6. ポンツーン方式案の試設計

6.1 試設計概要

ポンツーン方式による水中橋梁とは、トンネル状の水中橋梁本体を水面上に設置 した浮体構造物(ポンツーン)で支持する構造である。

水中橋梁端部は、接続する陸上構造物と剛結合とし、波力等の水平方向荷重に対 しては、水中橋梁本体の剛性と橋梁端部の結合部で受持ち、また、自重、浮力等の 鉛直方向荷重に対しては、ポンツーンの浮力を利用した鉛直バネで支持する構造で ある。

本試設計においては、下記の要領で検討を行った。なお、試設計は、全体構造系 の検討結果により、実現可能性のあるアーチ形状案を対象として行った。

なお、橋長はL=3.5kmとして検討を行った。

1) 全体構造系の検討

基本構造の抽出

- ②アーチ形状案と直線案の比較
- 2) ポンツーン設置基数及び設置位置の検討
- 3) 函本体の断面構造検討
- 4) 端部基礎の検討
- 5) 製作・施工
- 6) 今後の課題

図 6.1 全体一般図

6.2 全体構造系の検討

6.2.1 基本構造の抽出

ポンツーンを有する水中橋梁として考えられる基本構造案を抽出した。 延長3.5kmもある長大水中橋梁を対象に、波力等の外力に対して抵抗できる構造 として、下記の案を考えた。(図6.2参照)

①人工島設置による水中橋梁の中間固定案

②アーチ形状案

③ケーブル併用案

①案は、中間部に換気塔兼用の人工島を設置することにより、スパンを短くし外力に抵抗させる案である。当案の場合、水深が深い箇所に設置される人工島の規模はかなり大きくなり、水中橋梁とするメリットが小さい。

②案は、平面的にアーチ形状を背中合せとした案であり、上下線それぞれの交通 をそれぞれのアーチリブ内を通すものである。波力等の水平外力に対しては、アー チ効果により抵抗するものである。

③案は、直線に設置した水中橋梁本体を、鉛直方向に懸垂されたケーブルにより 支持する構造、または、ステイケーブルで固定する案である。

本検討では、実現性の高い構造として、②案のアーチ形状案を対象として検討す ることとした。

図 6-2 水中橋梁 基本構造案

6.2.2 アーチ形状案と直線構造案の比較

この章では、アーチ形状案に対する予備検討として、概略断面検討を行うものと し、直線構造案と比較することにより、アーチ形状とすることの有位性の確認を行 うものとした。

検討ケースは、下記の4ケースとし、断面計算はコンクリート断面 (σck=50N/mm2)として計算を行った。(図6.3参照)

- Model-1 直線(架台付き案)
- Model-2 アーチ形状案
- Model-3 直線(ポンツーン無し案)
- Model-4 直線(ポンツーン有り案)

表6.1に検討結果を示す。この結果をまとめると以下のとおりである。

- ①各案とも水中橋梁本体の断面は直径 φ 15m、部材厚d=1.0mとしているが、端部応力度に着目すると、直線構造案は70倍程度許容値を大きく超過するが、アーチ形状案は4倍程度の超過に抑えられる。ただし、アーチ形状案の応力度は、中央部が大きく12倍程度超過する。
- ②変位に着目すると、水平方向変位については、直線構造案については現実的ではない変位が発生することとなるが、アーチ形状案は8m程度となる。一方、 鉛直変位は、直線形状(ポンツーン無し)案も現実的でない変位が発生するが、ア ーチ案及び直線構造案(ポンツーン有り)案は、20m程度である。

以上より、アーチ形状案を採用することにより、直線構造案と比較して、断面力 (応力度)及び水平変位を大きく低減できる効果があることが確認された。また、 ポンツーンを利用しての水中橋梁をバネ支持することにより、有る程度、鉛直変位を抑 えることができるものと推測される。

図6.3 アーチ形状案と直線案の比較

表6.1 アーチ形状案と直線案の断面力等比較表

MODEL-1 直線(架台付き)案 コンクリート断面としての断面計算

断面力 ピックアップ

単位(kN,kN·m)

照査箇所		軸力	せん断力	せん断力	ねじりM	曲げM	曲げM		
		Nx	Sy	Sz	Mx	My	Mz	決定	ケース
			水平方向	鉛直方向		水平軸廻	鉛直軸廻		
端部		90695	85776	18822	63189	-3043838	14295191	暴風時	CASE - 18
節点 1		-93068	85776	-29897	63189	4911468	14295191	暴風時	CASE-15
架台部		95484	128672	-45189	0	11290449	32166334	暴風時	CASE-17
節点 11		-92319	128672	28666	0	-7162356	32166334	暴風時	CASE-16
中央部		95484	0	0	0	-5655380	-16085746	暴風時	CASE-17
節点 19		-92319	0	0	0	3587647	-16085746	暴風時	CASE-16

コンクリート断面としての断面計算

コンクリート強度 $\sigma ck = 50 \text{ N/mm2}$

1)端部

断面 外径 φ 15m、外壁厚1.0m

曲げ応力度

$\sigma =$	<u>Nx</u> A	-+-	My I y	- ×	У	$+\frac{Mz}{Iz}$	×z	
=	<u>93068 × 10^3</u> 71 × 10 [^] 6	-+-	<u>4911468 × 10^6</u> 1086 × 10^12	- ×	7500	+ <u>142</u> 13	<u>95191 × 10^6</u> 806 × 10 [^] 12	7500
=	2	+	34			+	82	

= 118 N/mm2 > $\sigma ck/3=17$ N/mm2

せん断応力度

外径 φ 15m、外壁厚1.0mの断面を、断面積が同じ矩形(11.8×11.8×1.0m)に換算して照査する。

.	Sy		Sz		M×		
ι	2×b×	t +	2×b×t		b×b	×t	
=	<u>85776 ×</u> 2 × 11800	$\frac{10^3}{\times 1000} + \frac{10^2}{2}$	0 2 × 11800 × 1000	5+	63189 × 11800 × 118	<u>10^6</u> 00 × 1000	
=	4	+	0		+	1	
=	5	N/mm2	> τ a=0.6	5 N	l/mm2(平均ゼ	ん断応力	度)

2)架台部

曲げ応力度

$$\sigma = \frac{Nx}{A} + \frac{My}{Iy} \times y + \frac{Mz}{Iz} \times z$$

$$= \frac{92319 \times 10^{3}}{71 \times 10^{6}} + \frac{11290449 \times 10^{6}}{1086 \times 10^{12}} \times 7500 + \frac{32166334 \times 10^{6}}{1306 \times 10^{12}} \times 7500$$

$$= 1 + 78 + 185$$

$$= 264 \quad N/mm2 > \sigma ck < 3 = 17 \quad N/mm2$$

せん断応力度

外径φ15m、外壁厚1.0mの断面を、断面積が同じ矩形(11.8×11.8×1.0m)に換算して照査する。

$$\tau = \frac{Sy}{2 \times b \times t} + \frac{Sz}{2 \times b \times t} + \frac{Mx}{b \times b \times t}$$

= $\frac{128672 \times 10^{3}}{2 \times 11800 \times 1000} + \frac{0}{2 \times 11800 \times 1000} + \frac{0}{11800 \times 11800 \times 1000}$
= 6 + 0 + 0
= 6 N/mm2 > $\tau a=0.65$ N/mm2(平均せん断応力度)

3)中央部

断面 外径 φ 15m、外壁厚1.0m

曲げ応力度

$$\sigma = \frac{Nx}{A} + \frac{My}{Iy} \times y + \frac{Mz}{Iz} \times z$$

$$= \frac{92319 \times 10^{3}}{71 \times 10^{6}} + \frac{5655380 \times 10^{6}}{1086 \times 10^{12}} \times 7500 + \frac{16085746 \times 10^{6}}{1306 \times 10^{12}} \times 7500$$

$$= 2 + 39 + 92$$

$$= 133 \text{ N/mm2} > \sigma \text{ ck} \times 3 = 17 \text{ N/mm2}$$

せん断応力度

外径φ15m、外壁厚1.0mの断面を、断面積が同じ矩形(11.8×11.8×1.0m)に換算して照査する。

τ =	<u> </u>	+	<u>Sz</u> 2×b×t +	<u> </u>	×t
=	0 2×11800>	< 1000 +	<u>0</u> 2×11800×1000 +	0 11800 × 1180	00 × 1000
=	0	+	0	+	0
=	0	N/mm2	> τ a=0.65	N/mm2(平均せ	ん断応力度)

MODEL-2 アーチ案 コンクリート断面としての断面計算

断面力 ピックアップ

単位(kN,kN·m)

照査箇所		軸力 Nx	せん断力 Sy 水平方向	せん断力 Sz 鉛直方向	ねじりM Mx	曲げM My 水平軸廻	曲げM Mz 鉛直軸廻	決定	ケース
基部	畄狆┙	923250	-62	29753	-4430621	7144207	613475	暴風時	CASE-7
節点101	부개파미이	-923250	-62	29753	-4430621	7144207	613475	暴風時	CASE-7
ストラット部	出行业	874079	23636	16376	1933854	-3599183	-6562855	暴風時	CASE-10
節点107	부꼬마								
アーチ中央	_/+	36896	27807	-62956	0	-9899146	-24246490	暴風時	CASE-18
節点118	에디 우리	-36896	27807	-62526	0	-9723275	-27246490	暴風時	CASE-17

コンクリート断面としての断面計算

コンクリート強度
$$\sigma ck = 50 N/mm2$$

1)基部

断面 外径 φ 15m、外壁厚1.0m

曲げ応力度

$\sigma =$	<u> </u>	+	<u>Му</u> Іу	-ху	$+\frac{Mz}{Iz}$	X z	
=	<u>923250 × 1</u> 71 × 10	$\frac{10^{3}}{6} + -$	<u>7144207 × 10^6</u> 1086 × 10 [^] 12	— × 750	0 + <u>61</u>	<u>3475 × 10^6</u> 306 × 10^12	× 7500
=	13	+	49		+	4	
=	66	N/mm2	> σck∕	3=17 N	l/mm2		

せん断応力度

$\tau =$	Sy		Sz	<u> </u>	<u>x</u>
ι —	2×b×	t	2×b×t	b×b	×t
_	23636 × 1	<u>10^3 + </u>	0 +	1933854	× 10^6
	2×11800>	× 1000 ′	2×11800×1000 '	11800 × 118	300 × 1000
=	1	+	0	+	13
=	14	N/mm2	$> \tau$ a=0.65	N/mm2(平均t	せん断応力度)

2)ストラット部

断面 外径φ15m、外壁厚1.0m

曲げ応力度

$\sigma =$	<u> </u>	+ -	<u>Му</u> Iу	-ху	$+\frac{Mz}{Iz}$	X z	
=	874079 × 10 71 × 10 [°] 6	<u>`3</u> +-	<u>3599183 × 10^6</u> 1086 × 10 [^] 12	- × 7500	+ <u>656</u> 13	<u>2855 × 10^6</u> 06 × 10 [^] 12	7500
=	13	+	49		+	38	

= 100 N/mm2 > $\sigma ck/3=17$ N/mm2

せん断応力度

外径 φ 15m、外壁厚1.0mの断面を、断面積が同じ矩形(11.8×11.8×1.0m)に換算して照査する。

	Sy		Sz	Mx	
ι —	2×b×	t '	2×b×t	b×b×t	
	23636 ×	10^3 _	0	<u>1933854 × 10</u>	<u>`6</u>
_	2×11800	×1000 ′ 2	×11800×100	00 ' 11800 × 11800 ×	1000
=	1	+	0	+ 1	4
=	15	N/mm2	> τ a=0	65 N/mm2(平均せん)	f広力度)

3)アーチ中央

断面 外径 \$ 15m × 2、外壁厚1.0m

曲げ応力度

$$\sigma = \frac{Nx}{A} + \frac{My}{Iy} \times y + \frac{Mz}{Iz} \times z$$

$$= \frac{36896 \times 10^{\circ}3}{71 \times 10^{\circ}6} + \frac{9899146 \times 10^{\circ}6}{1086 \times 10^{\circ}12} \times 7500 + \frac{24246490 \times 10^{\circ}6}{1306 \times 10^{\circ}12} \times 7500$$

$$= 13 + 49 + 139$$

$$= 201 \text{ N/mm2} > \sigma \text{ ck} \times 3 = 17 \text{ N/mm2}$$

せん断応力度

外径 φ 15m×2、外壁厚1.0mの断面を、断面積が同じ矩形(11.8×34.0×1.0m)に換算して照査す

τ1=	<u>— Sy</u> +—		Mx
	2×0×1	2×0×1	DXDXt
=	27807 × 10^3	0 +	0
	2 × 34000 × 1000	2 × 11800 × 1000	$34000 \times 11800 \times 1000$
=	1 +	0	+ 0
_	1 N/mm2	> T a=0.65	N/mm2(亚均サム)新広力度)
	i in/initz	/ L a=0.05	N/1102(十圴ビル朝心力反)
	<u> </u>	e-	Ma
τ 2=		<u> +</u>	
τ 2=	<u></u>	<u> </u>	b×b×t
τ 2= =	$\frac{3y}{2 \times b \times t} + \frac{y}{2 \times $	$\frac{32}{2 \times b \times t} + \frac{62956 \times 10^{3}}{2} + \frac{32}{2}$	$\frac{Mx}{b \times b \times t}$
τ 2= =	$\frac{5y}{2 \times b \times t} + \frac{0}{2 \times 34000 \times 1000} + \frac{1}{2 \times 340000 \times 1000} + \frac{1}{2 \times 34000 \times 1000} +$	$\frac{52}{2 \times b \times t} + \frac{62956 \times 10^{3}}{2 \times 11800 \times 1000} + \frac{52}{2} + \frac{52}{2$	$\frac{1000}{1000} \times \frac{1000}{1000}$
τ 2= = =	$\frac{-\frac{5y}{2 \times b \times t} + -}{\frac{0}{2 \times 34000 \times 1000} +}$	$\frac{32}{2 \times b \times t} + \frac{62956 \times 10^{3}}{2 \times 11800 \times 1000} + 3$	$\frac{1000}{1000} \times \frac{1000}{1000} + 0$
τ 2= = = =	$\frac{-\frac{5y}{2 \times b \times t} + -}{\frac{0}{2 \times 34000 \times 1000} +}$ $0 +$ $3 N/mm^{2}$	$\frac{32}{2 \times b \times t} + \frac{62956 \times 10^{3}}{2 \times 11800 \times 1000} + \frac{3}{2 \times 1000}$	<u>NXX</u> <u>b×b×t</u> <u>0</u> 34000×11800×1000 + 0 N/mm2(平均せん)断応力度)

MODEL-3 直線(ポンツーン無し)案 コンクリート断面としての断面計算

断面力 ピックアップ

単位(kN,kN・m)

照査箇所		軸力 Nx	せん断力 Sy 水平方向	せん断力 Sz 鉛直方向	ねじりM Mx	曲げM My 水平軸廻	曲げM Mz 鉛直軸廻	決定	ケース
		86778	300235	66888	0	-39018516	175137200 175137200	暴風時	CASE-18 CASE-16
			000200	00000		00010010			
中央部		86778	0	0	0	1950 <u>9258</u>	-87568600	暴風時	CASE-18
節点 19		-86778	0	0	0	19509258	-87568600	暴風時	CASE-16

コンクリート断面としての断面計算

コンクリート強度 $\sigma ck = 50 \text{ N/mm2}$

1)端部

断面 外径 φ 15m、外壁厚1.0m

曲げ応力度

σ=	Nx A	-+-	My I y ×	У	$+\frac{Mz}{Iz}$	× z	
=	86778 × 10 [^] 3 71 × 10 [^] 6	-+-	<u>39018516 × 10⁶</u> × 1086 × 10 ¹²	7500	+ <u>1751</u> 13	$\frac{37200 \times 10^{-6}}{06 \times 10^{-12}} \times$	7500
=	2	+	269		+ 1	005	

= 1276 N/mm2 > $\sigma ck/3 = 17$ N/mm2

せん断応力度

外径 φ 15m、外壁厚1.0mの断面を、断面積が同じ矩形(11.8×11.8×1.0m)に換算して照査する。

	Sy	⊥	Sz	<u> </u>
ι —	2×b×	t +	2×b×t	b×b×t
=	<u>300235 ×</u> 2 × 11800	<u>× 10^3</u> +	0 2 × 11800 × 1000	0 11800 × 11800 × 1000
=	13	+	0	+ 0
=	13	N/mm2	> τa=0.65	N/mm2(平均せん断応力度)

2)中央部

. 断面 外径φ15m、外壁厚1.0m

曲げ応力度

せん断応力度

τ =	<u> </u>	 +	$\frac{Sz}{2 \times b \times t}$ +	M	x o×t
=	0 2×11800	× 1000 +	0 2 × 11800 × 1000 +	0 11800 × 11) 800 × 1000
=	0	+	0	+	0
=	0	N/mm2	> τ a=0.65	N/mm2(平均·	せん断応力度)

MODEL-4 直線(ポンツーン有り)案 コンクリート断面としての断面計算

断面力 ピックアップ

単位(kN,kN・m)

照査箇所		軸力 Nx	せん断力 Sy 水平方向	せん断力 Sz 鉛直方向	ねじりM Mx	曲げM My 水平軸廻	曲げM Mz 鉛直軸廻	決定	ケース
端部		86778	383657	8964	0	-1211398	227116944	暴風時	CASE-18
節点 1		-86778	383657	7872	0	-777682	227116944	暴風時	CASE-16
1/4位置	**	86778	225104	20110	0	-2713179	27804062	暴風時	CASE-18
節点 7	アレンノーン	-86778	225104	20399	0	-2934649	27804062	暴風時	CASE-16
中央部	***	86778	27807	-23845	0	-4860550	-117620336	暴風時	CASE-18
節点 19	ע-ר כיוץ	-86778	27807	-23845	0	-4749819	-117620336	暴風時	CASE-16

コンクリート断面としての断面計算

コンクリート強度 gck=50 N/mm2

1)端部

断面 外径 φ 15m、外壁厚1.0m

曲げ応力度

σ=	<u> </u>	+	My I y	—× y	$+\frac{Mz}{Iz}$	× z	
=	86778 × 1 71 × 10	<u>0^3</u> +—	<u>1211398 × 10^6</u> 1086 × 10^12	— × 7500	+ <u>2271</u> 13	$\frac{16944 \times 10^{6}}{06 \times 10^{12}} \times$	7500
=	2	+	9		+ 13	304	
=	1315	N/mm2	> σck∕	′3=17 N∕r	mm2		

せん断応力度

外径 φ15m、外壁厚1.0mの断面を、断面積が同じ矩形(11.8×11.8×1.0m)に換算して照査する。

	Sy		Sz	Mx			
ι —	2×b×	t +	2×b×t	b×b	o×t		
=	<u>383647></u> 2×11800	< <u>10^3</u> +- ×1000+-	0 2 × 11800 × 1000 +	0 11800 × 118	300 × 1000		
=	17	+	0	+	0		
=	17	N/mm2	> τ a=0.65	N/mm2(平均1	さん断応力度)		

2)1/4位置ポンツーン部

断面 外径φ15m、外壁厚1.0m

曲げ応力度

せん断応力度

外径φ15m、外壁厚1.0mの断面を、断面積が同じ矩形(11.8×11.8×1.0m)に換算して照査する。

+ —	Sy	1	Sz	Mx			
ι —	2×b×	t +	2×b×t	b×b×t			
=	225104 ×	<u>< 10^3 +</u>	0	0			
	2×11800	×1000 ·	2×11800×1000	11800 × 11800 × 1000			
=	10	+	0	+ 0			
=	10	N/mm2	$> \tau$ a=0.65	N/mm2(平均せん断応力度)			

3) 中央部

断面 外径 φ 15m、外壁厚1.0m

曲げ応力度

せん断応力度

外径 φ 15m、外壁厚1.0mの断面を、断面積が同じ矩形(11.8×11.8×1.0m)に換算して照査する。

	Sy		Sz		Mx			
ι —	2×b×	t – – – – – – – – – – – – – – – – – – –	2×b×t	k	o×b×	t		
=	27807 × 2 2 × 11800 2	10 [^] 3 × 1000 + -	0 2 × 11800 × 1000 +	11800>	0 <11800	× 1000		
=	2	+	0	4	F	0		
=	2	N/mm2	$> \tau$ a=0.65	N/mm2(洱	ジロン	(断応力度)		

6.3 ポンツーン設置基数及び設置位置の検討

本章では、アーチ形状案を対象として、ポンツーン設置基数及び配置の検討結果を示 す。

検討は下記のとおり行った。

(1) 死荷重と浮力のバランスから決定される

最初に、水中橋梁本体断面を建築限界から決定される直径 φ 13mに対して、 死荷重と浮力のバランスから決定されるポンツーンの基数を算出した。その結果、 ポンツーン基数が15基必要となった。

一方、水中橋梁本体断面の直径をφ15mに変更し、同様にポンツーン基数を歳出した結果、5基必要との結果を得た。(図6.4参照)

なお、各ケースのポンツーン間隔は下記のとおりとなる。 5基配置案 ポンツーン間隔 800m程度 15基配置案 ポンツーン間隔 400m程度

(2)上記の結果を踏まえ、ポンツーン基数を5,15の3ケースについて、応力度検 討を行った。(図6.5参照)

その結果を、表6.2に示す。

同条件の荷重状態での比較において、両者に際立った応力度の差は見られない結果となった。

以上の検討結果を踏まえ、経済性及び、航路幅の制約を考慮し、ポンツーン基数を5 基とし、平面配置は延長方向にほぼ均等配置となるよう設定した。

なお、検討に用いたポンツーン形状は下記の寸法を想定した。 小判型ポンツーン 25.0×45.0×10.5m(深) 支柱 φ10.0×0.5m(厚)

図6.4 鉛直方向の釣合いから算出されるポンツーン基数の比較

図6.5 ポンツーン基数及び配置検討

表6.2 ポンツーン基数及び配置検討 応力度総括表

一致子はビックアッフ値(暴風時)を示

·			-					_ 単位(kN ×	1000,kN · m	n × 1000)			単位(N	l/mm2)	
				<u>変位量(m</u>	um)	1 軸力	世ん断力	せん断力	ねじりM	曲げM	曲げM		コンクリート	断面としての応力	度
横討ケース	解析額果ビックアップ		構軸方向	直角方向	鉛直方向	Nx	Sy <u>水平方向</u>	Sz 鉛直方向	Мх	My 水平軸廻	Mz 鈴直熱頭	<u></u> 曲け	広力度 許容圧縮応力度	<u> </u>	ん新応力度 許容平均せん断応力度
ケース1		基部 (節点101)				-923.3	0.1	29.8	~4430.6	7144.2	613.5	66		14	
ポンツーン基数 5基	鉛直波力を含む全て	ストラット部 (節点107)	1176	3327	14608	874.1	23.6	16.4	1933.9	-3599.2	-6562.9	100	17	15	0.65
		アーチ中央 (節点119)	0	7816	26239	-36.9	27.8	-62.5	0.0	-9723.3	-27246.5	201		3	
ケース2		基部 (節点101)				-923.9	-0.1	-14.4	-740.8	3884.5	611.5	44		7	
ポンツーン基数 15基	鉛直波力を含む全て	ストラット部 (節点107)	1131	3319	11531	-874.7	23.6	-16.8	-659.9	5934.8	-6554.1	92	17	. 6	0.65
· · ·		アーチ中央 (節点119)	0	7828	7610	0.0	30.0	-28.3	0.0	-6027.2	-26198.5	191		1	
ケース3		基部 (節点101)				923.9	-0.1	-1.6	-251.4	1338.6	611.5	26		8	
ボンツーン基数 15基	鉛直波力を除く全て	ストラット部 (節点107)	19	449	5213	600.5	0.4	-22.6	-86.2	-4456.0	-1145.3	47	17	6	0.65
		アーチ中央 (節点119)	0	5813	702	0.0	1.7	-43.7	0.0	-5692.4	-11232.6	104		ť	

水中橋梁径 ϕ 13.0mの場合の必要ポンツーン基数

水中橋梁の浮力との釣合い

ポンツーン部を除いた水中橋梁本体部のみで、浮力との釣合いを検討する。

1. 単独部の鉛直方向荷重強度

直径13.0m,延長6273m

1) 死荷重

	断面積			
	π /4*(13.0^2-11.0^2)	=	37.7	
	1.0*8.5	=	8.5	
	0.8*1.7	=	1.4	
	1.0*9.5	=	9.5	
	0.8*2.5	=	2.0	
	断面積合計	=	59.1	m2
	单重_2.5 tf/m3			
	橋体重量	=	147.8	
	諸設備	=	3.0	
	合計	=	150.8	tf∕m
古				
叩王	0.35*9.0+0.35*1.0	= .	3.5	tf∕m
活荷	重合計	=	154.3	tf∕m
カ				
	- π /4*13.0 [^] 2*1.03	=	-136.7	tf∕m
本部の	の鉛直方向荷重強度			

2. 一体部の録

直径13.0m*2,延長500m

1) 死荷重

2)活

3)死

4)浮

断面積			
π /4*(13.0^2-11.0^2)*2	=	75.4	
1.0*8.5*2	=	17.0	
0.8*1.7*2	=	2.8	
1.0*9.5*2	_ =	19.0	
0.8*2.5*2	=	4.0	
1.0*10.0*2	=	20.0	
断面積合計	=	138.2	m2
単重 2.5 tf/m3			
橋体重量	=	345.5	
諸設備	=	6.0	

	合計	=	351.5	tf∕m
2)活荷重				
	(0.35*9.0+0.35*1.0)*2	=	7.0	tf∕m
3) 死活荷	重合計	=	358.5	tf∕m
4)浮力	-(π /4±13 0 ² 2±13 0±13 0)±1 03	_	210.0	15 /
	$(\pi/4^{+10.0} 2^{+10.0^{+10.0}})^{+1.00}$	-	510.0	u> m

3. 水中橋梁と浮力の釣り合い

死荷重+活荷重 合計				
154.3*6273		=	967924	tf
351.5*500		=	175750	
合計	W 1	=	114367	tf

浮力 合計

総合計		W		130755	tf
	合計	W2	=	-1012919	tf
	-310.8*500		=	-55400	
	-136.7*6273		=	-57519	tf
() / /					

以上より、上記Wに見合う浮力をもつポンツーンを必要とする。

4. ポンツーン形状, 個数の検討

(1). 小判型25. 0 * 45. 0 * 10. 5m
 (支柱断面 φ10. 0m * 0. 5m)

1)自重

ポンツーン	自重			
	(π/4*25.0 ² +20.0*25.0)*0.5*2.5	=	1239	tf/基
	0.3*190.0*10.0*2.5	=	1425	
支柱自重				
	$\pi/4*(10.^2-9.0^2)*22.5*2.5$	=	839	tf/基
A =1				
台計		=	3503	tf/基
2) 資 古				
こう デ J ポンツーン				
~~ <i>_</i>	$-(\pi/4*25^2+20*25)*10.5*1.03$	=	-10716	tf/基
支柱自重				
	-π/4*10.0 ² *22.5*1.03	=	-1820	tf/基
合計		=	-12536	tf/基
				++
3)合計			-9033	tf/基

よって、当ポンツーン形状での必要個数は、下記のとおりとなる。

n = 130755/9033 = _____ 15 基

水中橋梁径 φ15.0mの場合の必要ポンツーン基数

水中橋梁の浮力との釣合い

ポンツーン部を除いた水中橋梁本体部のみで、浮力との釣合いを検討す る。

1. 単独部の鉛直方向荷重強度

直径15.0m,延長6273m

1) 死荷重

	断面積			
	$\pi/4*(15.0^2-13.0^2)$	=	44.0	
	1.0*10.5	=	10.5	
	0.8*2.7	=	2.2	
	1.0*11.5	=	11.5	
	0.8*3.5	=	2.8	
	断面積合計	=	71.0	m2
	単重 2.5 tf/m3			
	橋体重量	=	177.5	
	諸設備	=	3.0	
	읍따 合計	=	180.5	tf∕m
a) 'T # #				
2) 沽何里	0 25+0 0 0 25+1 0		25	+f /m
	0.35*9.0+0.35*1.0	-	5.5	uz m
3) 死活荷雪	〔 合計	=	184.0	tf∕m
4)浮力	$-\pi/4*15.0^{2}*1.03$		-182.0	tf∠m
	λ/ ++10.0 2+1.00		102.0	
一体部の鉛	直方向荷重強度			
	直径15.0m * 2, 延長500m			
1) 死荷重				
	断面積			
	π/4*(15.0^2-13.0^2)*2	=	88.0	
	1.0*10.5*2	=	21.0	
	0.8*2.7*2	=	4.4	
	1.0*11.5*2	=	23.0	
	0.8*3.5*2	=	5.6	
	1.0*12.0*2	=	24.0	
	断面積合計	=	166.0	m2
	単重 2.5 tf/m3			
	橋体重量	=	415.0	

2. -

断面積			
π/4*(15.0^2-13.0^2)*2	=	88.0	
1.0*10.5*2	=	21.0	
0.8*2.7*2	=	4.4	
1.0*11.5*2	=	23.0	
0.8*3.5*2	=	5.6	
1.0*12.0*2	=	24.0	
断面積合計	=	166.0	m2
単重 2.5 tf/m3			
橋体重量	=	415.0	

	諸設備 合計	= =	6.0 421.0	tf∕m
2)活荷重	(0.35*9.0+0.35*1.0)*2	=	7.0	tf∕m
3) 死 活 荷 重	自計	=	428.0	tf∕m
4)浮力				

 $-(\pi/4*15.0^2+15.0*15.0)*1.03 = -413.8$ tf/m

3. 水中橋梁と浮力の釣り合い

総合計

死荷	重+活	荷重	合計				
		184.0*	⊧6273		=	1154232	tf
		428.0*	⊧500		=	214000	
		合計		W1	=	1368232	tf
浮力	合計						

-182.0*6273	:	=	-1141686	tf
-413.8*500	:	=	-206900	
合計	W2 :	=	-1348586	tf
	W :	_	19646	tf

以上より、上記Wに見合う浮力をもつポンツーンを必要とする。

4. ポンツーン形状, 個数の検討

- (1). 小判型25. 0*45. 0*10. 5m
 (支柱断面 φ10. 0m*0. 5m)
 - 1)自重

	ポンツーン自	重			
		(π)	=	1239	tf/基
	支柱白重	/4*25.0 2+20.0*25.0)*0.5*2.5 0.3*190.0*10.0*2.5	=	1425	
	~ []]	$\pi/4*(10.^2-9.0^2)*22.5*2.5$	=	839	tf∕基
	合計		-	3503	tf∕基
2) 浮 力 ポンツーン				
		-(π/4*25 ² +20*25)*10.5*1.03	=	-10716	tf/基
	支柱自重				
		-π/4*10.0 [~] 2*22.5*1.03	=	-1820	tf/基
	合計		=	-12536	tf∕基
3)合計			-9033	tf∕基

よって、当ポンツーン形状での必要個数は、下記のとおりとなる。

n = 19646/9033	= _	2.1 基
	5	基を配置する。

6.4 函本体の断面構造検討

6.4.1 検討概要

函本体として使用する材料は、前項までの検討結果より、RC構造物では応力的 に厳しいことから、函本体断面として<u>鋼・コンクリート合成断面</u>を適用するものと して検討を行うものとする。

材料条件は下記のとおりとした。

コンクリート σck=50 N/mm2

鋼材 SM570材まで使用可とする。

(最大板厚をt=100mmとする)

上記の材料条件により、合成断面構造について検討した結果、前項までの検討に 用いた水中橋梁本体径 φ 15m では断面を構成することが困難であるため、径を φ 18 mまで拡大することとした。

径を拡大した後の検討結果を表6.3に示す。

同表に示すとおり、本材料条件で許容値を満足する断面構造は、円筒状の鋼殻内 にコンクリートを充填した合成構造であり、鋼殻を構成する板厚は全てt=100mmで ある。 表6.3 函本体断面構造に関する比較表

〈材料諸元〉

項目	諸	値
コンクリート設計基準強度	50	N/mm2
コンクリートの弾性係数	33000	N/mm2
鋼材との弾性係数比	15	

〈断面力〉

軸力	0	KN
曲げモーメント	2. 028E+7	KNm

	断面	応 力 度
R C 断 面 外 鋼 板 t=100mm	T=100mm 1000 16000	σc = 37 > 17 N/mm2 OUT σs'=555 > 255 N/mm2 OUT σs =745 > 255 N/mm2 OUT
合成断面 外内鋼板 t=100mm リブt=100mm (56本)	T=100mm 1000 16000 1000	σc = 18 > 17 N/mm2 OUT σs'=256 > 255 N/mm2 OUT σs = 287 > 255 N/mm2 OUT
合成断面 外内、中間鋼 板 t=100mm リブt=100mm (56本)	T=100mm 16000 1000	σc = 14 < 17 N/mm2 Ok σs'=199 <255 N/mm2 Ok σs =217 <255 N/mm2 Ok

6.4.2 断面力の解析

水中橋梁(ポンツーン形式) 静的断面力算出時荷重及び荷重組合せ

1. 構造諸元

1) コンクリート設計基準強度

50N/mm2		
E=	3.300E+07	(kN/m2)
G=	1.435E+07	(kN/m)

2) 函本体断面定数

a)単独部			
A =	87.8	(m2)	
y=	1939.0	(m4)	※水平軸回り
z=	2395.0	(m4)	※鉛直軸回り
J =	3872.0	(m4)	
b)一体部			
A =	176.0	(m2)	
1 y=	3878.0	(m4)	※水平軸回り
z=	20094.0	(m4)	※鉛直軸回り
J ==	7744.0	(m4)	

3) ポンツーンの鉛直バネ定数

K=排水重量/喫水 K= $(\pi/4 \times 25^2 + 20 \times 25) \times 8.5 \times 1.03 \times 9.81 / 8.5$ = 10012.1 (kN/m)

水中橋梁(ポンツーン形式) 静的断面力算出時荷重及び荷重組合せ

- 2.荷重
 - 1) 自重 2) 浮力 3) 活荷重 W=3.5 (kN/m2) 4) 潮位差 +0.63m -0.85m 5) 潮流力 V=3.5 (m/s) 6) 波力 ・モリソン式による波力の算出 ・ポンツーン部および柱部: P=w#H*Ld 34784.0528 + 36830.1735 = 71614.23 (kN)
 - 7)風荷重
 (道示を準用:W=3.0(kN/m2))
 8)温度変化(水中部材)
 (±5℃)

※SI単位系への変換は10倍する

- 3. 荷重組合せ
 - 1)常時 (許容応力度の割増係数1.00)
 死+浮+活+潮流力+潮位差
 - 2)暴風時 (許容応力度の割増係数1.25)
 死+浮+潮流力+潮位差+風+波力
 - 3) 暴風時+温度(許容応力度の割増係数1.35) 死+浮+潮流力+潮位差+風+波力+温度

4.荷重組合せケース番号

組合せ		基本荷重	換算係数
番号	組合せ名	ケース	
		の個数	
1	常時(死+浮+活+潮+潮差↑)	5	1.00
2	常時(死+浮+活+潮+潮差↓)	5	1.00
3	暴風時(死+浮+潮+潮差↑+風+波↑)	6	1.25
4	暴風時(死+浮+潮+潮差↑+風+波↓)	6	1.25
5	暴風時(死+浮+潮+潮差↓+風+波↑)	6	1.25
6	暴風時(死+浮+潮+潮差↓+風+波↓)	6	1.25
7	暴風時(死+浮+潮+潮差↑+風+波⇒)	6	1.25
8	暴風時(死+浮+潮+潮差↑+風+波⇒)	6	1.25
9	暴風時(死+浮+潮+潮差↓+風+波⇒)	6	1.25
10	暴風時(死+浮+潮+潮差↓+風+波⇒)	6	1.25
11	暴風時(死+浮+潮+潮差↑+風+波↑+温↑)	7	1.35
12	暴風時(死+浮+潮+潮差↑+風+波↓+温↑)	7	1.35
13	暴風時(死+浮+潮+潮差↓+風+波↑+温↓)	7	1.35
14	暴風時(死+浮+潮+潮差↓+風+波↓+温↓)	7	1.35
15	暴風時(死+浮+潮+潮差↑+風+温↑+波⇒)	7	1.35
16	暴風時(死+浮+潮+潮差↑+風+温↑+波⇒)	7	1.35
17	暴風時(死+浮+潮+潮差↓+風+温↓+波⇒)	7	1.35
18	暴風時(死+浮+潮+潮差↓+風+温↓+波⇒)	7	1.35
19	死荷重時(函本体+浮力)	2	1.00
20	活荷重時	1	1.00
21	潮流力	1	1.00
22	潮位差↑		1.00
23	潮位差↓	1	1.00
24	波力(鉛直)	1	1.00
25	波力(水平)	1	1.00
26	風荷重	1	1.00
27	温度(+)	1	1.00
28	温度(+)	1 1	1.00

波力、潮流力の算出

参考資料:水中トンネル (社)水中トンネル研究調査会

□ モリソン式による波力の算出

F = 1/2 * W/g * CD * u * |u| * A + W/g * CM * u' * V

x方向	W= g= CD= u= u'= A= V=	1.03 9.8 1 2 0.847636 -0.532590 18 254	海水単位重量(tf/m3) 重力加速度(m/sec2) 抗力係数(参考資料 P126 のグラフ参照) 慣性力係数(参考資料 P126 のグラフ参照) 波による水粒子速度(m/sec) 波による水粒子加速度(m/sec2) 流水方向の投影面積(m2/m) 部材体積(m3/m)
	F=	-27.76 -272.29	単位長さあたりの波力(tf/m) 単位長さあたりの波力(kN/m)
z方向(↑+)	W= g= CD= CN= u= u'= A= V=	1.03 9.8 2 0.841633 -0.528810 18 254	海水単位重量(tf/m3) 重力加速度(m/sec2) 抗力係数(参考資料 P126 のグラフ参照) 慣性力係数(参考資料 P126 のグラフ参照) 波による水粒子速度(m/sec) 波による水粒子加速度(m/sec2) 流水方向の投影面積(m2/m) 部材体積(m3/m)
	F=	-26.89 -263.83	単位長さあたりの波力(tf/m) 単位長さあたりの波力(kN/m)

□ 潮流力の算出

FD=1/2*\/g*CD*u(z)^2*A FL=1/2*\/g*CL*u(z)^2*A

CD=	1.2	抗力係数	
CL=	1.2	揭力係数	· .
u (z) =	4.14	海底面からZ(m)の位置での	流速(m/sec)
A=	18	流れ方向の投影面積(m2/m)	
W=	1.03	海水の単位体積重量(tf/m3))
g=	9.8	重力加速度(m/sec2)	
_ u(z)=us‡(Z/	'h) ^ (1/7)		
Z=	130	海底面からの高さ(m)	
us=	3.5	海表面における流速(m/sec)
h=	40	水深(m)	
FD=	19.47	抗力(tf/m)	191.03 抗力(kN/m)
FL=	19.47	揚力(tf/m)	191.03 揚力(kN/m)

波力,潮流力の算出

参考資料:水中トンネル (社)水中トンネル研究調査会

□ モリソン式による波力の算出

F = 1/2 * W/g * CD * u * |u| * A + W/g * CM * u' * V

x方向	₩=	1.03	海水単位重量(tf/m3)
	g=	9.8	重力加速度(m/sec2)
	ČD=	1	抗力係数(参考資料 P126 のグラフ参照)
	CM=	2	慣性力係数(参考資料 P126 のグラフ参照)
	u=	0.847636	波による水粒子速度 (m/sec)
	u' =	-0.532590	波による水粒子加速度(m/sec2)
	A=	18	流水方向の投影面積(m2/m)
	V=	254	部材体積(m3/m)
	F=	-27.76	単位長さあたりの波力(tf/m)
		-272.29	単位長さあたりの波力(kN/m)
7方向(1)	W	1.02	海水畄位曾曾(tf/m3)
473 POL (177	n	1.03	
2 7][H](T)	π g=	9.8	篇力加速度(m/sec2)
273 MJ (17	g= CD=	9.8 2	バステロ単量(1/100) 重力加速度(m/sec2) 抗力係数(参考資料 P126 のグラフ参照)
27) M] (17	g≕ CD= CM=	9.8 2 2	周ホーロー 重力加速度(m/sec2) 抗力係数(参考資料 P126 のグラフ参照) 慣性力係数(参考資料 P126 のグラフ参照)
27) ••] (1)	g≂ CD≕ CM= u=	9.8 2 2 0.841633	周ホーゼ 重力加速度(m/sec2) 抗力係数(参考資料 P126 のグラフ参照) 慣性力係数(参考資料 P126 のグラフ参照) 波による水粒子速度(m/sec)
27) (m) (17	g= CD= CM= u= u'=	9.8 9.8 2 0.841633 -0.528810	置力加速度(m/sec2) 抗力係数(参考資料 P126 のグラフ参照) 慣性力係数(参考資料 P126 のグラフ参照) 波による水粒子速度(m/sec) 波による水粒子加速度(m/sec2)
2771197(1)	g≕ CD≕ CM= u'= A=	9.8 9.8 2 0.841633 -0.528810 36	置力加速度(m/sec2) 抗力係数(参考資料 P126 のグラフ参照) 慣性力係数(参考資料 P126 のグラフ参照) 波による水粒子速度(m/sec) 波による水粒子加速度(m/sec2) 流水方向の投影面積(m2/m)
27) [4] (1)	g= CD= CM= u= u'= A= V=	9.8 9.8 2 0.841633 -0.528810 36 508	置力加速度(m/sec2) 抗力係数(参考資料 P126 のグラフ参照) 慣性力係数(参考資料 P126 のグラフ参照) 波による水粒子速度(m/sec) 波による水粒子加速度(m/sec2) 流水方向の投影面積(m2/m) 部材体積(m3/m)
2771197(1)	g= CD= CM= u'= A= V= F=	9.8 9.8 2 0.841633 -0.528810 36 508 -53.79	置力加速度(m/sec2) 抗力係数(参考資料 P126 のグラフ参照) 慣性力係数(参考資料 P126 のグラフ参照) 波による水粒子速度(m/sec) 波による水粒子加速度(m/sec2) 流水方向の投影面積(m2/m) 部材体積(m3/m) 単位長さあたりの波力(tf/m)

□ 潮流力の算出

FD=1/2*\/	g‡CD‡u(z)	^2*A	
FL=1/2*₩/	g‡CL‡u(z)	^2*A	
CD=	1.2	抗力係数	
CL=	1.2	揭力係数	
u(z)=	4.14	海底面からZ(m)の位	置での流速(m/sec)
A=	18	流れ方向の投影面積	(m2/m)
₩=	1.03	海水の単位体積重量	(tf/m3)
g=	9.8	重力加速度(m/sec2)	
u(z)=us‡(Z/h) ^ (1/7)	
Z=	130	海底面からの高さ(の))
us=	3.5	海表面における流速	(m/sec)
h=	40	水深(m)	
FD=	19.47	抗力(tf/m)	191.03 抗力(kN/m)
FL=	19.47	揚力(tf/m)	191.03 揚力(kN/m)

6.4.3 断面計算

形状図 18000 1000 16000 1000 名 称 記号 単	位諸値
1000 1000 1000 1000 1000 1000 第初5100 第第一次 1 第15100 第二次 1 第15100 第二次 1 第15100 1 1 1000 1 1	$\frac{1}{2} \frac{50.00}{33000.00} = \frac{15.00}{6.06}$ $\frac{0.0}{12+07} = \frac{100}{12} $
鋼材 鋼材24称 本数 鋼材2 鋼材367 Xo Yo 開始角度終了角度 半 種別番号 (本) (ma ²) (N/ma ²) (m) (m) (m) (ma)	径) _
$\frac{1}{\frac{1}{1}}$ $\frac{1}{\frac{1}{1}$	

6.5 端部基礎の検討

6.5.1 概要

本章では、アーチ形状案における陸上接合部の基礎構造の安定計算を行った。 検討においては、下記の事項を基本として考慮した。

①基礎構造断面内に水中橋梁本体を包含する。

②前述のフレーム解析による最大断面力に対して検討する。

③支持地盤は軟岩以上とする。

なお、構造形式は接合部における断面力が非常に大きく、基礎の形状は本体の安 全性によって決定することから、<u>重力式基礎</u>として検討する。

6.5.2 構造寸法

1) 橋軸直角方向

6.5.3 設計条件

(1) フレーム解析時の荷重組合せケース

組合せ番号 組合せ名 基本荷重ケースの個数 換算係数 5 1 常時(死+浮+活+潮+潮差↑) 1 2 常時(死+浮+活+潮+潮差↓) 5 1 3 暴風時(死+浮+潮+潮差↑+風+波↑) 6 1.254 暴風時(死+浮+潮+潮差↑+風+波↓) 1.25 6 5 暴風時(死+浮+潮+潮差↓+風+波↑) 6 1.25 6 暴風時(死+浮+潮+潮差↓+風+波↓) 6 1.251.25 7 暴風時(死+浮+潮+潮差↑+風+波↑+波⇒) 7 8 暴風時(死+浮+潮+潮差↑+風+波↓+波⇒) 1.25 7 9 暴風時(死+浮+潮+潮差↓+風+波↑+波⇒) 7 1.2510 暴風時(死+浮+潮+潮差↓+風+波↓+波⇒) 7 1.2511 暴風時(死+浮+潮+潮差↑+風+波↑+温↑) 7 1.3512 暴風時(死+浮+潮+潮差↑+風+波↓+温↑) 7 1.35 7 13 暴風時(死+浮+潮+潮差↓+風+波↑+温↓) 1.35 14 暴風時(死+浮+潮+潮差↓+風+波↓+温↓) 7 1.35 15 暴風時(死+浮+潮+潮差↑+風+波↑+温↑+波⇒ 8 1.35 16 暴風時(死+浮+潮+潮差↑+風+波↓+温↑+波⇒ 8 1.35 1.3517 暴風時(死+浮+潮+潮差↓+風+波↑+温↓+波⇒ 8 18 暴風時(死+浮+潮+潮差↓+風+波↓+温↓+波⇒ 8 1.35 19 死荷重時(函本体+浮力) 2 1 20 活荷重時 1 1 21 潮流力 1 1 22 潮位差↑ 1 1 23 潮位差↓ 1 1 24 波力(鉛直) 1 1 25 波力(水平) 1 1 26 風荷重 1 1 27 温度(+) 1 1 28 温度(+) 1 1

(2) フレーム解析による部材断面力

トンネルの4つの支点(部材番号(1i、37i、36j、66j))の最大断面力はフレーム解析より以下に示す。基礎の安定計算は101支点に対してもっとも厳しいケースで行う。 単位(kN,kN・m) 断面力の抽出結果PICKCASE

節点部材 着目 着目 抽出荷重 軸 力 せん断力 せん断力 ねじりモ 曲げモーメ 曲げモーメ トンネルの4つの支点(部材番号(1i、37i、36j、66j))の最大断面力はフレーム解析より以下に示す。基礎の安定計算は101支点に対してもっとも厳しいケースで行う。 単位(kN,kN・m) 断面力の抽出結果PICKCASE

トンネルの4つの支点(部材番号(II、371、36j、66j))の最大断面力はフレーム解析より以下に示す。基礎の安定計算は101支点に対してもっとも厳しいケースで行う。 単位(kN,kN・m) 断面力の抽出結果PICKCASE

節点 部材 着目 着目 抽出荷重 軸 力 せん断力 せん断力 ねじりモ 曲げモーメ 曲げモーメ 曲げモーメ トンネルの4つの支点(部材番号(1i、37i、36j、66j))の最大断面力はフレーム解析より以下に示す。基礎の安定計算は101支点に対してもっとも厳しいケースで行う。 単位(kN,kN・m)

1	節点 番号	断面力 部材 番号	」の抽出結 着目 位置	果PICKCA 着目 成分	SE 抽出荷重 CASE番号	軸力 橋軸方向水平力 Hx	せん断力 (y) 直角方向水平力 Hy	せん断力 (2) 鉛直力	ねじりモ ーメント 直角方向 M MX	曲げモーメ ント(y) 橋軸方向 M My	曲げモーメ ント(z) ねじり Mj
	101	1	I-MAX	N	14	0 -455315.6	3332.6	9880	1905579.6	-1326048.1	-115282.2
直角方向	願査	ケース	MAX MIN	Sy Sy	10 - 14 16	-455315.6 * -874974.1 *	- <u>3332.6</u> -1308.9	<u>9880</u> 8913.4	<u>1905579.6</u> 1733416.6	-1432132 -1326048.1 -941068.1	-115282.2 427230.4
			MAX MIN _MAX	Sz Sz T	10 7 10	-923249.6 -923249.6 -923249.6	-61.6 * -61.6 * 61.6	-29752.8 10670.4 *	2058026 -4430621 	-1432132 7144206.5 -1432132	613475.2 613475.2 613475.2
直角方向 橋軸方向	服査	ケース ケース	MIN MAX MIN	T My My	7 7 10	<u>-923249.6</u> <u>-923249.6</u> -923249.6	-61.6 -61.6 -61.6	-29752.8 * -29752.8 10670.4	-4430621 -4430621 * 2058026 *	7144206.5 7144206.5 -1432132	613475.2 613475.2 613475.2
			MAX MIN	Mz Mz	18 12	-834747.4 -495542.2	1194.8 828.9	9880 8913.4	1905579.6 1733416.6	-1326048.1 * -941068.1 *	708834.8 -396886.7

(2) 土質条件

直接基礎は良好な支持地盤上に設置される。紀淡海峡(由良瀬戸)の地質縦断図を見ると、区間A、Cは和泉層(岩盤)が露出しているが 区間B,Dでは堆積層が分布している。特に表層の沖積層は直接基礎の支持地盤としては不向きであると考えられる。従って、直接基礎とする 場合、沖積層はすべて掘削し段上相当層以上の層に支持させるものとする。

ここでは段丘相当層、大阪層群、和泉層の各層に対して直接基礎の安定計算を行い、それぞれの層に対する基礎寸法を算出する。

			物理	特性	强度特性		変形特性	
	地層	γ	Vs	Vp	νD	C	φ ,	Es
		(tf/m <u>3)</u>	(m/s)	(m/s)		(t1/m2)	(度)	(t1/m2)
	沖積層	1.76	180	1, 300	0.49	0 ·	0	8, 400
眵	丘相当層	1.96	360	1,700	0.48	0	30	11, 000
	大阪層群	2.15	450	1,800	0.47	5	35 -	46,000
	和泉層群	2.35	1, 200	4,000	0.45	10	37	90,000

表-2 由良瀬戸地盤定数モデル

表- 許容地盤反力度 (qa) 一覧

	常時	暴風時	備考
段丘相当層	390kN/m2	585kN/m2	砂地盤相当と仮定
大阪層群	590kN/m2	885kN/m2	軟岩相当と仮定
和泉層	980kN/m2	1470kN/m2	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

ი

6.5.4 安定計算結果

(1). 橋軸方向 CASE7:暴風時(死+浮+潮+潮差↑+風+波↑+波→) 浮力考慮

直接基礎安定計算

									_									
			算		式							Vz(KN)	Hx(KN)	X(m)	h(m)	付加モーメントMy	$V_{z} \times X$ (KNm)	H x × h +My(KNm)
トンネ	ル部作用力											29752.80	923249.60	-37.11	15.00	7144206.50	-1104126.41	20992950.50
	1	- π	×	20.00	×	20.00	×	1/4 ×	14.50	×	82.11	-374036.45	0.00	-3.95	0.00		1477443.98	0.00
1 枢	2	60.00	×	57.00			×	40.00 ×	14.50			1983600.00	0.00	15.00	0.00		29754000.00	0.00
1	3	30.00	×	57.00	×	1/2	×	40.00 ×	14.50			495900.00	0.00	-25.00	0.00		-12397500.00	0.00
±	1																	
圧	水平土圧	1.00	×	8.60	×	22.00	× 2	22.00 ×	40.00	×	1/2		83248.00		42.33			3523887.84
合	H											2135216.35	1006497.60				17729817.57	24516838.34
															B=	90.00	m L=	40.00 m
1).	転倒に対す	する安定																
					偏心	之重 e) = ($(Hx \times h$	+My)	$-V_z$	<x) 7<="" td=""><td>Vz =</td><td>3.18</td><td>m ≦i</td><td>許容値</td><td>30.00</td><td>m</td><td></td></x)>	Vz =	3.18	m ≦i	許容値	30.00	m	
2).	地盤反力	度																
	底版中心回転モーメント M= Vz⋅e =						6789988.0	KNm										
				底面反	力の作	乍用幅	x=	3(B/2 -	e) =		125.5	m	台形分布					
				地盤反	力度	qmax=	=Vz/	LB±6M	$I/LB^2 =$	=			719	KN/m^2				
						qmin	=						467	KN/m ²	≦	Qa=835	KN/m ²	
3).	滑動に対す	する安定																

滑動に対する安全率 F=Vz・tanφB/Hx =

1.27 >Fa= 1.2

ი -

39

4). 基礎底面地盤の許容鉛直支持力

荷重の偏心傾斜を考慮した極限支持力より算出するものとする。 $q d = \alpha \kappa C Nc + \kappa q Nq + 1 / 2 \gamma 1 \beta BeNr$ (KN/m²) $Q u = 1 / n (q d \cdot A e)$ (KN)

荷重状態		地震時	
V (KN)		2135216.35	
H (KN)		1006497.60	
		90.00	
		40.00	
偏心量(橋軸) eb(m)		3. 18	
偏心量(直角) ed(m)		2.08	直角ケース2
基礎の有効根入れ Df(m)		5.00	
支持地盤への根入れ Df'(m)		5.00	
地盤の粘着力 C(KN/m ²)		50.00	
地盤の内部摩擦角 φ(度)		35.00	
支持地盤の単位重量 γ1(KN/m ²)		12.50	水中重量
Be (m)	B-2 e b	83.64	
De (m)	D-2 e d	35.84	
α	1+0. 3Be/De	1. 70	
β	1-0. 4Be/De	0.07	
κ	1+0. 3Df′/Be	1. 02	
上載荷重q(KN/m ²)	γ2Df	62.50	
tanθ	HB/V	0. 47	
	Nc	15	
支持力係数	Ng	9	示方書グラフより
	Nr	3. 5	
第1項	ακСΝς	1298	
第2項	καΝα	573	
	<u>1/2γ1β BeNr</u>	18	
極限支持力度 q d (KN/m ²)		1889	
有効載荷面積Ae (m ²)	Be·De	2998	
偏心を考慮した極限支持力 (KN)		5661758	
安全率 n	地震時(暴風時)	2	
許容鉛直支持力 (KN)		2, 830, 879	\geq 2, 135, 216 KN
判定		OK	

			算		式					-		Vz(KN)	Hx(KN)	X(m)	h(m)	付加モーメントMy	$V_Z \times X$ (KNm)	$Hx \times h+My(KNm)$
トンネル	邹作用力			•								9880.00	3332.60	0.00	15.00	1905579.60	0.00	1955568.60
	1	- π	×	20.0) X	20.0	0 ×	1/4	×	14.50	× 82.11	-374036.45	0.00	0.00	0.00		0.00	0.00
躯 体	2	60.00	×	57.0)		×	40.0	0 ×	14.50		1983600.00	0.00	0.00	0.00		0.00	0.00
	3	30.00	×	57.0) X	1/	2 ×	40.0	0 ×	14.50		495900.00	0.00	0.00	0.00		0.00	0.00
土圧					-													
合計						•	•		-			2115343.55	3332.60				0.00	1955568.60
												-			B=	40.00	m L=	90.00 m
1).	転倒に対	する安定																
					偏	心量	e =	((Hx	×h	+My)	$V_Z \times X) \neq$	´Vz =	0.92	m ≦	許容値	13.33	m	
2).	地盤反力]度																
				底版中	ュ心回	転モー;	/ 21-1	M= V	z•e	=			1946116.1	KNm [°]				
				底面反	え力の	作用	≣ x=	3 (B	/2-	e) =	57.2	m	台形分布					
				地盤反	え力度	qma	x=V	z/LB =	=6M,	$LB^2 =$			669	KN/m^2				
						qmi	n =						507	KN/m^2	≦	Qa=835	KN/m ²	
3).	滑動に対	けする安定																
			滑重	加に対	する安	全率	F =	Vz•ta	nφB	∕Hx =			380.80	>Fa= 1.2	2			

(2). 橋軸直角方向照査ケース1 CASE14:暴風時(死+浮+潮+潮差↓+風+波↓+温↓) 浮力考慮

直接基礎安定計算

41

6

4). 基礎底面地盤の許容鉛直支持力

荷重の偏心傾斜を考慮した極限支持力より算出するものとする。 $qd=\alpha \kappa CNc+\kappa qNq+1/2\gamma l\beta BeNr$ (KN/m²) $Qu=1/n(qd\cdot Ae)$ (KN)

荷重状態		地震時	
V(KN)		2115343.55	
H(KN)		3332.60	
底版幅(直角)B(m)		40.00	
底版幅(橋軸)D (m)		90.00	
偏心量(直角)eb(m)		0.92	
偏心量(橋軸)ed(m)		3.18	
基礎の有効根入れ Df(m)		57.00	
支持地盤への根入れ Df'(m)		35.00	
地盤の粘着力 C(KN/m ²)		50.00	
地盤の内部摩擦角 φ(度)		35.00	
根入れ地層の単位重量 γ2(KN/m ²)		8.60	水中重量
支持地盤の単位重量 γ1(KN/m ²)		12.50	水中重量
Be(m)	B-2eb	38.16	
De(m)	D-2ed	83.64	
α	1+0.3Be/De	1.14	
β	1-0.4Be/De	0.82	
ĸ	1+0.3Df'/Be	1.28	
上載荷重q(KN/m ²)	γ 2Df	626.70	
$\tan \theta$	HB/V	0.0016	
	Nc	50	
支持力係数	Nq	30	示方書グラフより
	Nr	35	
第1項	α κ CNc	3624	
第2項	κqNq	23974	
第3項	$1/2 \gamma 1 \beta$ BeNr	2235	
極限支持力度_gd(KN/m ²)		29834	
有効載荷面積Ae(m²)	Be•De	3192	
偏心を考慮した極限支持力 (KN)		95220674	
安全率 n	地震時(暴風時)	2	
許容鉛直支持力(KN)		47,610,337	≧ 2,115,344 KN
判定		OK	

(3). 橋軸直角方向照査ケース2 CASE7:暴風時(死+浮+潮+潮差↑+風+波↑+波→) 浮力考慮

直接基礎安定計算

1000																			
			算	H	ť							Vz(KN)	H x (KN)	X(m)	h(m)	付加モーメントMy	$V_Z \times X$ (K)	Nm)	H x × h +M y (KNm)
トンネル音	『作用力											29752.80	61.60	0.00	40.00	4430621.00	(0.00	4433085.00
	1	- π	×	20.00	× 2	0.00	× 1/	4 ×	14.50	×	82.11	-374036.45	0.00	0.00	0.00		(0.00	0.00
■ ¹ 躯	2	60.00	×	57.00			× 40.	00 ×	14.50			1983600.00	0.00	0.00	0.00		(0.00	0.00
	3	30.00	×	57.00	×	1/2	× 40.	00 ×	14.50			495900.00	0.00	0.00	0.00		(0.00	0.00
±																			
圧																			
合 計												2135216.35	61.60				(0.00	4433085.00
				-											B=	40.00	m L= ·		90.00
1).	転倒に	対する安定																	
					偏心	量 e	= ((H	x×h	+My)	·Vz>	×X) /	Vz =	2.08 m ≦許容値		13.33 m				
2).	地盤反	力度																	
			ļ	底版中心	回転	モーメント	M= '	√z∙e	=				4441250.0	KNm					*
	底面反力の作用幅 x= 3(B/2-e) = 53.8 m					m	台形分布												
	地盤反力度 qmax=Vz/LB±6M/LB ² =						778	KN/m^2											
						qmin =	=						408	KN/m^2	≦	Qa=835	KN/m^2		

3). 滑動に対する安定

滑動に対する安全率 F=Vz·tanφB/Hx =

20797.60 >Fa= 1.2

ნ

43

4). 基礎底面地盤の許容鉛直支持力

荷重の偏心傾斜を考慮した極限支持力より算出するもの とする。 $qd = \alpha \kappa CNc + \kappa qNq + 1/2 \gamma 1 \beta BeNr$ (KN/m²) $Qu=1/n(qd\cdot Ae)$ (KN)

荷重状態		地震時	
V(KN)		2135216.35	
H(KN)		61.60	
底版幅(直角)B(m)		40.00	
底版幅(橋軸) D (m)		90.00	
偏心量(直角)eb(m)		2.08	
偏心量(橋軸) e d (m)		3.18	
基礎の有効根入れ Df(m)		57.00	
支持地盤への根入れ Df'(m)		35.00	
地盤の粘着力 C(KN/m ²)		50.00	
地盤の内部摩擦角 φ(度)		35.00	
根入れ地層の単位重量 γ2 (KN/m ²)		8.60	水中重量
支持地盤の単位重量 γ1(KN/m ²)		12.50	水中重量
Be(m)	B-2eb	35.84]
De(m)	D-2ed	83.64	
α	1+0.3Be/De	1.13	
β	1-0.4Be/De	0.83	
κ	1+0.3Df'/Be	1.29	
上載荷重q(KN/m ²)	γ2Df	626.70	
an heta	HB/V	0.0000	
	Nc	50	1
支持力係数	Nq	30	示方書グラフよ り
	Nr	35	
第1項	α κ CNc	3648	
第2項	κqNq	24309	
第3項	1/2 γ 1 β ΒεΝr	2266	
極限支持力度 qd(KN/m ²)		30223	
有効載荷面積Ae(m ²)	Be•De	2998	
偏心を考慮した極限支持力(KN)		90597480	
安全率 n	地震時(暴風時)	2	
許容鉛直支持力 (KN)		45,298,740	\geq 2,135,21
判定		OK	

5,216 KN

6.7 まとめ及び今後の課題

橋長3.5kmの水中橋梁を対象として、水中橋梁本体を水面上に設置したポンツーンで支持する構造で試設計を行った結果、以下のことが分かった。

①水中橋梁本体の設置水深を40mとしたが、モリソン式によって算出される波力の影響が大きく、本検討結果での水中橋梁本体の必要断面はφ18mと大きな断面が必要となった。

ただし、本体構造としては、円筒状の鋼殻内にコンクリートを充填した合成構造となり、鋼殻を構成する板厚は100mmが必要となる。

②橋長3.5kmに対して、水中橋梁の全体構造をアーチ形状とすることにより、断面力、変位を大きく低減できる。

③両端の基礎は、堅固な地盤であれば重力式基礎で対応可能である。

また、今回の試設計で取り上げていない事項を含め、今後の課題として検討すべ き事項は、以下のとおりである。

①波力の影響が大きいことから、実現可能な架橋地の選定

②使用材料を含めた合理的な水中橋梁本体構造

③本体の架設工法と継手構造、本体とポンツーンの接続方法

④動的挙動に対する検討

⑤端部の地震に対する検討

⑥疲労に対する検討

⑦緊急時の避難施設、維持管理施設、監視施設 等