t ≤ 40	40< <i>t</i> ≦75	$75 \le t \le 100$
σ _y	N/mm^2	235	215	215	315	295	295
E(ヤング係数)	N/mm^2	200000	200000	200000	200000	200000	200000
α		0.2	0.2	0.2	0.2	0.2	0.2
$l/b (A_w/A_c \le 2)$		4.58	4.79	4.79	3.96	4.09	4.09
	(資料)	4.50	5.00	5.00	4.00	4.00	4.00
$l/b (A_w/A_c > 2)$	$\times 1/K$	9.16	9.58	9.58	7.92	8.18	8.18
	(資料)	9.00	10.00	10.00	8.00	8.00	8.00
A		235	215	215	315	295	295
В		235	215	215	315	295	295
С		4.23	3.70	3.70	6.56	5.94	5.94
D		4.58	4.79	4.79	3.96	4.09	4.09
<u> </u>	(資料)	4.50	5.00	5.00	4.00	4.00	4.00
E		235	215	215	315	295	295
F		2.11	1.85	1.85	3.28	2.97	2.97
G		9.16	9.58	9.58	7.92	8.18	8.18
	(資料)	9.00	10.00	10.00	8.00	8.00	8.00

鋼種		SM490	Y,SM520,SM	1A490W	SM	1570,SMA57	0W
板厚	mm	<i>t</i> ≦40	40< <i>t</i> ≤75	$75 \le t \le 100$	t ≤ 40	40< <i>t</i> ≦75	$75 \le t \le 100$
σ_{y}	N/mm^2	355	335	325	450	430	420
E(ヤング係数)	N/mm ²	200000	200000	200000	200000	200000	200000
α		0.2	0.2	0.2	0.307	0.314	0.317
$l/b (A_w/A_c \le 2)$		3.73	3.84	3.90	5.08	5.32	5.43
	(資料)	3.50	4.00	4.00	5.00	4.50	4.50
$l/b (A_w/A_c > 2)$	$\times 1/K$	7.46	7.68	7.79	10.17	10.64	10.87
	(資料)	7.00	8.00	8.00	10.00	9.00	9.00
A		355	335	325	430	410	400
В		355	335	325	430	410	400
С		7.85	7.19	6.87	11.22	10.48	10.12
D		3.73	3.84	3.90	5.08	5.32	į.
	(資料)	3.50	4.00	4.00	5.00	4.50	
E		355	335	325	430	410	
F		3.92	3.60	3.44	5.61	5.24	
G		7.46	7.68	7.79	10.17	10.64	
	(資料)	7.00	8.00	8.00	10.00	9.00	9.00

※(資料)は「SI単位系移行に関する参考資料」の数値を示す

2.5 表-2.2.4 両縁支持板の局部座屈強度

基準耐荷力曲線は道示(解3.2.1)に準拠した。l/rの値は許容応力度法と不変のはずであるが、結果として道示の値とは合致しなかった。これは道示では境界で計算結果が連続するように(数字の丸めにより生じる不連続を防ぐために)l/rの値を何らかの方法で操作しているためだと思われる。しかしながら、道示の境界での数値算出方法が明確でないため、計算結果をそのまま使用することにした。b/tの上限値は、道示の値(80f)をそのまま使用した。SI単位系についても計算結果は同様の傾向を示している。

表-2.2.4 両縁支持板の局部座屈強度の算出

〈SM570材以外の場合〉

基準耐荷力曲線は道示(解3.2.1)を使用する。

$$\sigma_{cr} = \sigma_{y} \qquad (R \leq 0.7)$$

$$\sigma_{cr} = \{0.5 / (b / t \times \sqrt{(\sigma_{y} / E \times 12(1 - \mu 2) / (\pi 2k))})2\} \times \sigma_{y} \qquad (0.7 < R)$$

$$= 0.5 E \pi^{2} k / \{12(1 - \mu^{2})\} \times (t / b)^{2}$$

また,

$$R = 0.7$$
のとき $b/t = 0.7 \times \sqrt{\{E/\sigma_y \times \pi^2 k / (12(1-\mu^2))\}}$

〈S M570材の場合〉

$$t \leq 40$$
 のとき $\sigma_{cr}/\sigma_y = 4400/4600 = 0.957~(430/450 = 0.956)$ 40 く $t \leq 75$ のとき $\sigma_{cr}/\sigma_y = 4200/4400 = 0.955~(410/430 = 0.953)$ く $t \leq 100$ のとき $\sigma_{cr}/\sigma_y = 4100/4300 = 0.953~(400/420 = 0.952)$ ()内はS I 単位系を表示

重力単位系

道示 (解3.2.1) は

$$\begin{array}{lll} \sigma_{cr}/\sigma_{y} = 1.0 & (R \leq 0.7) \\ \text{(1)} & \sigma_{cr}/\sigma_{y} = 0.5/R^{2} & (0.7 < R &) \\ & & & & \\$$

ここで、①式について

$$t \le 40$$
 のとき $\sigma_{cr}/\sigma_{y} = 0.957$ より $R = 0.723$
40 < $t \le 75$ のとき $\sigma_{cr}/\sigma_{y} = 0.955$ より $R = 0.724$
75 < $t \le 100$ のとき $\sigma_{cr}/\sigma_{y} = 0.953$ より $R = 0.724$

よって、総括すると t ≦ 40のとき

$$\sigma_{cr} = 0.957 \, \sigma_{y}$$
 (R)
$$\sigma_{cr} = 0.5 \, E \, \pi^{2} \, k \, / \, \{12(1 - \mu^{2})\} \times (t \, / \, b)^{2}$$
 (0.723 $< R$

40
$$< t \le 75$$
のとき
$$\sigma_{cr} = 0.955 \,\sigma_{y}$$

$$\sigma_{cr} = 0.5 \, E \, \pi^{2} \, h \, (12(1 - \mu^{2})) \times (4/4)^{2}$$

$$\sigma_{cr} = 0.955 \,\sigma_{y} \qquad (R \leq 0.724)$$

$$\sigma_{cr} = 0.5 \,E \,\pi^{2} \,k \,/ \,\{12(1-\mu^{2})\} \times (t/b)^{2} \qquad (0.724 < R)$$

75
$$< t \le 100$$
のとき
$$\sigma_{cr} = 0.953 \, \sigma_{y}$$

$$\sigma_{cr} = 0.5 \, E \, \pi^{2} \, k \, / \, \{12(1 - \mu^{2})\} \times (t \, / \, b)^{2}$$

$$(R \leq 0.724)$$

$$(0.724 < R)$$

 $R \leq 0.723)$

)

計算結果(表-2.2.4)

式の形態 $R \le 0.7$: $\sigma_{cr} = A$ 0.7 < R : $\sigma_{cr} = B \times (tf/b)^2$

(重力単位系)

(重力平区水/										
鋼種		SS400	,SM400,SM	4 400W	SM490					
板厚	mm	<i>t</i> ≤ 40	40< <i>t</i> ≦75	$75 < t \le 100$	t ≤ 40	40< <i>t</i> ≦75	$75 \le t \le 100$			
σ_{y}	kgf/cm ²	2400	2200	2200	3200	3000	3000			
E(ヤング係数)	kgf/cm ²	2100000	2100000	2100000	2100000	2100000	2100000			
R		0.700	0.700	0.700	0.700	0.700	0.700			
k		4.0	4.0	4.0	4.0	4.0	4.0			
μ		0.3	0.3	0.3	0.3	0.3	0.3			
b / t		39.37	41.12	41.12	34.10	35.21	35.21			
	(道示)	39.60	41.10	41.10	34.00	35.50	35.50			
A		2400	2200	2200	3200	3000	3000			
В		3796002	3796002	3796002	3796002	3796002	3796002			

鋼種		SM490	Y,SM520,SM	1A490W	SM570,SMA570W			
板厚	mm	<i>t</i> ≦40	40< <i>t</i> ≦75	$75 < t \le 100$	t ≤ 40	40< <i>t</i> ≦75	75 <t td="" ≤100<=""></t>	
σ_{y}	kgf/cm ²	3600	3400	3300	4600	4400	4300	
E (ヤング係数)	kgf/cm ²	2100000	2100000	2100000	2100000	2100000	2100000	
R		0.700	0.700	0.700	0.723	0.724	0.724	
k		4.0	4.0	4.0	4.0	4.0	4.0	
μ		0.3	0.3	0.3	0.3	0.3	0.3	
b / t		32.15	33.08	33.58	29.37	30.07	30.42	
	(道示)	32.40	33.20	33.60	29.10	29.70	30.00	
A		3600	3400	3300	4402	4202	4098	
В		3796002	3796002	3796002	3796002	3796002	3796002	

※(道示)は「道路橋示方書」の数値を示す

計算結果(表-2.2.4)

式の形態

 $R \leq 0.7: \sigma_{cr} = A$

 $0.7 < R \qquad : \quad \sigma_{cr} = B \times (tf/b)^2$

(SI単位系)

<u> </u>								
鋼種		SS400	,SM400,SM	A400W	SM490			
板厚	mm	<i>t</i> ≤40	40< <i>t</i> ≤75	$75 < t \le 100$	t ≤ 40	40 <t td="" ≤75<=""><td>75<t td="" ≤100<=""></t></td></t>	75 <t td="" ≤100<=""></t>	
σ_{y}	N/mm ²	235	215	215	315	295	295	
E(ヤング係数)	N/mm ²	200000	200000	200000	200000	200000	200000	
R		0.700	0.700	0.700	0.700	0.700	0.700	
k		4.0	4.0	4.0	4.0	4.0	4.0	
μ		0.3	0.3	0.3	0.3	0.3	0.3	
b / t		38.83	40.59	40.59	33.54	34.66	34.66	
	(資料)	38.70	41.00	41.00	33.70	34.60	34.60	
A		235	215	215	315	295	295	
В		361524	361524	361524	361524	361524	361524	

鋼種		SM490	Y,SM520,SM	LA490W	SM570,SMA570W		
板厚	mm	t ≤ 40	40< <i>t</i> ≤ 75	75 <t th="" ≤100<=""><th>t ≤40</th><th>40<<i>t</i> ≤75</th><th>75<t≤100< th=""></t≤100<></th></t>	t ≤40	40< <i>t</i> ≤75	75 <t≤100< th=""></t≤100<>
σ_{y}	N/mm ²	355	335	325	450	430	420
E(ヤング係数)	N/mm ²	200000	200000	200000	200000	200000	200000
R		0.700	0.700	0.700	0.723	0.724	0.725
k		4.0	4.0	4.0	4.0	4.0	4.0
μ		0.3	0.3	0.3	0.3	0.3	0.3
b / t		31.59	32.52	33.02	28.98	29.69	30.08
	(資料)	31.60	32.80	33.30	28.70	29.30	29.60
A		355	335	325	430	410	400
В		361524	361524	361524	361524	361524	361524

※(資料)は「SI単位系移行に関する参考資料」の数値を示す

2.6 表-2.2.5 自由突出板の局部座屈に対する強度

基準耐荷力曲線は道示(解3.2.1)に準拠した。l/rの値は許容応力度法と不変のはずであるが,結果として道示の値とは合致しなかった。これは道示では境界で計算結果が連続するように(数字の丸めにより生じる不連続を防ぐために)l/rの値を何らかの方法で操作しているためだと思われる。しかしながら,道示の境界での数値算出方法が明確でないため,計算結果をそのまま使用することにした。SI単位系についても計算結果は同様の傾向を示している。

表-2.2.5 自由突出板の局部座屈に対する強度の算出 〈SM570材以外の場合〉

基準耐荷力曲線は、道示(解3.2.1)を使用する。

$$\sigma_{cr}/\sigma_{y}=1.0 \qquad (R \leq 0.7)$$

$$\sigma_{cr}/\sigma_{y}=0.5/R^{2} \qquad (0.7 < R)$$
ここに
① $R=b/t \times \sqrt{\{(\sigma_{y}/E \times 12(1-\mu^{2})/(\pi^{2}k)\}\}}$
 $k=0.43$
よって、
$$\sigma_{cr}=\sigma_{y} \qquad (R \leq 0.7)$$

$$\sigma_{cr}=0.5E \pi^{2}k/\{12(1-\mu^{2})\} \times (t/b)^{2} \qquad (0.7 < R)$$
また、 $R=0.7$ の場合
$$b/t=0.7 \times \sqrt{\{E/\sigma_{y} \times \pi^{2}k/(12(1-\mu^{2}))\}}$$

〈S M570材の場合〉

$$t$$
 \leq 40の場合 σ_{cr}/σ_y = 4400 / 4600 = 0.957 (430 / 450 = 0.956)
40 $<$ t \leq 75の場合 σ_{cr}/σ_y = 4200 / 4400 = 0.955 (410 / 430 = 0.953)
75 $<$ t \leq 100の場合 σ_{cr}/σ_y = 4100 / 4300 = 0.953 (400 / 420 = 0.952)
()内はS I 単位系を表示

t≤40の場合で考えると 0.957=0.5/ R^2 より、R=0.723となる。 これを式①に代入し、b/t=9.63となる。(同様に板厚区分ごとに計算する)

計算結果(表-2.2.5)

式の形態

 $R \leq 0.7$: $\sigma_{cr} = A$

 $0.7 < R \qquad : \quad \sigma_{cr} = B \times (t/b)^2$

(重力単位系)

(里//平位示/												
鋼種	,	SS400	,SM400, SM	A400W		SM490						
板厚	mm	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<></td></t≦75<>	75 <t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<>	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<>	75 <t≦100< td=""></t≦100<>					
σ,	kgf/cm ²	2,400	2,200	2,200	3,200	3,000	3,000					
(-) > 2 10 ()	kgf/cm ²	2,100,000	2,100,000	2,100,000	2,100,000	2,100,000	2,100,000					
R		0.70	0.70	0.70	0.70	0.70	0.70					
k		0.43	0.43	0.43	0.43	0.43	0.43					
μ		0.3	0.3	0.3	0.3	0.3	0.3					
b/t		12.91	13.48	13.48	11.18	11.55	11.55					
	(道示)	13.10	13.60	13.60	11.20	11.70	11.70					
A		2,400	2,200	2,200	3,200	3,000	3,000					
В		408,070	408,070	408,070	408,070	408,070	408,070					

鋼種		SM490	Y, SM520,SN	/IA490W	SM570,SMA570W			
板厚	mm	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<></td></t≦75<>	75 <t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<>	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<>	75 <t≦100< td=""></t≦100<>	
	kgf/cm ²	3,600	3,400	3,300	4,600	4,400	4,300	
E (ヤング係数)		2,100,000	2,100,000	2,100,000	2,100,000	2,100,000	2,100,000	
R		0.70	0.70	0.70	0.72	0.72	0.73	
k		0.43	0.43	0.43	0.43	0.43	0.43	
μ		0.3	0.3	0.3	0.3	0.3	0.3	
b/t		10.54	10.85	11.01	9.63	9.86	9.99	
·	(道示)	10.70	11.00	11.10	9.60	9.80	9.90	
A		3,600	3,400	3,300	4,400	4,200	4,100	
В		408,070	408,070	408,070	408,070	408,070	408,070	

※(道示)は「道路橋示方書」の数値を示す

計算結果(表-2.2.5)

式の形態

 $R \leq 0.7: \sigma_{cr} = A$

 $0.7 < R \qquad : \quad \sigma_{cr} = B \times (t/b)^2$

(SI単位系)

鋼種		SS400), SM400, SN	1A400W		SM490	
板厚	mm	t≦40	40 <t≦75< th=""><th>75<t≦100< th=""><th>t≦40</th><th>40<t≦75< th=""><th>75<t≦100< th=""></t≦100<></th></t≦75<></th></t≦100<></th></t≦75<>	75 <t≦100< th=""><th>t≦40</th><th>40<t≦75< th=""><th>75<t≦100< th=""></t≦100<></th></t≦75<></th></t≦100<>	t≦40	40 <t≦75< th=""><th>75<t≦100< th=""></t≦100<></th></t≦75<>	75 <t≦100< th=""></t≦100<>
σ_y	N/mm^2	235	215	215	315	295	295
E(ヤング係数)	N/mm^2	200,000	200,000	200,000	200,000	200,000	200,000
R		0.70	0.70	0.70	0.70	0.70	0.70
k		0.43	0.43	0.43	0.43	0.43	0.43
μ		0.3	0.3	0.3	0.3	0.3	0.3
b/t		12.73	13.31	13.31	11.00	11.36	11.36
	(資料)	12.80	13.60	13.60	11.20	11.50	11.50
A		235	215	215	315	295	295
В		38,863	38,863	38,863	38,863	38,863	38,863

鋼種		SM490	Y, SM520,SI	MA490W	SM570,SMA570W			
板厚	mm	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""><td>t≦40</td><td>40<t≦75</td><td>75<t≦100< td=""></t≦100<></td></t≦100<></td></t≦75<>	75 <t≦100< td=""><td>t≦40</td><td>40<t≦75</td><td>75<t≦100< td=""></t≦100<></td></t≦100<>	t≦40	40 < t≦75	75 <t≦100< td=""></t≦100<>	
σ_{y}	N/mm^2	355	335	325	450	430	420	
E(ヤング係数)	N/mm^2	200,000	200,000	200,000	200,000	200,000	200,000	
R		0.70	0.70	0.70	0.72	0.72	0.72	
k		0.43	0.43	0.43	0.43	0.43	0.43	
μ		0.3	0.3	0.3	0.3	0.3	0.3	
b/t		10.36	10.66	10.83	9.50	9.73	9.85	
	(資料)	10.50	10.90	11.00	9.50	9.70	9.80	
A		355	335	325	430	410	400	
В		38,863	38,863	38,863	38,863	38,863	38,863	

※(資料)は「SI単位系移行に関する参考資料」の数値を示す

2.7 表-2.2.6 補剛板の局部座屈に対する強度

基準耐荷力曲線は道示(解3.2.3)に準拠した。l/rの値は許容応力度法と不変のはずであるが,結果として道示の値とは合致しなかった。これは道示では境界で計算結果が連続するように(数字の丸めにより生じる不連続を防ぐために)l/rの値を何らかの方法で操作しているためだと思われる。しかしながら,道示の境界での数値算出方法が明確でないため,計算結果をそのまま使用することにした。b/tの上限値は,道示の値(80f)をそのまま使用した。S I 単位系についても計算結果は同様の傾向を示している。

表-2.2.6 補剛板の局部座屈に対する強度の算出基準耐荷力曲線は、道示(解3.2.3)を使用する。

$$\sigma_{cr}/\sigma_{y}=1.0 \qquad (R_{R} \leq 0.5)$$

$$\sigma_{cr}/\sigma_{y}=1.5-R_{R} \qquad (0.5 < R_{R} \leq 1.0)$$

$$\sigma_{cr}/\sigma_{y}=0.5/R_{R}^{2} \qquad (1.0 < R_{R})$$

$$\lesssim 2.7 \%$$

① $R_R = b/t \times \sqrt{\{\sigma_y/E \times 12(1-\mu^2)/(\pi^2 k_R)\}}$ $k_R = 4 n^2$

道示では補剛板の幅厚比の制限値に80fを採用しているが,実際に基準耐荷力曲線のRmax=1.4で計算すると下記のようになる。

1.4=
$$b/t \times \sqrt{\{ \sigma_y/E \times 12(1-\mu^2)/(\pi^2 k_R) \}}$$

b/t=79 fn

〈SM570材以外の場合〉

$$\begin{split} \sigma_{cr} &= \sigma_{y} & (& R_{R} \leq & 0.5) \\ \sigma_{cr} &= 1.5 \ \sigma_{y} - \sigma_{y} \times R_{R} & (0.5 \ < R_{R} \leq & 1.0) \\ &= 1.5 \ \sigma_{y} - b/t \sqrt{\{(\sigma_{y}/E \times 12(1-\mu^{2})/(\pi^{2}k_{R})\}\}} \\ \sigma_{cr} &= 0.5 \times \sigma_{y}/R_{R}^{2} & (1.0 \ < R_{R} \) \\ &= (0.5 \times \sigma_{y})/\{b/t \times \sqrt{(\sigma_{y}/E \times 12(1-\mu^{2})/(\pi^{2}k_{R}))}\} \end{split}$$

〈SM570材の場合〉

$$t$$
 \leq 40の場合 $\sigma_{cr}/\sigma_y = 4400 / 4600 = 0.957 (430 / 450 = 0.956)$ $40 < t \le 75$ の場合 $\sigma_{cr}/\sigma_y = 4200 / 4400 = 0.955 (410 / 430 = 0.953)$ $\sigma_{cr}/\sigma_y = 4100 / 4300 = 0.953 (400 / 420 = 0.952)$ ()内はS I 単位系を表示

t \leq 40の場合で考えると σ_{cr}/σ_{y} = 1.5- R_{R} = 0.957より, R_{R} = 0.777となる。

これを式①に代入し、b/tfn=22.05となる。また式①から $R_R=1.0$ の時は、b/tfn=40.6となる。(同様に板厚区分ごとに計算する)

計算結果(表-2.2.6)

式の形態

 $R_R \leq 0.5 : \sigma_{cr} = A$ $0.5 < R_R \leq 1.0 : \sigma_{cr} = A - B \quad (b/tfn - C)$

 $1.0 < R_R \qquad : \sigma_{cr} = D \times (t fn/b)^2$

(重力単位系)

(里/) 平位术/											
鋼種		SS400	,SM400, SN	1A400W		SM490					
板厚	mm	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<></td></t≦75<>	75 <t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<>	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<>	75 <t≦100< td=""></t≦100<>				
σ_{y}	kgf/cm ²	2,400	2,200	2,200	3,200	3,000	3,000				
E(ヤング係数)	kgf/cm ²	2,100,000	2,100,000	2,100,000	2,100,000	2,100,000	2,100,000				
k _R		4n	4n	4n	4n	4n	4n				
μ		0.3	0.3	0.3	0.3	0.3	0.3				
$b/t (R_R = 0.5)$		28.12	29.37	29.37	24.35	25.15	25.15				
	(道示)	28.00	28.00	28.00	24.00	24.00	24.00				
$b/t (R_R = 1.0)$		56.24	58.74	58.74	48.71	50.31	50.31				
	(道示)	56.00	58.00	58.00	48. <u>00</u>	50.00	50.00				
A		2,400	2,200	2,200	3,200	3,000	3,000				
В		42.67	37.45	37.45	65.70	59.63					
С		28.12	29.37	29.37	24.35	25.15	25.15				
	(道示)	28.00	28.00	28.00	24.00	24.00					
D		3,796,002	3,796,002	3,796,002	3,796,002	3,796,002	3,796,002				

鋼種		SM490	Y,SM520,SN	/IA490W	SM	4570,SMA57	0W
板厚	mm	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<></td></t≦75<>	75 <t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<>	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<>	75 <t≦100< td=""></t≦100<>
σ_{ν}	kgf/cm ²	3,600	3,400	3,300	4,600	4,400	4,300
E(ヤング係数)	kgf/cm ²	2,100,000	2,100,000	2,100,000	2,100,000	2,100,000	2,100,000
k _R		4n	4n	4 n	4n	4n	4n
μ		0.3	0.3	0.3	0.3	0.3	0.3
$b/t \ (R_R = 0.5)$		22.96	23.63	23.98	22.06	22.64	22.98
	(道示)	22.00	22.00	22.00	22.00	22.00	22.00
$b/t (R_R = 1.0)$		45.92	47.25	47.96	40.62	41.54	42.02
' - '	(道示)	46.00	46.00	48.00	40.00	40.00	42.00
A		3,600	3,400	3,300	4,400	4,200	4,100
В		78.39	71.95	68.8	113.23	105.92	95.28
С		22.96	23.63	23.98	22.08	20.76	24.60
	(道示)	22.00	22.00	22.00	22.00	22.00	22.00
D		3,796,002	3,796,002	3,796,002	3,796,002	3,796,002	3,796,002

※(道示)は「道路橋示方書」の数値を示す

計算結果(表-2.2.6)

式の形態

 $R_R \leq 0.5 : \sigma_{cr} = A$ $0.5 < R_R \leq 1.0 : \sigma_{cr} = A - B \quad (b/tfn - C)$

 $1.0 < R_R \qquad : \sigma_{cr} = D \times (tfn/b)^2$

(SI単位系)

(31年世界/											
鋼種		SS400),SM400,SM	A400W		SM490					
板厚	mm	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<></td></t≦75<>	75 <t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<>	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<>	75 <t≦100< td=""></t≦100<>				
σ_{y}	N/mm ²	235	215	215	315	295	295				
E(ヤング係数)	N/mm ²	200,000	200,000	200,000	200,000	200,000	200,000				
k _R		4n	4n	4n	4n	4n	4n				
μ		0.3	0.3	0.3	0.3	0.3	0.3				
$b/t (R_R = 0.5)$		27.73	28.99	28.99	23.96	24.75	24.75				
	(資料)	28.00	28.00	28.00	24.00	24.00	24.00				
$b/t \ (R_R = 1.0)$		55.46	57.99	57.99	47.91	49.51	49.51				
	(資料)	56.00	58.00	58.00	48.00	50.00	50.00				
A		235	215	215	315	295	295				
В		4.23	3.71	3.71	6.57	5.96	5.96				
С		27.73	28.99	28.99	23.96	24.75	24.75				
	(資料)	28.00	28.00	28.00	24.00	24.00	24.00				
D		361,523	361,523	361,523	361,523	361,523	361,523				

ANTI-CE.		G3 5 4 0 0 1		5. 100xxx	G1 4570 G1 4 4 5701V			
 鋼種		SM490	Y,SM520, SI	MA490W	SM570,SMA570W			
板厚	mm	t≦40	40 < t≦75	75 <t≦100< td=""><td>t≦40</td><td>40<t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<></td></t≦100<>	t≦40	40 <t≦75< td=""><td>75<t≦100< td=""></t≦100<></td></t≦75<>	75 <t≦100< td=""></t≦100<>	
σ,	N/mm ²	355	335	325	450	430	420	
E(ヤング係数)	N/mm ²	200,000	200,000	200,000	200,000	200,000	200,000	
k _R		4n	4n	4n	4n	4n	4n	
μ		0.3	0.3	0.3	0.3	0.3	0.3	
$b/t \ (R_R = 0.5)$		22.57	23.23	23.58	21.81	22.43	22.74	
	(資料)	22.00	22.00	22.00	22.00	22.00	22.00	
$b/t \ (R_R = 1.0)$		45.13	46.46	47.17	40.08	41.01	41.49	
	(資料)	46.00	46.00	48.00	40.00	42.00	42.00	
A		355	335	325	430	410	400	
В		7.87	7.21	6.89	10.49	9.76	9.41	
С		22.57	23.23	23.58	23.36	24.07	24.45	
	(資料)	22.00	22.00	22.00	22.00	22.00	22.00	
D		361,523	361,523	361,523	361,523	361,523	361,523	

※(資料)は「SI単位系移行に関する参考資料」の数値を示す

2.8 表-2.2.7 構造用鋼材のせん断強度および支圧強度

せん断強度

 $\tau_{v} = \sigma_{v} / \sqrt{3}$

支圧強度

・鋼板と鋼板との間の支圧強度

 $\sigma_{by} = \sigma_y \times 1.5$

鋼種によっては σ_b が鋼材の引張強度以上になるものもあるが計算値をそのまま使用している。 参考までに鉄道構造物等設計標準・同解説では『 $\sigma_{b,max}$ =鋼材の引張強度』としている。

・ヘルツ公式で算出する場合

本来は σ_{by} =ブリネルかたさ(H_b)であり,現道示においては σ_{ba} =約 $\sigma_{by}/2$ としてしているが安全係数を1.7で処理するため,支圧強度を σ_{bv} = σ_{ba} ×1.7とした。

2.9 表-2.2.8 鋳鍛造品の強度

支承その他に用いる鋳鍛造品の軸方向強度,曲げ強度およびせん断力は下記グループ内の圧延鋼の強度と同等とした。

		C - O · MINARE PRO	· · · <u> </u>	
名称	SS400グループ	SS490グループ	SM490グループ	SM520グループ
種類				
厚延鋼	S S400, SM400		SM490	SM490Y,SM490
鍛鋼品	S F490A	S F 540A		
鋳鋼品	S C450, S CW410	SCW480, SCMn1A	SCMn2A	
機成構造用鋼			S35CN	S45CN

表-資 2.9.1 鋳鍛造品のグループ

SS490グループについてはJISの降伏点を参照した。

支圧強度

- ・すべりのない平面接触 $\sigma_{by} = \sigma_y \times 1.5$
- ・すべりのある平面接触 $\sigma_{by} = \sigma_y \times 1.5/2$
- ・ヘルツ公式で算出する場合

本来は σ_{by} =ブリネルかたさ(H_b)であり現道示においては σ_{ba} =約 σ_{by} /2(安全率は2以上)としてしているが安全係数を1.7で処理するため,支圧強度を σ_{by} = σ_{ba} ×1.7とした。

ブリネルかたさ (H_n) の値は現道示の数値をそのまま引用した。

※FC250の許容応力度算出根拠は不明のため、現道示の数値×1.7で算出している。

2.10 表-2.2.9 溶接部の強度

溶接部の強度は鋼板と同様。

2.11 表-2.2.10 摩擦接合用高力ポルトのすべり耐力

摩擦接合用高力ボルトおよび摩擦接合用トルシア形高力ボルトのすべり耐力

 $\rho = \mu N \quad \mu : 0.4$

N:設計ボルト動力

現道示においては $\rho = \mu N / \nu$ (ν :安全率=1.7) としている。

2.12 表-2.2.11 支圧接合用高力ボルトのせん断強度

せん断強度

 $\tau_{v} = \tau_{a} \times 1.7$

現道示においては下記としている。

 $\tau_a = \sigma_B/\sqrt{3}/\nu$ σ_B : 高力ボルトの引張強度

ν:安全率=3.0

2.13 表-2.2.12 支圧接合用高力ボルトの支圧強度

支圧強度

許容支圧応力度=鋼材の降伏応力度であるが,支圧強度については,疲労試験の結果より降伏点強 度を上回る強度が期待できるため、道示の規定に準拠し、支圧強度を保証降伏点強度の1.7倍とした。

2.14 表-2.2.13 アンカーボルト, ピンの強度

せん断強度

現道示の数値×1.7

降伏点

S35CNはSM490相当, S45CNはSM520相当

曲げ強度

現道示の数値×1.7

支圧強度

回転を伴う場合は回転を伴わない場合の50%(接触面ですべりを生じる)。

2.15 表-2.2.14 仕上げボルトの強度

降伏点および耐力

現道路橋示方書 (表-解2.2.9) のとおり。

せん断強度

 $\tau_{y} = \sigma_{y} / \sqrt{3}$

支圧強度

 $\sigma_b = \sigma_v \times 1.7$

2.16 表-2.2.15 鉄筋コンクリート用棒鋼の強度

JIS規格および鋼構造物設計指針に示す値とした。

2.17 表-2.2.16 局部座屈に対する圧縮強度

鋼構造物設計指針(土木学会)(解5.20)の式では現道路橋示方書の式が導けない。 したがって、以下のとおりとした。

強度の基本値は表-2.2.1のとおりとする。 $R/\alpha t$ の範囲は重力単位系については「道示」の値を適用し、SI単位系については「SI単位計移行に関する参考資料」の値を適用した。強度計算式の係数は、重力単位系では現道示の係数に1.7を乗じて下 1 桁まで示した。また SI単位系では先に示した数値に9.81を乗じて下 1 桁まで示した。

表-2.2.16 局部座屈に対する圧縮強度の算出

2.18 表-2.2.17 せん断強度

・補剛材を設けない場合

重力単位系では現道示に1.7を乗じて3桁目を「0」か「5」(二捨三入)とした。

SI単位系では上記強度に9.81を乗じ2桁目または3桁目を「0」か「5」(二捨三入)とした。

・補剛材を設ける場合

鋼構造物設計指針(土木学会)(解5.23)の式では現道路橋示方書の式が導けない。 従って、以下のとおりとした。

 $R/\alpha t$ の範囲は重力単位系については「道示」の値を適用し、SI単位系については「SI単位計移行に関する参考資料」の値を適用した。なお数字の丸めにより境界で計算結果が不連続になっているが、無視することにした。強度の基本値は表-2.2.7のとおり。

強度計算式 75000/(R/t)-90 (現道示) は重力単位系では現道示の係数に1.7を乗じて有効数字 4 桁で丸め,127500/(R/t)-150 とした。また S I 単位系では 127500/(R/t)-150 に9.81を乗じて有効数字 3 桁で丸め,12500/(R/t)-15 とした。

強度計算式の係数は、重力単位系では現道示の係数に1.7を乗じて下3桁まで示した。またSI単

位系では先に示した数値に9.81を乗じて下3桁まで示した。

表-2.2.17 せん断強度の算出

 $800-0.019(R/t)^2$: *R/t*≦125 現道示 $\left\{\begin{array}{c} 352 \\ 75000/(R/t)-90 \end{array}\right.$

: 125<*R/t*≦200

重力単位系{1400-0.032(R/t)2 $R/t \leq 125$

127500/(R/t)-150 : 125<*R/t*≦200

 $135-0.003(R/t)^2$ $R/t \leq 120$

: 120<*R/t*≦200

* 75000×1.7=127500

 $90 \times 1.7 = 153 \rightarrow 150$

 $0.019 \times 1.7 = 0.0323 \rightarrow 0.032$

3章 荷重の組合せと安全係数

3.1 荷重係数の設定について

A活荷重対応橋または既設橋のうち、支間長が30mから90mの非合成直線桁橋については、これまでの研究成果 $^{1),2)}$ を踏まえ、表-資3.1.1に示す荷重の組合せ、安全係数および荷重係数を用いることができる。ただし、床組の設計には適用してはならない。

荷 重 荷重の組合せ 全体 P S PP \overline{PA} L+ I²⁾ SW13) SW23) 安全 D PS CR SH E HP U Ţ EQ GD SD ₩P CF ER4) α 係数 L Lを対象とした組合せ 1. 30 1. 0 3. 1 1. 7 1.0 1.0 1.0 1.0 1.0 1.0 Tを対象とした組合せ 1. 30 1. 0 1. 6 0.9 1.0 1.0 1.0 1.0 1.0 1.0 P+PP+T ₩を対象とした組合せ 11, 40[1, 0 [1.0 1.0 1.0 _ 1.0 1.0 1.0 P(except L+I)+PP+W EO を対象とした組合せ 1.15 1.0 1.0 _ _ P(except L+I)+EQ 00を対象とした組合せ 1.00 1.0 1.6 0.9 1.0 1.0 1.0 1.0 1.0 P+PP+00 施工時 1 35 架設条件に応じて考慮す ER

表-資3.1.1 荷重の組合せ、安全係数および荷重係数

- 注 1) 全体安全係数は荷重係数以外の安全係数を表す。また、今後の検討により橋梁、部材の重要度および限界状態の特性などにより、異なる複数の係数が設定されることも考えられる。
- 注2) 活荷重の規格値および活荷重係数は、今後、道路区分などにより、複数の値を設定することも考えられる。
- 注 $^{3)}$ SW1は圧雪荷重、SW2は冬期通行不能期間の積雪荷重である。P+PPの組合せで、SW1とSW2とは同時に組合せないものとする。SW2を考慮する場合はL+Iを組合せないものとする。
- 注 ⁴⁾ BKが必要な場合は適宜荷重の組合せを考慮するものとする。
- 注⁵⁾ 表中、-印はその荷重を照査から除くことを表している。また、空欄は荷重係数が未定であることを表している。

- 1) 日本道路協会橋梁委員会限界状態設計法分科会荷重検討班: 限界状態設計法分科会荷重検討班第1次報告書, 1986年, 第2次報告書, 1989年.
- 2) 守矢,入部,塚原,中西,長崎,依田:鋼桁橋における現行設計法と限界状態設計法のキャリブレーション,橋梁と基礎,97-1,1997年1月.

4章 限界状態の照査

4.1「合成応力度の照査」と「二軸応力状態の照査」とにおける断面力表記について

限界状態設計法による書式に変更するにあたっては、従来の応力度表記を断面力による表記に変更することが原則である。本項においても、それぞれの照査式を断面力表記とするかどうかについて検討を行った。

以下に検討の結果を示す。

(1)「合成応力度の照査」

通常行われている断面計算における合成応力度の照査は、曲げモーメントによる垂直応力度の照査と、せん断力によるせん断応力の照査との一連の組合せによって行われる。このとき、曲げモーメント、せん断力を受ける部材の照査では既に断面力を用いて照査されているため、合成応力度の照査式を断面力による照査式に変更しても混乱は生じず、むしろ設計実務上では無理がないと判断し、断面力表記の式に変更した。これに伴い、「合成応力度」は「合成力」と表現を変更した。

(2)「二軸応力状態の照査」

本来、合成応力度の照査式、二軸応力状態の照査式ともせん断弾性ひずみエネルギー一定説(Von Mises の降伏条件式)を根拠としたもの¹⁾であり、対象が一軸応力状態の場合に合成応力度の照査式で、これを二軸応力状態に拡張したものが二軸応力状態の照査式である。しかし、二軸応力状態の照査は、主桁フランジと横げたフランジが直接連結される場合などのように限定的かつ局所的なポイント照査であること、照査には3次元的な考えを要し、断面力表記とした場合に照査式が極めて煩雑なものになり設計実務上混乱を来しかねないことが懸念された。よって「二軸応力状態の照査」については今後の課題として現行の応力度表示のまま残すことにした。

-133-

8章 床 版

8.1 プレストレスト床版の設計曲げモーメント算定式

現行の道路橋示方書・同解説 Π 鋼橋編(平成 8 年 12 月)(以下,「道示 Π 」という)には PC 床版の設計曲げモーメント算出式が明記されておらず,現状では道路橋示方書・同解説 Π (平成 8 年 12 月)(以下「道示 Π 」という)を参照しているのが実状である。しかし,鋼橋におけるプレストレスト床版(以下、PC 床版と言う。)の需要が,今後ますます大きくなっていくことが予測されることから,本検討では道示 Π にも PC 床版の設計曲げモーメントの算定式を表記することとした。

道示 Π では、PC 床版の設計曲げモーメントの算出式は表記されておらず、適用床版支間も 4mに制限されている。一方、道示 Π においては鉄筋コンクリート(以下、RC と言う。)、PC 共に設計曲げモーメントの算定式が明記されており、適用床版支間は最大 6m (PC 床版の場合)としている。よって、本検討では PC 床版に関する設計曲げモーメント算定式を、原則的に道示 Π の式から取り込むこととして作業をすすめることとした。

連続版の設計曲げモーメントの算定式は微妙に異なっているが、これについて道示Ⅲ(昭和 53 年 1月)の中で、コンクリート橋の床版に従来より使用していた設計曲げモーメントを算出する式と道示Ⅱの算定式ではその結果に大差はないとし、基本的に道示Ⅱの算定式に従うと解説されている。ただし、支点曲げモーメントにおいては、支持桁の支点拘束条件が鋼橋のそれとことなることから従来通りのコンクリート橋の床版の設計曲げモーメント算定式を使うこととしていると示されている。

これにより、本検討ではRC床版の設計曲げモーメント算定式は道示IIのものを使用することとした。 さらに、「床版の支間方向が車両進行方向に直角の場合の単純版および連続版の主鉄筋方向の曲げモーメントの割増し係数」について、支間 2~6mの範囲で無限単純支持等方性版の理論式を用いて算出した断面力と道示式によって算出した断面力の比較資料を参考に検討を行った。これによると、道示の式で与えられる単純版のT荷重に対する曲げモーメントの値は、床版支間が 2~6mの間全てにおいて理論値に対し約10~20%安全をみた値となってくる。(図-解8.1.1、表-解8.1.1 参照) このことから、割り増し係数を道示IIに示される式の適用範囲を 6mまで延長しても問題はないことが分かったが、今回改正された現行道示IIIが床版支間 4~6mの係数を新たに示したことから、本件は今後の課題とし、今回の改訂案の割増し係数は道示IIIに従うものとした。

また、「床版支間方向が車両進行方向に直角な場合の片持版の支持方向曲げモーメントの割増し係数」についても同様とし、道示Ⅲに従うものとした。

表-資 8.1.1 単純版のT荷重による曲げモーメント(衝撃係数を考慮)

T	主筋力		メント	配力筋方向曲げモーメント			
床版支間	理論値	道示式	安全率	理論値	道示式	安全率	
2.0	2.16	2.48	1.15	1.65	1.92	1.16	
2.5	2.74	2.96	1.08	2.17	2.32	1.07	
3.0	3.20	3.44	1.08	2.55	2.72	1.07	
3.5	3.54	3.92	1.11	2.85	3.12	1.09	
4.0	4.07	4.40	1.08	3.29	3.52	1.07	
5.0	4.86	5.36	1.10	3.95	4.32	1.09	
6.0	5.85	6.32	1.08	4.74	5.12	1.08	

図-資 8.1.1 床版支間とT荷重による曲げモーメントの関係

道路橋示方書·同解説Ⅱ鋼橋編(H8.12)

表-6.1.1 T荷重(衝撃を含む)による床版の単位幅(1 m)あたりの設計曲げモーメント (kgf・m/m)

_								
	版の	曲げモーメ		床版の支間 の方向 曲げモ	車両進行方向に	直角の場合	車両進行方 場合	向に平行の
L	区ントの種類			m / イント ーメント の方向 適用 範囲(m)	主鉄筋方向の 曲げモーメン ト	配力鉄筋方 向の曲げモ ーメント	主鉄筋方向 の曲げモー メント	配力鉄筋方 向の曲げモ ーメント .
	単純版	支間曲げモ ーメント		$0 < L \le 4$	+ (0.12 <i>L</i> +0.07) <i>P</i>	+ (0.10 L + 0.04) P	+ (0.22 L + 0.08) P	+ (0.06 L +0.06) P
	連	支間曲 げモー			+(単純版の	+ (単純版の80%)	+ (単純版 の80%)	+ (単純版 と同じ)
	続	メント	端支間	$0 < L \le 4$	80%)		+ (単純版 の90%)	+ (単純版 と同じ)
	版	支点曲 げモー メント	中間支点		ー(単純版の 80%)		- (単純版 の80%)	
	片持	r 支 点		0 < <i>L</i> ≦1.5	$-\frac{PL}{(1.30L+0.25)}$		-(0.70 L + 0.22) P	
	版	· 1	0 \ L = 1.0		+ (0.15 <i>L</i> +0.13) <i>P</i>		+ (0.16 L + 0.07) P	

ここに,

L:6.1.3 に示すT荷重に対する床版の支間(m)

P:共通編2.1.3 に示すT荷重の片側荷重(10,000kgf)

表-5.5.1 T 荷重(衝撃を含む)による床版の単位幅(1m)あたりの設計曲げモーメント (kgf·m/m)

							(Kgi ·III/III)	
版の	曲 げモーメント	構	床版の支間の方向 (注)	車両進行	方向に直角	車両進行方向に平行		
分分	の種類	造	適用 曲げモーメントの方向 囲	支間方向	支 間 に 直角方向	支間方向	支 間 に 直角方向	
単短	支間曲げ	RC	0≤ <i>l</i> ≤4	+ (0.121	+ (0.101	+ (0.221	+ (0.061	
版	モーメント	PC	0≤1≤6	+0.07)P	+0.04) P	+0.08)P	+0.06)P	
	支間曲げ	RC	0≦ <i>l</i> ≦4	+(単純版	+(単純版	+(単純版	+(単純版	
連続	モーメント	PC	0≤ <i>l</i> ≤6	の80%)	Ø80%)	の80%)	の80%)	
版	支点曲げ	RC	0≤ <i>l</i> ≤4	- (0.15 <i>l</i>		- (単純版	."	
	モーメント	PC	0≦ <i>l</i> ≦6	+0.125)P		の80%)		
		RC	0≤ <i>l</i> ≤1.5	$\frac{-P \cdot l}{1.30l + 0.25}$		·		
片	支点曲げ		0≤ <i>l</i> ≤1.5	1.007 . 0.20	_	- (0.7 <i>l</i>	_	
持	モーメント	PC	1.5< <i>l</i> ≤3.0	-(0.6l $-0.22)P$		+0.22) P		
版	先端付近曲 げ	RC	0≤ <i>l</i> ≤1.5		+ (0.15 <i>l</i>	_	+ (0.161	
	モーメント	PC	0≤1≤3.0		+0.13) P		+0.07)P	

ここに、RC:鉄筋コンクリート床版

PC:プレストレストコンクリート床版

1:5.3に規定するT荷重に対する床版の支間 (m)

P : 共通編 2.1.3 に示す T 荷重の片側荷重 (10,000 kgf)

(注)床版支間の方向は、図-5.4.1による。

10章 プレートガーダー

10.1 応力度表示について

プレートガーダーにおいては、腹板や垂直補剛材の項のように座屈に対する安全性の照査を目的 とした規定が多い。これらの座屈に関する照査式や数値は応力度表示による座屈照査式が基本式と なっており、断面力表示に変更した場合の数値の書き換えが困難であった。また、二軸応力状態の 照査のように直接的に応力度で表現した方がその部分の耐荷力を評価しやすい場合がある。

これらを考慮し、10章 プレートガーダーにおいては発生応力度の算出方法と抵抗曲げモーメントの算出方法について規定する等、応力度表示、断面力表示のどちらの限界状態の照査式でも対応できるようにした。

10.2 腹板厚の規定について

道路橋示方書の解説によれば、表-8.4.1 (本編:表-10.4.1) プレートガーダーの最小板厚は、座屈照査式 (解-8.4.6~8.4.8) を純曲げ状態と曲げとせん断が同時に作用する状態について計算した結果をまとめたものとされている。しかし、解説に記された内容では、どの決定状態(位置や荷重状態)を採用したのか明確でない。また、設計法を限界状態設計法へ移行していくためには、各種安全率をそれぞれ分割し明確にしめす必要がある。

そこで、今回の限界状態設計法研究部会では、この表の数値の根拠となる座屈照査の計算を実行し、 各種安全率を明確にすることを試みたが、時間的制約もあり具体的な数値をしめすことは出来なかっ た。しかしながら今後の資料として活用する機会を期待して検討結果を掲載する事にした。

----検討結果----

(1) 座屈照査式の展開

曲げモーメントとせん断力を受ける板の座屈照査式は次式で与えられる。

$$\frac{1+\psi}{4} \cdot \frac{\sigma_c}{\sigma_{cr}} + \sqrt{\left(\frac{3-\psi}{4} \cdot \frac{\sigma_c}{\sigma_{cr}}\right)^2 + \left(\frac{\tau}{\tau_{cr}}\right)^2} = R^2$$
 (\$\text{\$\text{\$\pi\$}} 8.4.2\$)

また、 σ_{cr} , τ_{cr} はそれぞれ次式で与えられる。

$$\sigma_{cr} = k_{\sigma} \cdot \frac{\pi^2 E}{12(1-\mu^2)} \cdot \left(\frac{t}{b}\right)^2$$

$$\tau_{cr} = k_{\tau} \cdot \frac{\pi^2 E}{12(1-\mu^2)} \cdot \left(\frac{t}{b}\right)^2$$
(Fig. 8. 4. 4)

ここで、
$$K^2 = \frac{\pi^2 E}{12(1-\mu^2)}$$
 とし、 (解 8.4.2) に代入すると

$$R^{2} = \frac{1}{\left(\frac{t}{h}\right)^{2} \cdot K^{2}} \left\{ \frac{\sigma_{c}(1+\psi)}{4k_{\sigma}} + \sqrt{\left(\frac{3-\psi}{4k_{\sigma}}\right)^{2} \cdot \sigma_{c}^{2} + \left(\frac{1}{k_{\tau}}\right)^{2} \cdot \tau^{2}} \right\}$$

$$\pm \hbar, \quad \eta = \frac{\tau}{\sigma} \, \xi \, \tau \, \delta \, \xi$$

$$R^{2} = \frac{\sigma_{c}}{\left(\frac{t}{b}\right)^{2} \cdot K^{2}} \left\{ \frac{1 + \psi}{4k_{\sigma}} + \sqrt{\left(\frac{3 - \psi}{4k_{\sigma}}\right)^{2} + \left(\frac{\eta}{k_{\tau}}\right)^{2}} \right\}$$

ここで, $E=2.1\times10^6 \text{kgf/cm}^2$, $\mu=0.3$ とすると

$$K^2 = \frac{\pi^2 E}{12(1-\mu^2)} = 1.898 \times 10^6$$
 , $K = \sqrt{1.898 \times 10^6} = 1377.6$

となり、式(解 8.4.5) を導くことが出来た。また、この式には重力単位が含まれていることが判明した。

$$\left(\frac{t}{b}\right)^{2} \ge \frac{v_{B}\sigma_{c}}{\left(1,378R\right)^{2}} \left\{ \frac{1+\psi}{4k_{\sigma}} + \sqrt{\left(\frac{3-\psi}{4k_{\sigma}}\right)^{2} + \left(\frac{\eta}{k_{\tau}}\right)^{2}} \right\}$$
 (94 8. 4. 5)

ただし、作用荷重σcにて無次元化されているため、SI単位への変換は可能であるといえる。

(2) 座屈照査式の計算

水平補剛材のある場合においては、式(解 8.4.5) と同様に各区間ごとに計算され、式(解-8.4.6)、(解-8.4.7)、(解-8.4.8)としてまとめられている。これらの基本式を用いて(b/t)を計算した結果を表-資10.2.1、表-資10.2.2、表-資10.2.3にしめす。

ただし,

$$v_{\rm B} = 1.25 + (0.3+0.15\psi)\exp^{-4.3\eta}$$

 $\psi = \sigma_{\rm l}/\sigma$
 $R = 0.90 - 0.10\psi \le 1.0$

また、座屈安全率は、座屈設計ガイドラインおよびDIN4114より下式を採用した。

$$k_{\sigma} = 23.9 \left(\frac{1-\psi}{2}\right)^2$$
 : $-7 \le \psi \le -1$ ···· 座屈設計ガイドラインの提案式

$$k_{\sigma} = 10\psi^2 - 6.264\psi + 7.636$$
 : $-1 \le \psi < 0$ ····· DIN4114

$$k_{\sigma} = \frac{8.4}{11 + w} \qquad \qquad : \quad 0 \le \psi \le 1 \quad \cdots \quad DIN4114$$

$$k_{\tau} = 5.34 + 4.00 \left(\frac{b}{a}\right)^2$$
 : $1 \le \frac{a}{b}$

$$k_{\tau} = 4.00 + 5.34 \left(\frac{b}{a}\right)^2 \qquad : 1 > \frac{a}{b}$$

荷重ケースは以下とした。

ケース 1. 純曲げの場合:作用応力度は、 $\sigma_a (=\sigma_v/1.7)$ を使用

ケース2. 曲げとせん断: $\sigma = \sigma_a$, $\tau = 0.45 \tau_a$ を使用

ケース3. 曲げとせん断: $\sigma = 0.45\sigma_a$, $\tau = \tau_a$ を使用

計算結果から,道示の表-8.4.1における規定値と最も近い値を示したのは,純曲げ状態で,せん断応力が働かないケース1であった。

ただし、"水平補剛材を2段用いるとき"においては、SM490、SM520、SM570級材料の値が最小値を採用していないこともあり、規定値の決定根拠が不明確であった。

表-資10.2.1 (b/t)の計算:ケース1. 純曲げの場合

		$K \sigma = 23$)の場合	0.50					
	0段	1	段		2段					
	全	上	下	上	中	下		σ	τ	
SM400	152	268	255	363	318	475		1, 400	0	
SM490	131	230	219	312	273	408		1, 900	0	
SM520	124	219	208	297	260	388		2, 100	0	
SM570	112	197	187	267	234	349		2,600	0	
σ 1/ σ	1.00	1. 00	0. 60	1.00	0. 72	0. 28	規	定値と最	お洗い	よのおき
								に阻こ取	DYTA.	א שייליים
$\phi 1$	-1.000	0.600	<u>-1.667</u>	0. 720	0. 388	-3. 571	担告は	O ETL	1 E/L	O FR
R	1.000	0. 840	1.000	0. 828	0.861	1.000	規定値	0段	1段	2段
η	0	0	0	0	0	0	SM400	152	256	310
kσ	23. 9	4.9	23. 9	4.6	5. 6	23. 9	SM490	130	220	310
kτ	5. 3	5. 3	5. 3	5. 3	5. 3	5. 3	SM520	123	209	294
νΒ	1.40	1.64	1. 30	1.66	1.61	1. 25	SM570	110	188	262
# JL 129 m	TH V	TZ . [70 + 1 2 21	2 = N.48 afa =	A EL A 4					
も曲げの	場台 0段	$K\sigma : \underline{F}$	<u>限をガイド</u> 段	747促秦	<u> 2段</u> 2段					
				L.	<u> </u>			_	_	
CVACO	全 150	<u>上</u>	下 240	上	中	下		σ 1 400	τ	
SM400	152	268	340	363	318	1087		1, 400	0	
SM490	131	230	292	312	273	933		1,900	0	
SM520	124	219	277	297	260	887		2, 100	0	
SM570	112	197	249	267	234	797		2,600	0	
$\sigma 1/\sigma$	1. 00	1.00	0.60	1.00	0.72	0. 28				
$\phi 1$	-1.000	0.600	-1. 667	0. 720	0. 388	-3.571				
R	1.000	0.840	1.000	0. 828	0.861	1. 000				
	0	0.040	0	0. 020	0. 001	0				
η	23. 9					124.8				
kσ		4.9	944. O	4.6	5. 6					
kτ	5. 3	5.3	5.3	5. 3	5.3	5.3				
νΒ	1. 40	1.64	1. 30	1.66	1.61	1. 25				
吨曲げの	場合	Κσ: "	イドライン提	孝 式. ット	8=1.4固定	の場合				
• , , , ,	0段	1	段	/(4 · 4 · · · ·	2段	~~~				
	全	上	下	上	中	下		σ	τ	
SM400	152	291	327	395	341	1027		1,400	0	
SM490	131	249	281	339	293	881		1, 900	Ò	
SM520	124	237	267	323	279	838		2, 100	ŏ	
SM570	112	213	240	290	250	754		2,600	ŏ	
								2,000	v	
σ1/σ	1. 00	1.00	0.60	1.00	0. 72	0. 28				
φ1	-1. 000	0.600	-1.667	0. 720	0. 388	-3. 571				
R	1.000	0.840	1.000	0.828	0.861	1. 000				
η	0	0	0	0	0	0				
kσ	23. 9	4. 9		4. 6	5. 6					
kτ	5. 3	5. 3	5. 3	5. 3	5. 3	5. 3				
νΒ	1.40	1.40	1.40	1.40	1.40	1.40				
b 11 · · · ·			<u>くされ、v B=</u>	1. 4, R=1. (
屯曲げの					2段	下			_	
屯曲げの	0段	1		J				σ	τ	
	0 段 全	上 1	下	<u> </u>	中				^	
SM400	0段 全 152	上 346	下 327	478	396	1027		1,400	0	
SM400 SM490	0段 全 152 131	上 346 297	下	478 410	396 340	1 <u>027</u> 881		1, 400 1, 900	0	
SM400	0段 全 152 131 124	上 346	下 327	478	396 340 323	1027		1, 400 1, 900 2, 100		
SM400 SM490 SM520	0段 全 152 131 124	上 346 297 282	下 327 281 267	478 410 390	396 340 323	1027 881 838		1, 400 1, 900	0	
SM490 SM520 SM570	0段 全 152 131 124 112	上 346 297 282 254	7 327 281 267 240	478 410 390 350	396 340 323 291	1027 881 838 754		1, 400 1, 900 2, 100	0	
SM400 SM490 SM520 SM570 σ 1/σ	0段 全 152 131 124 112 1.00	1 346 297 282 254 1.00	7 327 281 267 240 0.60	478 410 390 350 1.00	396 340 323 291 0. 72	1027 881 838 754 0. 28		1, 400 1, 900 2, 100	0	
SM400 SM490 SM520 SM570 σ 1/σ φ 1	0段 全 152 131 124 112 1.00 -1.000	上 346 297 282 254 1.00 0.600	T 327 281 267 240 0.60 -1.667	478 410 390 350 1.00 0.720	396 340 323 291 0. 72 0. 388	1027 881 838 754 0. 28 -3. 571		1, 400 1, 900 2, 100	0	
SM400 SM490 SM520 SM570 σ 1/σ	0段 全 152 131 124 112 1.00	1 346 297 282 254 1.00	7 327 281 267 240 0.60	478 410 390 350 1.00	396 340 323 291 0. 72	1027 881 838 754 0. 28		1, 400 1, 900 2, 100	0	

表-資10.2.2 (b/t)の計算:ケース 2. 曲げとせん断: $\sigma = \sigma$ a, $\tau = 0.45$ τ a を使用

曲げ+せん		Κσ:提	案式,a/	b=1.0の場		
	0段	1	段	-	2段	
	全	上	下	<u>.</u> L.	中	下
SM400	144	291	237	395	344	315
SM490	124	250	204	339	296	271
SM520	118	237	194	323	281	258
SM570	106	213	174	290	253	231
σ 1/ σ	1.00	1.00	0.60	1.00	0.72	0. 28
φ1	-1.000	0.600	-1.667	0.720	0. 388	-3. 571
R	1.000	0.840	1.000	0.828	0.861	1.000
η	0. 260	0. 260	0. 433	0. 260	0. 361	0. 928
k σ	23. 9	4. 9	42. 5	4.6	5. 6	124. 8
kτ	9. 3	9. 3	9. 3	9. 3	9. 3	9. 3
ν B	1. 30	1. 38	1. 26	1. 38	1. 33	1. 25

σ τ 1, 400 364 1, 900 494 2, 100 546 2, 600 676

曲げ+せん		K σ:提	案式,_a/	b=1.5の場	合	
	0段	1	段			
	全	上	下	上	中	下
SM400	137	289	211	393	340	274
_SM490	118	248	181	337	292	235
_SM520	112	236	173	321	278	224
SM570	101	212	155	288	250	201
σ 1/ σ	1. 00	1.00	0.60	1.00	0. 72	0. 28
φ1	-1.000	0.600	-1.667	0. 720	0. 388	-3. 571
R	1.000	0.840	1.000	0.828	0.861	1.000
η	0. 260	0. 260	0. 433	0. 260	0. 361	0. 928
kσ	23. 9	4. 9	42. 5	4. 6	5. 6	124. 8
kτ	7. 1	7. 1	7. 1	7. 1	7. 1	7. 1
ν B	1. 30	1. 38	1. 26	1. 38	1. 33	1. 25

 $\begin{array}{ccc} \sigma & \tau \\ 1,400 & 364 \\ 1,900 & 494 \\ 2,100 & 546 \\ 2,600 & 676 \end{array}$

表-資10.2.3 (b/t)の計算:ケース3. 曲げとせん断: $\sigma=0.45\sigma$ a, $\tau=\tau$ aを使用

K σ:提案式, a/b=1.0の場合 1 段 2 段 曲げ+せん断 0段 全 130 中 SM400 425 401 551 208 166 111 106 344 327 SM490 143 473 364 179 SM520 136 449 347 170 SM570 95 294 122 404 312 153 1.00 0. 72 0. 388 $\sigma 1/\sigma$ 1.00 0.60 1.00 0.28 φ1 -1.0000.600 -1. **667** 0.720 -3.571R 1.000 0.840 1.0000.828 0.861 1.000 1. 283 2. 138 1. 782 1.2831.283 η 4. 582 4. 9 9. 3 1. 25 5. 6 9. 3 1. 25 23. 9 9. 3 kσ 42. 5 9. 3 4. 6 9. 3 124.8 9. 3 1. 25 kτ νΒ 25 1. 25 1. 25

 $\begin{array}{ccc} \sigma & \tau \\ 630 & 808 \\ 855 & 1,097 \\ 945 & 1,213 \\ 1,170 & 1,501 \end{array}$

曲げ+せん		Κσ:提	案式 , a/	b=1.5の場	合	
	0 段	1	段		2段	
	全	上	一十	Ŀ.	中	下
SM400	114	377	145	520	390	181
SM490	98	324	125	446	335	156
SM520	93	308	119	424	318	148
SM570	84	277	107	381	286	133
σ 1/ σ	1. 00	1. 00	0. 60	1. 00	0. 72	0. 28
φ1	-1.000	0.600	-1.667	0.720	0. 388	-3. 571
R	1.000	0.840	1.000	0.828	0.861	1.000
η	1. 283	1. 283	2. 138	1. 283	1. 782	4. 582
kσ	23. 9	4. 9	42. 5	4. 6	5. 6	124. 8
kτ	7. 1	7. 1	7. 1	7. 1	7. 1	7. 1
ν <u>Β</u>	1. 25	1. 25	1. 25	1. 25	1. 25	1. 25

σ τ 630 808 855 1,097 945 1,213 1,170 1,501

10.3 垂直補剛材の間隔の規定について

腹板厚の規定と同様に、今回の限界状態設計法研究部会では、表-8.5.1(本編:表-10.5.1)および式(8.5.1~8.5.6) (本編:式(10.5.1~10.5.6))の数値の根拠となる座屈照査の計算を実行し、各種安全率を明確にしめすことを試みたが、時間的制約もあり明確に数値をしめすことは出来なかった。これも今後の資料として活用する機会を期待して検討結果を掲載する。

——検討結果——

基本応力度

	SM400	SM490	SM520	SM570
σy:降伏応力度	2400	3200	3600	4600
$\tau y = \sigma y / 3^{\circ} 0.5$	1386	1848	2078	2656
σa:許容応力度	1400	1900	2100	2600
$\tau a = \sigma a / 3^0.5$	808	1097	1213	1501_
安全率 ν	1.714	1.684	1.714	1. 769

(1) 水平補剛材を用いない場合

	SM400	SM490	SM520	SM570	備考
φ 1	-1.0	-1.0	-1.0	-1.0	
R	1.000	1.000	1.000	1.000	
a/b	9. 0E+09	9. 0E+09	9. 0E+09	9. 0E+09	無限大
τ	808	1, 097	1, 213	1,501	τа
σ	630	855	945	1, 170	0. 45 σ a
η	1. 3	1. 3	1, 3	1. 3	
kσ	23. 90	23. 90	23. 90	23. 90	①
<u>k</u> τ	5. 34	5. 34	5. 34	5. 34	
νΒ	1. 25	1. 25	1. 25	1. 25	座屈安全率
$(t/b)^2$	1. 012E-04	1. 373E-04	1.518E-04	1.879E-04	
(t/b)	1. 006E-02	1. 172E-02	1. 232E-02	1. 371E-02	
B∕t	99. 4	85. 3	81. 2	72. 9	2
E	2. 10E+06	2. 10E+06	2. 10E+06	2. 10E+06	
μ	0. 30	0. 30	0. 30	0. 30	
K	189. 8	189. 8	189. 8	189.8	式(解 8.5.4)の分母数値
K / ν B	151.8	151.8	151.8	151.8	3
σk	3, 627	3, 627	3, 627	3, 627	①×③ 3,650 照査式の
τ k 1	810	810	810	810	5.34×③ 810 分母数值
τ k 2	607	607	607	607	4.00×③ 610 規定値

上表より、照査式の分母数値は材質に依存しないことが解る。また、その数値は座屈安全率と座屈係数および弾性係数、ポアソン比によって決定される。

ここで、②のB/tが道示の表-8.5.1と異なることから道示に記す"幾分安全を見込んで"の数値を推定する。

	SM400	SM490	SM520	SM570	備考
ν Β	2. 50	2, 50	2. 50	2. 50	座屈安全率
B/ t	70.3	60.4	57.4	51.6	2
規定値	70	60	57	50	B/t 規定値
σk	1,814	1,814	1,814	1,814	①×③ 照査式の分母数値
τ k 1	405	405	405	405	5. 34×③
τ k 2	304	304	304	304	4. 00×③

座屈安全率を2倍の2.50とすることで、 大値」の規定値と最も近い値をしめした。 「垂直補剛材を省略しうるフランジの純間隔の最

(2) 水平補剛材を1段、2段用いる場合

H補剛材と引張側フランジにて囲まれる区間にて検討する。 材質に依存しないことから、全てSM400材にて計算する。

	水平補剛	才 1段	水平補剛	才 2段	備考
	SM400		SM400		
φ2	-1.667		-3. 570		
R	1. 000		1.000		
a/b	0.80		0.64		
τ	808		808		τα
σ 1	378		176		$0.45 \sigma\mathrm{a} \times (0.6, 0.28)$
η	2. 14		4. 58		
kσ	23. 90		23. 90		
	0.60		0. 28		①'σ1の係数
	62. 25		208. 31		① $(b/a)^2 \times k \sigma / ①'$
kτ'	5. 34		5. 34		せん断座屈係数
k τ"	4. 00		4. 00		
	8.34		13.04		② $(b/a)^2 \times k \tau$
	6. 25		9.77		$\textcircled{4} (b/a)^2 \times k \tau$
νΒ	1. 25		1. 25		座屈安全率
K/ν	151.8	規定値	151.8	規定値	3
σk	9, 452	9, 500	31,630	31,500	①×③ 照査式の分母数値
τ k 1	1, 267	1, 270	1, 980	1,970	2×3
τ k 2	949	950	1, 483	1,480	(4×3)

$$v_B^2 \left(\frac{b}{t}\right)^4 \left\{ \frac{12(1-\mu^2)}{\pi^2 E} \right\}^2 \left\{ \left(\frac{\sigma}{k_\sigma}\right)^2 + \left(\frac{\tau}{k_\tau}\right)^2 \right\} \le 1$$

$$v_B^2 \left(\frac{b}{100t}\right)^4 \left\{ \left(\frac{\sigma}{190k_\sigma}\right)^2 + \left(\frac{\tau}{190k_\tau}\right)^2 \right\} \le 1 \qquad \dots (\text{$\Re 8.5.4$})$$

ここで、照査式の分母数値には以下を考慮して計算した。 1) 式(解 8.5.4)における $k_{\sigma,\tau}$ は、(a/b) の関数であるからa/bが0.8,0.64 の場合、その数値の2乗を代入した。 ただし、 τ の第2項には(a/b) 2 が表現されているため、補剛材無しの時と 同値である。

2) パネル部分の発生応力と照査応力との比率を代入した。

計算例) 水平補剛材1段の場合(σの項)

$$\begin{pmatrix} \frac{a}{b} & \frac{a}{b} & \frac{a}{b} & \frac{b}{a} & \frac{b}{a} & \frac{b}{b} & \frac{a}{b} & \frac{$$

(3) SI単位系による数値の算出

基本応力度

	SM400	SM490	SM520	SM570
σy:降伏応力度	235	315	355	430
$\tau y = \sigma y / 3^0.5$	136	182	205	248
σa:許容応力度	137	187	207	243
$\tau a = \sigma a / 3^{\circ} 0.5$	79	108	120	140
安全率 ν	1.714	1. 684	1.714	1. 769

① 水平補剛材を用いない場合

	SM400	SM490	SM520	SM570	備考
φ1	-1.0	-1.0	-1.0	-1.0	
R	1.000	1.000	1.000	1.000	
a/b	9. 0E+09	9. 0E+09	9. 0E+09	9. 0E+09	無限大
τ	79	108	120	140	τ α
σ	62	84	93	109	0. 45 σ a
η	1. 3	1. 3	1. 3	1. 3	
kσ	23. 90	23.90	23. 90	23. 90	①
kτ	5. 34	5. 34	5. 34	5. 34	
ν B	1. 25	1. 25	1. 25	1. 25	座屈安全率
E	2. 00E+05	2. 00E+05	2.10E+05	2.10E+05	2.0,2.1の2種類にて計算
μ	0.30	0. 30	0. 30	0. 30	
σk	345	345	363	363	①×③ 照査式の分母数値
τ k l	77	77	81	81	5. 34×③
τ k 2	58	58	61	61	4. 00×3

② 水平補剛材を1段,2段用いる場合

	水平補剛	材 1段	水平補剛	材 2段	備考
	SM400	SM400	SM400	SM400	
φ2	-1.667	-1.667	-3. 570	-3. 570	
R	1.000	1. 000	1.000	1. 000	
a/b	0.80	0. 80	0.64	0.64	
τ	79	108	79	108	τα
σ 1	37	51	17	24	$0.45 \sigmaa \times (0.6, 0.28)$
η	2. 14	2. 14	4. 58	4. 58	
kσ	23. 90	23. 90	23. 90	23. 90	
	0.60	0.60	0. 28	0. 28	①' σ1の係数
	62. 25	62. 25	208. 31	208. 31	① $(b/a)^2 \times k \sigma / ①'$
kτ'	5. 34	5. 34	5. 34	5. 34	せん断座屈係数
k τ "	4. 00	4. 00	4. 00	4.00	
	8.34	8.34	13.04	13.04	② (b/a)^2×k τ'
	6. 25	6. 25	9.77	9.77	$(b/a)^2 \times k \tau$
νΒ	1. 25	1. 25	1. 25	1. 25	座屈安全率
E	2. 00E+05	2. 10E+05	2. 00E+05	2, 10E+05	2.0,2.1の2種類にて計算
μ	0. 30	0. 30	0. 30	0.30	
K/ν	14. 46	15.18	14. 46	15, 18	3
σk	900	945	3, 012	3, 163	①×③ 照査式の分母数値
τ k l	121	127	189	198	2×3
τ k 2	90	95	141	148	4×3

11章 合成げた

11.1 合成桁照査式の断面力表記について

限界状態設計法による書式に変更するにあたっては、従来の応力度表記を断面力による表記に変更することが原則である。しかし、本検討では以下に示す検討結果により合成げたの照査式を断面力表記とすることを今後の課題として見送ることとした。

合成げたの設計における照査項目は、合成前、合成後、さらにクリープ時、乾燥収縮時、温度変化考慮時と多岐にわたり、それぞれの照査項目においての断面力は異なるものとなっている。またこれらに対して、床版天端、上フランジ上端、下フランジ下端の3点での照査がそれぞれ必要であり、計算ケースは比較的多い。

本照査は、応力度表記による照査であれば各照査項目においてそれぞれの応力度を算出した後で、これらを合計する比較的簡略な照査であった。しかし、断面力表記による照査においてはどの照査時においても常に合成前断面力と合成後断面力が連動して必要であり、さらに各照査時における対象断面が異なることから、常にこれらの断面力を照査する状態の断面力への換算が必要である。

例えば、合成後の照査時には合成前と断面形状が異なるため合成前荷重により発生する断面力は、合成後の状態でのものに換算し(資 11.1.1、資 11.1.2)、別途求める合成後荷重による断面力と併せて照査を行うこととなる。

合成前曲げモーメント (上フランジ照査時) (合成後換算値)

$$M_{Su} = \frac{\sigma_{Su}}{y_{Vu}} \cdot I_V = \frac{I_V}{I_S} \cdot \frac{y_{Su}}{y_{Vu}} \cdot M_S \tag{2}$$

合成後曲げモーメント (下フランジ照査時) (合成後換算値)

$$M_{SI} = \frac{\sigma_{sI}}{y_{vI}} \cdot I_{v} = \frac{I_{v}}{I_{s}} \cdot \frac{y_{SI}}{y_{vI}} \cdot M_{s}$$
 (\text{\tint{\text{\tinte\tint{\text{\tilitet{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tilit{\texi{\text{\text{\texicl{\tiliex{\texict{\text{\texi{\text{\texicl{\texi{\texi{\texi{\ti}\text{\texi{\texi{\texi{\texi{\texicl{\texi{\texi{\texi{\texi{\tiliex{\texi{\texi{\texi{\texi{\texi{\tiliex{\texi{\texi{\texi{

ここで,

 M_s :合成前曲げモーメント

 I_{c} :合成前断面 2 次モーメント

 $I_{
u}$: 合成後断面 2 次モーメント

$$\sigma_{su} = \frac{M_s}{I_s} \cdot y_{su}$$
: 合成前上フランジ応力

$$\sigma_{sl} = \frac{M_s}{I_s} \cdot y_{sl}$$
: 合成前下フランジ応力

同様に、合成げたの各照査時(クリープ、温度収縮、温度変化など)においても、それぞれ上記の作業を繰り返す必要があり、許容応力度での照査に比べて設計作業が煩雑になることが予想される。よって、本検討では合成げたの照査の断面力表記は見送ることとした。

参考までに断面力表記による合成げたの照査式を以下に示す。

(参考) 断面力表記による合成げたの照査式

1)合成前の照査

$$\frac{vM_s}{M_{sa}} \le 1 \tag{資 11.1.4}$$

ここで,

v:安全係数

 M_s :合成前死荷重曲げモーメント M_{ss} :合成前終局曲げモーメント

2)合成後の照査

$$\frac{v(M_{\nu_D} + M_{\nu_L})}{M_{\nu_a}} \le 1$$
 (資 11.1.5)

$$M_{\nu_a} = \left(\sigma_{\nu_a} - \sigma_s\right) \frac{I_{\nu}}{\nu_{\nu}} \cdot n_{\tau} \tag{9} \quad 11.1.6$$

ここで,

 $M_{\nu D}$: 合成後死荷重曲げモーメント

 M_{ν_L} : 合成後活荷重曲げモーメント

 σ_{ν_a} : 合成後許容応力度

 σ_s : 合成前死荷重応力度

 I_{ν} :合成後断面 2 次モーメント

y_ν:合成後中立軸からの距離

 n_7 : 鋼=1, コンクリート=7

3)クリープによる影響の照査

$$\frac{M_{V1}}{M_{V1}} \le 1$$
 (資 11.1.7)

$$M_{\nu_1} = -\frac{1}{n_1} \cdot \left(\frac{P_1}{A_{\nu_1}} \cdot \frac{I_{\nu_1}}{y_{\nu_1}} + M_1 \right) + \frac{E_{C1} \cdot \sigma_{\nu_{Cu}} \cdot \varphi_1}{E_C} \cdot \frac{I_{\nu_1}}{y_{\nu_1}}$$
 (§ 11.1.8)

ここで,

 n_1 :鋼=1, コンクリート= $\frac{E_S}{E_{C1}}$

 P_1 :クリープによる軸力

 M_1 : クリープによる曲げモーメント

 $I_{
u_1}$: クリープによる応力算出用合成断面 2 次モーメント

 A_{ν_1} : クリープによる応力算出用合成断面面積

 y_{ν_1} : クリープによる応力算出用合成断面の中立軸からの距離

 E_s :鋼のヤング係数

 E_c :コンクリートのヤング係数 $E_{C1} = E_c / (1 + \varphi_1 / 2)$

 $oldsymbol{arphi}_1$:鋼=0, コンクリート=クリープによる応力度算出用に用いるクリープ係数

 $\sigma_{v_{cu}}$:合成後クリープの影響と乾燥収縮の影響を除く主荷重によるコンクリート上縁応力

度

$$M_{\nu_{1a}} = \left\{ \sigma_{\nu_{1a}} - \left(\sigma_{s} + \sigma_{\nu_{D}} + \sigma_{\nu_{L}} \right) \right\} \frac{I_{\nu_{1}}}{y_{\nu_{1}}} \cdot n_{14} \tag{§ 11.1.9}$$

ここで,

 $\sigma_{\nu_{1a}}$: クリープ影響時の重ね合わせ許容応力度

 σ_{VD} :合成後死荷重応力度

 $\sigma_{\nu_{\mathcal{I}}}$:合成後活荷重応力度

 n_{14} :鋼=1, コンクリート=14

4)乾燥収縮による影響の照査

$$\frac{M_{V2}}{M_{V2a}} \le 1$$
 (資 11.1.10)

$$M_{\nu_2} = -n_2 \cdot \left(\frac{P_2}{A_{\nu_2}} \cdot \frac{I_{\nu_2}}{y_{\nu_2}} + M_2\right) + E_{c_2} \cdot \varepsilon_s \cdot \frac{I_{\nu_2}}{y_{\nu_2}} \tag{9} 11.1.11$$

ここで,

 n_2 : 鋼=1, コンクリート= $\frac{E_s}{E_{c2}}$

P, :乾燥収縮による軸力

M₃:乾燥収縮による曲げモーメント

 $I_{
u}$ 、: 乾燥収縮による応力算出用合成断面 2 次モーメント

A_{v2}:乾燥収縮による応力算出用合成断面面積

y_{v2}:乾燥収縮による応力算出用合成断面の中立軸からの距離

 $E_{C2} = E_C / (1 + \varphi_2 / 2)$

 $arphi_2$:乾燥収縮による応力度算出用に用いるクリープ係数

 $arepsilon_s$:鋼=1,コンクリート=乾燥収縮による応力度算出に用いる最終収縮度

$$M_{\nu_{1a}} = \left\{ \sigma_{\nu_{1a}} - \left(\sigma_{\mathcal{S}} + \sigma_{\nu_{\mathcal{D}}} + \sigma_{\nu} + \sigma_{\nu_{1}} \right) \right\} \frac{I_{\nu_{2}}}{y_{\nu_{2}}} \cdot n_{21}$$
 (\textcap{\text{\text{\text{\text{2}}}}} \tag{11.1.12})

ここで.

 σ_{V2a} : 乾燥収縮影響時の重ね合わせ許容応力度

 σ_{ν_1} : クリープによる応力度

 n_{21} :鋼=1, コンクリート=21

5)温度変化による影響の照査

$$\frac{vM_t}{M_{to}} \le 1 \tag{資 11.1.13}$$

$$M_t = -n_7 \left(\frac{P_t}{A_\nu} \cdot \frac{I_\nu}{y_\nu} + M_t \right) + E_C \cdot \varepsilon_t \cdot \frac{I_\nu}{y_\nu}$$
 (\text{\tilit{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\texi{\text{\text{\text{\text{\text{\texi{\text{\texi{\text{\texi{\ti}\titt{\text{\texi

ここで,

P. :温度差による軸力

M,:温度差による曲げモーメント

 $\varepsilon_t = \alpha \cdot t$

t:温度差

α :線膨張係数

$$M_{ta} = \left\{ \sigma_{ta} - \left(\sigma_{s} + \sigma_{vD} + \sigma_{vL} + \sigma_{v_{1}} + \sigma_{v_{2}} \right) \right\} \frac{I_{v}}{y_{v}} \cdot n_{7}$$
 (\text{\text{\text{\text{\text{\text{\text{2}}}}}}

ここで,

 σ_{ta} : 温度差影響時の重ね合わせ許容応力度

 σ_{ν_2} :乾燥収縮応力度

6)降伏に対する安全度の照査

$$\frac{M}{M_a} \le 1 \tag{§ 11.1.16}$$

$$M = (\sigma_S + \sigma_{\nu_D} + \sigma_{\nu_L} + \sigma_{\nu_1} + \sigma_{\nu_2} + \sigma_t) \frac{I_{\nu}}{y_{\nu}}$$
 (\text{\tilde{\text{\texi{\texi{\text{\texi{\text{\text{\text{\text{\tilit{\texi{\text{\texi{\text{\texi{\text{\texi{\texi{\texi{\texi{\texi{\tilit{\texi{\terit{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\tilit{\tilit{\tii}\titilt{\tilit{\tilit{\tilit{\tilit{\tii}\tilit{\tii}\xiii}\\tii}\\t

ここで,

 σ_r :温度差影響時応力度

$$M_a = \sigma_a \frac{I_v}{y_v} \tag{§ 11.1.18}$$

ここで,

 σ_a :降伏に対する安全度の照査に用いる鋼材の降伏点

11.2 降伏に対する安全度の照査に用いる係数について

道路橋示方書・同解説 Ⅱ 鋼橋編(平成8年12月)によれば、合成げたの降伏に対する安全度の照査に用いられる係数は以下の通りとされている。

- ・活荷重および衝撃に対して2倍
- ・死荷重に対して1.3倍
- 一方, 道路橋示方書・同解説 III コンクリート橋編(平成8年12月)(以下道示III)では、終局荷重作用時の荷重の組合せを以下の通り示されている。
 - · 1.3× (死荷重) +2.5× (活荷重+衝撃)
 - · 1.0× (死荷重) +2.5× (活荷重+衝撃)
 - · 1.7× (死荷重+活荷重+衝擊)

このため、両者の係数の統一がはかれないかという観点において検討を行ったが、両者の初めて規定 された時に参考とした文献(鋼橋;ASSHO,プレストレストコンクリート橋:DIN)が異なることが わかり、今後の検討課題の一つとしてあげるにとどめることした。

以下に、本検討で調査した、鋼橋、プレストレストコンクリート橋それぞれの規定の経緯を示す。

表-資 11.2.1 降伏に対する活荷重および死荷重の照査係数の変遷

鋼橋関連	コンクリート橋関連
	○昭和 30 年(1955 年) 「プレストレストコンクリート設計施工指針」※ ・2.0× (D+L)
○昭和 34 年(1959) 「鋼道路橋の合成桁設計施工指針」 ・1.6× (D+L+I)	
	○昭和 36 年(1961) 「プレストレストコンクリート設計施工指針」 ※ ・1.3 × D + 2.5 ×L ・1.3 × (D + E)
	1.3 へ (<i>D + E)</i> ○昭和 36 年 (1961) 「プレストレストコンクリート道路橋の設計につい て
	• 1.3 ×D +2.5 ×L • 1.3 × (D+E) • 1.8 [1.7] × (D+E)
○昭和 40 年(1965)	・1.5 [1.4] × (D+E) [] 内は,施工管理が特に良好の場合
「鋼道路橋の合成ゲタ設計施工指針」 ・1.3×D+2.0× (L+I)	
<<以降改正無し>>	○昭和 43 年(1968) 「プレストレストコンクリート道路橋示方書」 ・1.3 ×D +2.5 ×L ・1.8 × (D+L) ・1.3 × (D+E)
	○昭和 53 年(1978) 「道路橋示方書・同解説 Ⅲ コンクリート橋編」 ・1.3×D+2.5× (L+I)
	·1.0×D+2.5× (L+I) ·1.7× (D+L+I) ·1.0×D+1.3×E ·1.3× (D+E)
	(RC についても照査を規定) <<以下改正無し>>
	~~ QLL##C/

(1)鋼橋に関する規定の変遷

鋼橋に関しては、「鋼道路橋の合成桁設計施工指針」(昭和 34 年)に初めて合成げたの降伏点に対する安全性の照査が盛り込まれている。

合成桁の降伏点に対する安全度 22条

活荷重応力(衝撃を含む)と死荷重応力との和の 1.6 倍と架設方法によるプレストレスト応力との最も不利な組合せに対し、鋼桁のフランジ応力度は 2,300kg/cm² を、コンクリート断面の縁応力度は σ_{28} の 3/5 をこえてはならない。ただしこの場合 n=7.0 を用いるものとする。

(「鋼道路橋の合成桁設計施工指針」(昭和34年)より抜粋)

この時、係数の設定根拠については解説されていない。

次に「鋼道路橋の合成ゲタ設計施工指針」(昭和40年)において、本規定の改訂がなされた。

合成ゲタの降伏点に対する安全度 23条

活荷重応力 (衝撃を含む) の 2 倍と死荷重の 1.3 倍ならびにプレストレストによる応力と収縮,クリープによる応力との最も不利な組合せに対し,鋼ゲタのフランジ応力度は使用鋼材の降伏点応力度を,コンクリート断面の圧縮縁応力度は σ_{28} の 3/5 をこえてはならない。ただしこの場合 n の値は 16 条によるものとする。

(「鋼道路橋の合成ゲタ設計施工指針」(昭和40年)より抜粋)

この時も荷重係数についての解説は無かったが、「道路橋示方書・同解説Ⅱ 鋼橋編」(昭和 47 年)で、 AASHO (1971) 他の考え方によったことが解説されている。

以降、現行道示Ⅱに至るまで改正は行われていない。

(2)プレストレストコンクリート橋に関する規定の変遷

コンクリート橋に関しては、「プレストレストコンクリート設計施工指針」(昭和 30 年) に初めて破壊にたいする安全度の規定が盛り込まれた。

50条 破壊にたいする安全度

曲げ破壊にたいしては、静荷重、動荷重および温度変化の最も不利な組合せの荷重状態の 2 倍にたいして安全であることを確かめなければならない。

(「プレストレストコンクリート設計施工指針」(昭和30年)より抜粋)

この時の安全度2の根拠として、DIN4227 での 1.75 の安全度を同指針の別項で述べられている仮定に従って摺り合わせを行った値であると解説されている。

次に「プレストレストコンクリート設計施工指針」(昭和36年)で、第1回目の改正が行われている。

55条 破壊に対する安全度

破壊に対しては、次の荷重状態に対して断面が安全であることを確かめなければならない。

1.3×(静荷重) +2.5×(動荷重)

および

1.3× (静荷重および地震荷重の最も不利な組合せ)

(「プレストレストコンクリート設計施工指針」(昭和36年)より抜粋)

この時の解説として,一断面における破壊曲げ抵抗モーメントと弾性理論による設計曲げモーメントとを比較して安全度を検討したとしている。

以上は土木学会関連の規定であり、「建設省道路局長通達 プレストレストコンクリート道路橋の設計について」(昭和 36 年)で、先の「プレストレストコンクリート設計施工指針」に追加する形で、初めて建設省(日本道路協会)関連から規定が示された。

二)破壊に対する安全度

指針 55 条第1項による安全度を確かめるほか、次の荷重状態に対しても断面が安全であることを確かめなければならない。

1.8× (静荷重+動荷重)

また、地震時については、次の荷重状態に対して断面が安全であることを確かめなければならない。

1.5× (静荷重および地震荷重の最も不利な組合せ)

ただし,施工管理が得に良好である場合には,1.8 を 1.7 まで,1.5 を 1.4 まで減ずることができる。

(「建設省道路局長通達 プレストレストコンクリート道路橋の設計について」(昭和36年)より抜粋) これについても、解説は示されていない。

「プレストレストコンクリート道路橋示方書・解説」(昭和 43 年)では、先の道路局長通達の内容を整理する形で改正が行われた。

5.2.1 破壊に対する断面の安全度

破壊に対しては、次の荷重状態で断面が安全であることを確かめなければならない。

- (a) 1.3× (死荷重) +2.5× (活荷重)
- (b) 1.8× (死荷重+活荷重)
- (c) 1.3× (死荷重と地震の影響の最も不利な組合せ)

(「プレストレストコンクリート道路橋示方書・解説」(昭和 43 年) より抜粋)

これについても、各係数の決定根拠に関する解説は示されていない。

「道路橋示方書・同解説Ⅲ コンクリート橋編」(昭和 53 年)では、新たに照査式を追加し、活荷重に対して衝撃を考慮するなどの改正が行われた。

2.1.1 設計計算の原則

- (1) 部材の設計にあたっては、原則として設計荷重作用時および終局荷重作用時に対してそれぞれ部材断面の 応力度等を照査し、部材が安全であることを確かめなければならない。
- (2) (1)項に規定する設計荷重作用時および終局荷重作用時の荷重の組合せは、それぞれ次の通りとする。
 - 1) 設計荷重作用時の荷重の組合せは、共通編2.2 に規定する荷重の組合せとする。
 - 2) 終局荷重作用時の組合せは、次の通りとする。
 - (a) 1.3× (死荷重) +2.5× (活荷重+衝擊)
 - (b) 1.0× (死荷重) +2.5× (活荷重+衝撃)
 - (c) 1.7× (死荷重+活荷重+衝擊)
 - (d) 1.3× (死荷重+地震の影響)
 - (e) 1.0× (死荷重) +1.3× (地震の影響)

(「道路橋示方書・同解説皿 コンクリート橋編」(昭和53年)より抜粋)

この時の解説では、全ての荷重について合理的な係数を与える程十分な資料が得られてないとし、 従来のプレストレストコンクリート部材の設計で用いられていた範囲の荷重について、従来と同様な 値を用いるとしている。ただし、(c)については別項で施工に関する規定を設けたことで係数を減じ、 さらに死荷重の係数が 1.0 の場合の方が危険となる場合もあることからこれらの 2 つの照査を追加した としている。

以降、現行の道示Ⅲに至るまで改正は行われていない。