第5章 溶接補修結果

5.1 概要

スタッド溶接は、通常部材の組立後に施工することが多いことから、溶接補修 は現場作業を想定し、横向き(H)および上向き(O)の溶接姿勢とした、溶接方 法は現場溶接を想定して被服アーク溶接とし、溶接材料は耐溶接割れ性に優れて いるとされる低水素系の溶接棒(L-55/3.2mm)を使用した.溶接条件を表 3-3 に、 溶接施工状況を図 5-1、2 に示す.溶接補修は、偏肉によってフラッシュが形成さ れていない箇所に溶接ビードを盛ることを目標とし、溶接の始点および終点はフ ラッシュがとぎれている箇所近傍のフラッシュ部に重ねた.なお、溶接姿勢が横 向きのものについては、フラッシュが形成されていない箇所はスタッドの上側に 集中していることから、事実上はほぼ下向き姿勢で溶接を施工することができる.

5.2 溶け込み深さ

溶接補修後にスタッドを縦に切断し,溶着部断面をマクロ試験した.試験片種 類を表 5-1 に,試験結果を図 5-3~11 に示す.マクロ試験片は,各径について横 向き(H)上向き(O)補修なし(N)のそれぞれ2個ずつとした.マクロ試験の 結果,横向き上向きどちらの試験体においてもスタッドと母材の交点(ルート) は溶けていることが確認できた.補修溶接の溶着金属が,母材に溶け込む量は1 ~2mm程度であることから,外観検査において偏肉部分のアンダーカットが確認 でき,その深さが1~2mm程度のものであれば,溶接による補修が可能であると 考えられる.ただし,アンダーカットの深さが2mmを超える場合は,アンダーカ ットを溶接補修によって溶かし込むことができず,溶着金属の先端に欠陥として 空隙が残ることがある.

図 5-1 溶接補修横向き

図 5-2 溶接補修上向き

フタッドタ	信内钽度	横向き		上向き			補修なし			
スノリー住	開內在反	No.	o. 角度		No.	角度		No.	角度	
	大 (図 5-16)	1	150	0	3	150	0	5	150	0
		2	180	0	4	180	0	6	180	0
<i>ф</i>	中	7	100	0	9	100	0	11	100	0
Ψ 22	(図 5-17)	8	120	0	10	120	0	12	120	0
	小 (図 5-18)	13	30	٥	15	30	•	17	30	0
		14	60	0	16	60	•	18	60	0
	大 (図 5-19)	19	110	0	21	110	0	23	110	0
φ 19		20	140	0	22	140	•	24	140	0
	中 (図 5-20)	25	90	0	27	100	•	29	90	0
		26	100	0	28	90	0	30	100	o
	小 (図 5-21)	31	30	0	33	30	o	35	40	0
		32	60	0	34	60	o	36	60	0
	大 (図 5-22)	37	100	0	39	100	0	41	100	0
		38	130	0	40	120	•	42	110	0
φ 16	中 (図 5-23)	43	80	•	45	80	0	47	80	0
		44	90	•	46	90	0	48	90	0
	小 (図 5-24)	49	20	0	51	20	o	53	20	0
		50	30	0	52	30	0	54	30	0

-

表 5-1 試験片種類

図 5-3 φ22 偏肉大の断面マクロ

図 5-4 φ22 偏肉中の断面マクロ

図 5−5 φ22 偏肉小の断面マクロ

図 5-6 φ19偏肉大の断面マクロ

図 5−7 ϕ19 偏肉中の断面マクロ

図 5-8 φ19 偏肉小の断面マクロ

図 5-9 φ16 偏肉大の断面マクロ

図 5-11 φ16 偏肉小の断面マクロ

5.3 溶接補修による欠陥の発生状況

溶接補修を行ったスタッドの断面マクロの観察により,溶接による欠陥の発生 状況と補修効果について検討した.対象とした試験体のうち数体において,スラ グ巻き込み,ブローホールが観察された.図 5-12 にスラグ巻き込みの例を示す. また,スタッド溶接時に深いアンダーカットが存在するものについては,溶接補 修によってもそれを再溶融できず,空隙が内部に残されたものがあった(図 5-13). これらの欠陥の発生状況を,偏肉角度およびスタッド径で整理した結果を図 5-14 に示す.

横向き溶接補修について、φ16 については、有害と思われる欠陥は観察されな かった.φ19 では偏肉角度が大きいものにスラグ巻き込みやブローホールが観察 された.φ22 については偏肉角度に関わらず欠陥が観察された.φ22 については 横向きのスタッド溶接によってアンダーカットの発生したものが多かったが、溶 接によってもそのアンダーカットが補修できなかったことを示しているものと考 えられる.

上向き溶接補修について、 φ 16 については、横向き同様有害と思われる欠陥は 観察されなかった. φ 19 では偏肉角度が小さいものにスラグ巻き込み、大きいも のにブローホールが観察された. φ 22 については、偏肉角度が小さいものにスラ グ巻き込みが観察された. 上向き溶接補修による溶接欠陥の種類は、スラグ巻き 込みが多く観察された. これは溶接条件(電流,電圧)が低く冷却速度が速いた め、スラグがビード表面に出てくる前に、溶着金属内に取り残されたものと考え られる.

図 5-12 スラグ巻込みの例

図 5-13 溶け込み不足の例

図 5-14 溶接補修による欠陥の発生状況

5.4 磁粉探傷試験結果

各種試験に供する試験体全てについて磁粉探傷試験を行った.溶接補修ビード がショートビードとなること,溶接補修および打ち直し溶接により2度の熱履歴 が加えられることによる溶接割れが懸念されることから,磁粉探傷試験を実施し た.試験状況を図 5-15 に示す.

試験結果は、全試験体 116 体に溶接割れは発見されなかった.

図 5-15 磁粉探傷試験

5.5 硬さ試験結果

余盛りが包囲していない箇所の溶接補修を行った場合の材料硬化を確認する ために、溶接補修したスタッドのビッカース硬さ試験を行った.図 5-16 に示すよ うに、硬さ試験の計測位置は、補修溶接による材料硬化を確認するため補修溶接 部とし、補修溶接ビード表面近傍および補修溶接ビード下にて計測した.補修溶 接ビード表面付近は、表面から 1mm を基本として計測したが、ビード形状の凹凸 が大きく 1mm 下で計測できない場合は、表面から 2mm の位置とした.計測ピッ チは、補修溶接を行っていない場合と同じく、HAZ部については 0.5mm、その 他は 1.0mm とした.

S 1 :	補修溶接ビード表面下1mm
S 2 :	補修溶接ビード表面下2mm
В:	溶接補修ビード下

図 5-16 硬さ計測位置(補修溶接あり)

表 5-2,3 に硬さ試験結果を示し,図 5-17 にスタッド径毎の最高硬さを示す. 溶接補修ビード下においては,ほとんどが母材側の HAZ 部で最高硬さが発生して いるが,3 体は溶着金属である DEPO において発生している.スタッド軸部直下 の最高硬さは全て HAZ で発生している.スタッド径毎の最高硬さは同程度であり, スタッド径による最高硬さへの影響はみられない.

補修溶接部では最高硬さが 300H v 以下のものがあり,溶接補修を行っていない 場合に比べると低めの傾向である.一般に熱履歴を加えると最高硬さが低くなる といわれており,合致する結果である.

図5-17 硬さ試験結果(溶接補修あり)

	24.0	- ~~~			г			
試験体 番号	スタッド径 (mm)	偏肉角度	偏肉角度 (度)	 化 修 俗 接 姿 勢	計測	箇所	最 局 硬 さ (Hv)	最高健さ 発生箇所
1		大 大	150	横向き		S2	384	母材側 HAZ
2		大	180	横向き	1	S2	343	母材側 HAZ
3		大	150	上向き		S2	303	母材側 HAZ
4		大	180	上向き		S2	389	母材側 HAZ
5		中	100	横向き	}	S1	316	母材側 HAZ
6		中	120	横向き		S2	257	DEPO
1	22	中	100	上向き		S2	259	母材側 HAZ
2		中	120	上向き		S1	287	DEPO
3		小	30	横向き		S2	306	母材側 HAZ
. 4		小	60	横向き		S2	386	_母材側 HAZ
5		小	30	上向き		S2	362	母材側 HAZ
6		小	60	上向き	}	S2	390	母材側 HAZ
7		大	110	横向き]	S1	372	母材側 HAZ
8		大	140	横向き		S2	274	母材側 HAZ
9		大	110	上向き		S2	277	母材側 HAZ
10		大	140	上向き		S2	289	母材側 HAZ
11		中	90	横向き		S1	299	母材側 HAZ
12	10	中	100	横向き		S2	374	母材側 HAZ
13	15	中	100	上向き		S2	303	DEPO
14		中	90	上向き		S2	340	母材側 HAZ
15		小	30	横向き		S1	266	母材側 HAZ
16		小	60	横向き		S1	393	母材側 HAZ
17		小	30	上向き]	S2	333	母材側 HAZ
18		小	60	上向き		S1	360	母材側 HAZ
19		大	100	横向き		S2	382	母材側 HAZ
20		大	130	横向き		S2	348	母材側 HAZ
21		大	100	上向き		S2	327	母材側 HAZ
22		大	120	上向き]	S1	392	母材側 HAZ
23		中	80	横向き		S2	286	母材側 HAZ
24	16	中	90	横向き		S2	352	母材側 HAZ
25	- 16	中	80	上向き		S2	345	母材側 HAZ
26		中	90	上向き		S1	385	母材側 HAZ
27		小	20	横向き		S1	378	母材側 HAZ
28		小	30	横向き		S2	390	母材側 HAZ
29		小	20	上向き		S2	300	母材側 HAZ
30		小	30	上向き		S1	292	母材側 HAZ

表 5-2 硬さ試験結果(溶接補修あり) 計測箇所 S

S1: 補修溶接ビード表面下1mm

S2: 補修溶接ビード表面下2mm

	表 5-	3 硬さ言	試験結果	(溶接補修	あり)	計測箇所B	
試験	スタッド径		偏肉角	補修溶接	計測筒	最高硬さ	最高硬さ
体番	(mm)	偏肉角度	度	~ 姿勢	所	(Hv)	発生筒所
号			(度)	\$77			
1		大	150	横向き		287	HAZ
2		大	180	横向き		281	HAZ
3		大	150	上向き		265	HAZ
4		大	180	上向き		273	HAZ
5		中	100	横向き		301	HAZ
6	22	中	120	横向き		286	HAZ
1		中	100	上向き		300	HAZ
2		中	120	上向き		264	HAZ
3		小	30	横向き		239	HAZ
4		小	60	横向き		349	HAZ
5		小	30	上向き]	349	HAZ
6		小	60	上向き		320	HAZ
7		大	110	横向き		290	HAZ
8		大	140	横向き		278	HAZ
9		大	110	上向き		244	HAZ
10		大	140	上向き		259	HAZ
11	1	中	90	横向き	1	273	HAZ
12	10	中	100	横向き	Б	339	HAZ
13		中	100	上向き	В	288	HAZ
14		中	90	上向き	1	259	HAZ
15		小	30	横向き		306	HAZ
16		小	60	横向き		287	HAZ
17]	小	30	上向き		279	HAZ
18	1	小	60	上向き]	243	HAZ
19		大	100	横向き		284	HAZ
20]	大	130	横向き		377	HAZ
21		大	100	上向き		340	HAZ
22	1	大	120	上向き		385	HAZ
23	1	中	80	横向き	1	253	HAZ
24		中	90	横向き	1	337	HAZ
25	1 10	中	80	上向き	1	333	HAZ
26	1	中	90	上向き	1	340	HAZ
27	1	小	20	横向き	1	259	HAZ
28	1	小	30	横向き	1	415	HAZ
29	1	小	20	上向き	1	266	HAZ
30	1	小	30	上向き	1	339	HAZ

B : 溶接補修ビード下

図 5-18 は偏肉角度と最高硬さの関係を表したものである. 偏肉角度の大きさによ り溶接補修による溶接量が変わるが, 偏肉角度と最高硬さには明確な相関はれな い. 従って, スタッド溶接を行うことにより 400H v に達する著しい材料硬化は 生じるが, 溶接補修による溶接量の大小が, 材料硬化に影響を与えるものではな いといえる.

図 5-18 偏肉角度と最高硬さ(溶接補修あり)

5.6 引張試験結果

溶接補修を行ったスタッドについて引張試験を実施した.スタッド径 \$\phi16, \$\phi 19, \$\phi22 \cup 22 \cup 22 \cup 22 \cup 22 \cup 4 \cup 4 \cup 4 \cup 4 \cup 5 \cup 4 \cup 4 \cup 5 \cup 4 \cup 4 \cup 5 \cup 4 \cup 5 \cup 4 \cup 6 \cup 5 \cup 5 \cup 6 \cup 6 \cup 5 \cup 5 \cup 6 \cup 6 \cup 5 \cup 5 \cup 6 \cup 6 \cup 5 \cup 5 \cup 5 \cup 6 \cup 6 \cup 5 \cup 5 \cup 5 \cup 6 \cup 5 \cup 5

図 5-19 および表 5-4 に引張試験結果を示すが、すべての引張試験結果において、 引張強度の規格値 400~550MPa の範囲内であり、スタッドに要求される引張強度 を満足している.

引張強度はスタッド径φ22のほうが細い径に比べて高い傾向である.これは,ス タッド本体の材料特性の差によるものと考えられる.

引張強度は,溶接補修を行わない場合と比べてその違いはみられず,また溶接姿勢による違いもみられない.ほとんどの試験体が軸部で破断していることと,引 張強度は軸部の溶着面積分が溶着しているためと考えられ,余盛り部分は引張強 度には影響していないものと考えられる.

図 5-20,21 に示すように、 Φ22 で偏肉角度が 140°の試験体 1 体において、スタッドの根元で破断したが、その破面観察により未溶着部が確認され、溶着していたとみられる面積はスタッド軸部の 90%であった. 偏肉角度が大きい場合、溶着部に未溶着部分が出来やすいと考えられる. ただし、溶着面積の減少に伴う引張強度の低下はみられない.

マクロ試験および引張試験の結果では、偏肉のある場合にもスタッド軸部の断 面は溶着しており、かつ十分は引張強度を有することから、引張強度に関する限 り、偏肉がある場合でもスタッド継手の性能は十分である.あえて溶接により余 盛りを追加する必要はないように思われるが、余盛りの存在は疲労強度などにも 影響を与えるので、この点については、スタッド溶接に対する要求性能を総合的 に勘案し、別途検討を行う必要があると考える.

図 5-19 引張試験結果(溶接補修あり)

	スタッド 径 (mm)	偏肉程度	溶接補 修 姿勢	偏肉角 度	引 張 荷 重 (KN)	径 (mm)	引 張 強 度 (MPa)	規格値 (MPa)	破断位 置
1	22	大	横向き	170	204.0	21.9	542	400~	軸部
2			横向き	140	197.0	21.8	528	550	軸部
3			上向き	170	200.0	21.8	536		軸部
4			上向き	140	195.5	21.8	524		軸部
5]	中	横向き	100	204.5	21.9	543		軸部
6]		横向き	90	196.0	21.8	525		軸部
7			上向き	100	201.5	21.8	540		軸部
8			上向き	90	195.5	21.8	524		軸部
9		小	横向き	70	197.0	21.8	528		根元
10			横向き	60	195.5	21.8	524		軸部
11			上向き	50	197.0	21.8	528		軸部
12			上向き	60	201.5	21.8	540		軸部
13	19	大	横向き	120	137.5	18.8	495		
14			横向き	110	137.0	18.8	494		軸部
15			上向き	120	137.0	18.8	494		根元
16		 	上向き	110	138.0	18.8	497	j	軸部
17		中	横向き	100	136.5	18.7	497		軸部
18			横向き	90	135.0	18.7	492		
19	_		上向き	100	137.0	18.8	494	-	
20			上向き	90	136.0	18.8	490		軸部
21		小	横向き	70	135.0	18.7	492		軸部
22			横向き	40	137.5	18.8	495		軸部
23			上向き	70	134.5	18.7	490		軸部
24			上向き	136	136.0	18.8	490		軸部
25	16	大	横向き	110	100.0	15.8	510	-	軸部
26			横向き_	100	103.5	15.9	521		
27			上向き	110	100.0	15.9	504		
28			上向き	100	101.5	15.9	511	-	軸部
29	_	中	横向き	90	102.0	15.9	514	-	軸部
30			横向き	70	99.0	15.8	505		軸部
31	4		上向き	90	101.0	15.9	509	4	軸部
32	4		上向き	70	101.0	15.9	509	ł	軸部
33	4	小	横向き	40	96.5	15.8	492		
34	4		横向き	30	101.0	15.9	509	1	
35	4		上向き	40	99.5	15.9	501		軸部
36		1	上向き	30	100.0	15.9	504]	軸部

表 5-4 引張試験結果(溶接補修あり)

図 5-20 根元破断状況 (φ 22 偏肉角度 140°)

