2. 新形式の長大吊橋

目次	
2.1 検討の目的	2- 1
2.2 補剛桁断面の検討	2- 2
2.2.1 箱桁形状と耐風性について	2-4
2.2.2 1 箱桁と2 箱桁混合形式の検討	2- 4
2.2.2.1 検討条件	2- 4
2.2.2.2 振動モードと1箱桁配置区間	2- 7
2.2.3 検討結果	2–10
2.2.3.1 振動解析結果,および,フラッター発現風速	2–10
2.2.3.2 考察	2–11
2.3 ケーブルシステムの検討	2–12
2.3.1 目的	2–12
2.3.2 検討条件	2–12
2.3.2.1 検討ケース	2–12
2.3.2.2 構造条件	2–13
2.3.3 3次元ケーブルの振動特性とフラッター発現風速	2–15
2.3.3.1 検討結果概要	2–15
2.3.3.2 固有振動解析結果	2–17
2.3.4 2重吊橋の振動特性とフラッター発現風速	2–24
2.3.4.1 2重吊橋の特徴	224
2.3.4.2 耐風安定性の概念モデル	2–24
2.3.4.3 2重吊橋の振動解析結果	2–26
2.4 主塔形式の検討	2–29
2.4.1 はじめに	2–29
2.4.2 複合主塔の検討	2–29
2.4.2.1 検討条件	2–29
2.4.2.2 主塔形状	2–33
2.4.2.3 照查手法	2–34
2.4.2.4 全充填形式と一部充填形式の設計結果	2–37
2.4.3 鋼製, RC 主塔と複合主塔の比較	2–41
2.4.3.1 鋼製主塔の概略設計	2-41
2.4.3.2 RC 主塔の概略設計	2–45
2.4.3.3 主塔形式の比較	2-48

2.5 まとめ

2–56

2.1 検討の目的

海峡横断プロジェクトで進められる超長大橋プロジェクトでは、平成7年から12年の土木研究所共同研 究^{1/2/3/}をはじめ、桁形式、ケーブル形式についてさまざまな試みが行われ、多くの成果が得られている.本 検討では、文献調査により、既往の研究成果もとりいれながら、現時点で実現可能であり、かつ経済的な吊 橋の基本形状を提案するものである.

提案は、以下の流れに沿って行った.超長大吊橋でフラッター発現風速を満たすことを主眼に、①文献調査 により、2500m級吊橋に耐えうる補剛桁形式の選定.②耐風性に優れたケーブルシステムの選定、③選定し た桁形式、ケーブルシステムに適合した主塔形式の提案である.

具体的には、耐風安定性に優れる2箱桁形式を採用し、剛性の高い1箱桁をねじり振動モード形状をもと に効率的な区間に配置した.ケーブルシステムの検討では、超長大吊橋では主塔のねじれ剛性が耐風性に与 える影響が大きいことを確認した.このため、主塔位置でケーブル間隔を狭めたケーブルシステム、および、 それに対応する主塔形状を選定した.主塔形式は、従来、日本国内においては鋼製主塔が主流であったが、 耐震照査技術の進歩もあり、重量の重いRC主塔や、CFT主塔の検討もされるようになってきた.

本検討では、経済性と施工性、工期短縮の可能性をもつ複合主塔により設計を行う. 複合主塔は鋼殻が円 形であるほどコンファインド効果に優れること、所定の板厚をもつ鋼管であればリブが不要であり溶接構造 が少なく、製作上有利であることから、既成鋼管により断面を構成する構造を提案する. また、主塔上部は 曲げモーメントが小さく、重量の大きい充填コンクリートは死荷重反力を大幅に増加するため、上半分を充 填しないハイブリッド型を比較検討した.

2.2 補剛桁断面の検討

2.2.1 箱桁形状と耐風性について

本検討では、土木研究所共同研究 1233により検討が進められ、フラッターに対する安定性の高い2箱桁形 式を基本として、本節において、1箱桁併用形式の考察、2.3 節においてケーブルシステムの検討を行う. 2箱桁形式について既往の研究で得られている成果は以下の通りである.

(1) 1箱桁と2箱桁の耐風性の比較について

平成7年度「耐風性および経済性に優れた超長大橋の開発に関する共同研究報告書(P68-P70)」に1箱桁 と2箱桁の耐風性について比較検討した内容が示されている.2箱桁断面が1箱桁に比べてフラッター限界 風速が30%向上したと報告されている.

(2) 1箱桁, 2箱桁併用形式の耐風性について

平成7年度「耐風性および経済性に優れた超長大橋の開発に関する共同研究報告書(P116·P123)」で1箱 桁併用形式の検討が行われている.1箱桁と比較して,1箱桁,2箱桁併用形式では、フラッター限界風速 が30%向上したと報告されている.

本検討では、1箱桁、2箱桁併用形式 450の詳細な検討をするため、耐風性が良好であることが確認されて いる断面を、検討断面として用いることとした.参考にした断面は平成12年度「経済性を考慮した超長大 橋の耐風設計法に関する共同研究報告書(その1)」の P80、「4.2.9 の二箱桁断面の耐風安定化策の検討」 の基本断面形状を用いる.

吊橋のフラッターに対する安定性は、補剛桁に作用する空気力の特性、および、構造的な振動モード(振動形状、振動数)が大きなパラメーターとなる.このうち、空気力の影響が大きい位置は、フラッター発生時にねじれ変形の大きい中央径間中央部であり、この区間に、空力特性の優れた桁形式を採用することは、耐風性の向上に効果的である.一方で、振動モードに着目した場合、簡易式で見られるように、ねじり振動数を高め、また、ねじり振動数と鉛直振動数の比を大きくすることが耐風性の向上につながると一般的に考えられる.

そこで、本検討では、橋梁のねじり剛性に寄与する割合が高いと考えられる主塔付近を、剛性の高い1箱 桁としたときに耐風性に及ぼす影響について、その配置区間の効率性について検討する。検討は、1箱桁区 間を変化させた数ケースと、1箱桁区間の桁高を変え、剛性を変化させたケースを比較する、フラッター発 現風速の推定は、selberg 式により行う。

図-2.2.1 2箱桁形式

Case-0

Case-2

図-2.2.2 検討した補削区間の例

2.2.2 1 箱桁, 2 箱桁混合形式の検討

2.2.2.1 検討条件

(1) 構造諸元

- 1) 支間長:1250+2500+1250m
- 2) 幅員:6車線

3) 補剛桁断面:2箱桁形式,および,2箱桁形式の中央開口部を閉じた1箱桁形式

表-2.2.1 補剛桁断面剛性

	2 箝旋	2箱桁 h=5m	断面積(m2)	ねじり剛性(m4)
	乙州田竹丁		0.8926*2	8.097
第步	1 箱桁	h=5m	2.153 (1.0)	24.640 (1.0)
↑目11」		h=7m	2.282 (1.06)	48.207 (1.97)
		h=8m	2.379 (1.11)	63.065 (2.56)
		h=10m	2.545 (1.18)	97.966 (3.98)

補剛桁重量

- 2箱桁区間 w=113.115*2=226.23kN/m
- 1 箱桁区間 w=245.95kN/m (h=5m)

2-5

4) ケーブル諸元

ケーブル断面は概略設計により, 表-2.2.2 のように仮定する. ケーブルの許容張力は, 本四上部工設計 基準では, 安全率 2.2 が適用されているが, 本設計では, 支間長が長く活荷重比率が小さいと考えられる こと, 将来の架設精度, 防蝕技術の向上を期待して安全率 1.8 と仮定した.

	表-2.	2.2	ケー	・ブル	/諸元
--	------	-----	----	-----	-----

	許容張力	Мра	1000 (1800/1.8)
	断面積	m2	0.6309
主ケーブル	ケーブル径	m	1.002
	水平張力	kN/cab le	526745
	重量	kN/cable	54.46

2.2.2.2 振動モードと1箱桁配置区間

吊橋の耐風安定性を支配する支間中央部には、空力特性の優れた2箱桁を配置.検討ケースは、空力特性の要求されない主塔付近に、ねじり剛性の高い1箱桁形式を配置し、橋梁全体のねじり剛性を高める効果を 期待する.

配置区間の設定の参考とするために、対称1次ねじり振動時の変形形状を調査した.

ねじれ振動時のねじれ率(d θ /L)が大きい区間ほど、ねじり剛性を高めた時の効果が高いと考えられる ため、ねじれ率に着目した.図-2.2.4に3径間吊橋と単径間吊橋のねじれ率の分布を示す.

解析は箱桁配置区間に応じて、2箱桁、1箱桁を中立軸位置に配した3次元骨組みモデルにより、固有値 解析を行った.

1) 連続吊橋

ねじれ率の分布を見ると、ねじれ率が最も高い位置は、連続吊橋では、主塔より中央径間よりの 380m 位置であった.また、中央径間中央、側径間中央では、ねじれ率は0 であり、この区間では、補剛桁のねじれ剛性は対称1 次ねじり振動に寄与しないと考えられる.

2) 単径間吊橋

単径間吊橋では、さらに中央径間よりの 1/4Lc 付近で最もねじれ率が高い. 既往のクロスハンガーの設置 検討 %においても、中央径間 1/4 付近に設置することが有効であることが報告されており、ねじれ率と補剛 部材の相関性が高いことを示している.

図-2.2.4の最下段のグラフは、100m区間のねじり剛性を高めた時に、ねじり振動数がどの程度変化する か調べた結果である.振動数の傾向と、最上段のねじり率の傾向は一致しており、ねじり率の高い区間を補 剛することが、ねじり振動数を高めるために有効である.

以上の検討結果より、検討ケースは、主塔位置から対称に1箱桁を配置した case-1~3 と、検討で補剛が 有効であると考えられた中央径間の区間 500m に配置した case-4 (図-2.2.5 参照) についてフラッター発現 風速を推定した. また, case-4 について補剛桁の桁高を変え、剛性を変化させたケースについても検討した.

	1 箱桁区間	1 箱桁桁高
Case-0	0	_
Case-1	400m =200m*2 =Lc/6.25	H=5m
Case-2	800m =400m*2 =Lc/3.125	H=5m
Case-3	1200m =600m*2 =Lc/2.085	H=5m
Case-4	500m=Lc/5.0	H=5m
Case-4-7	500m =Lc/5.0	H=7m
Case-4-10	(中央径間の一部)	H=10m

表-2.2.3 検討ケース

図-2.2.4 ねじり振動のねじれ率と補剛位置による振動数の関係

2--8

.

Case-0 2 新析区問1250m 2 新析区問2500m 2 箱桁区問1250m

Case-1

Case-2

2箱桁区間850m	1 箱桁補剛区間400m+2	2 箱桁区間1700m	1 箱桁補剛区間400m+2	2 箱桁区間850m

Case-3

Case-4

図-2.2.5 2箱桁と1箱桁の配置区間検討ケース

2.2.3 検討結果

2.2.3.1 振動解析結果,および,フラッター発現風速

解析結果,および,推定式によるフラッター発現風速を表-2.2.4,表-2.2.5 に示す.フラッター発現風速の推定は,曲げねじれフラッターの推定式である selberg 式を用い,桁形状の空力特性による補正係数を 1.0 として計算した.固有値解析は1箱桁区間の重量,剛性を考慮するが,桁高の変化の検討では,簡易に剛性のみを変化させて傾向を調べた.

Selberg 式によるフラッター発現風速 Ucf の推定式

$$Ucf = K \times Us$$

$$Us = 0.44 \times \omega_{\theta} \times B \sqrt{\left(1 - (\omega_{h} / \omega_{\theta})^{2}\right)} \cdot \sqrt{\gamma} / \mu$$

$$\gamma = 8 \frac{I_{p} / m}{B^{2}}, \ \mu = \frac{\pi}{2m_{r}}$$
K:桁の空力特性による補正係数=1.0
 $\omega_{\theta}, \ \omega_{h}: a U b,$ 鉛直振動数
B:桁幅
m:桁の鉛直一次振動の等価質量
mr:桁のねじれ一次振動の等価極慣性質量

表-2.2.4 振動解析結果

	1 箱桁区間	1 箱桁高	fv	ft	ft/fv	m	mr
			(Hz)	(Hz)		(kN/m)	(kNm ² /m)
Case-0	0m	_	0.0547	0.1238	2.26	439.7	117163
Case-1	400m=200m*2	H=5m	0.0547	0.1261	2.31	439.6	116001
Case-2	800m=400m*2	H=5m	0.0547	0.1276	2.33	439.6	116041
Case-3	1200m=600m*2	H=5m	0.0547	0.1287	2.35	439.6	116561
Case-4	500m	H=5m	0.0547	0.1276	2.33	439.7	117612
Case-4-7	500m	H=7m	0.0547	0.1365	2.50	439.7	119170
Case-4-10	500m	H=10m	0.0547	0.1443	2.64	440.0	121381
* 振動粉の計算							

「振動数の計算は剛性のみを変化させ,補剛桁重量,ケーブル径の違いは考慮していない.

表-2.2.5 フラッター発現風速 Vcf の比較

	1 箱桁区間	1 箱桁高	fv	ft	ft/fv	Vcf	Vcf
			(Hz)	(Hz)		(m/sec)	ratio
Case-0	Om	_	0.0547	0.1238	2.26	45.1	(1.00)
Case-1	400m=200m*2	H=5m	0.0547	0.1261	2.31	46.0	(1.02)
Case-2	800m=400m*2	H=5m	0.0547	0.1276	2.33	46.7	(1.04)
Case-3	1200m=600m*2	H=5m	0.0547	0.1287	2.35	47.2	(1.05)
Case-4	500m	H=5m	0.0547	0.1276	2.33	46.9	(1.04)
Case-4-7	500m	H=7m	0.0547	0.1365	2.50	51.0	(1.13)
Case-4-10	500m	H=10m	0.0547	0.1443	2.64	54.7	(1.21)

2.2.3.2 考察

- ・ 補剛桁剛性のみを変化させた概略計算であるが、2箱桁から1箱桁(h=7m)に変化させることで、13%の 発現風速が向上する.
- ・ 主塔を中心とした 800m に 1 箱桁を配置した case 2 より, 事前検討で補剛が有効と考えられた 500m 区 間に 1 箱桁を配置した case 4 の方が, 補剛区間は短いものの, ねじり振動数は高く, フラッター発現風 速が上昇する.
- ・ フラッター発現風速の向上は、補剛桁高さを変化させないケースでは、最大 5%の向上にとどまり、一定 の効果は得られるものの、ケーブルシステムの変更など他の耐風向上策と比べて、効果はさほど高いと は言えない.また、500m 補剛した場合、全橋での鋼重は 2000ton 増加する.
- ・ 吊橋の鉛直剛性は、ケーブルの寄与が大きく、補剛桁剛性の寄与は小さい. このため、1箱桁を配置し ても鉛直振動数の変化はほとんどない.
- ・ ねじり振動時の変形性状の検討から、支間中央部では、ねじれ率が0、つまり、耐風性に着目すると、 この区間の補剛桁にねじり剛性は不要であり、この区間にねじり剛性は小さくても経済的な断面を配置 することにより、経済性を向上させる可能性がある.

2.3 ケーブルシステムの検討

2.3.1 目的

長大吊橋の耐風性の向上策としては、補剛桁の空力特性の向上、補剛桁、ケーブル(サグ、吊構造重量に よる幾何剛性)の剛性を高める方法、3次元的なケーブル形状により、ねじり振動数を高める方法などが提 案されている.本章では、ケーブルの水平面内のサグを持つ3次元的な形状に着目し、フラッターに対する 安定性に与える影響を検討した.検討対象としたケースは、①基本ケース(平行線ケーブル)、②主塔位置で 内側に絞ったケース(モノデゥオ)、③主塔位置で外側に拡げたケース、④2箱桁の箱の両端にケーブルを定 着した4本ケーブル形式である.また、櫻井らにより提案されている2重ケーブル吊橋 ^のについても数値解 析を実施し、耐風性を比較した.

3次元ケーブルシステムでは、桁の水平モードとねじり振動モードの連成が生じやすく、通常の長大吊橋 とモード形状がことなるため、フラッター現象の把握には、構造システム全体を考慮したフラッター解析に よる検証が最終的には必要と考えられる.ここでは、定性的な安定性の把握を目的として、従来の簡易式に 基づき、ねじり振動数の向上がフラッター発現風速の向上に寄与するとの仮定から、フラッターに対する安 定性を比較、評価する.検討にあたって、主塔のねじり剛性は橋梁のねじり振動数に影響を及ぼすが、ここ では、経済的とされる RC ラーメン形式を想定した.補剛桁は4車線の2箱桁形式とした.

2.3.2 検討条件

2.3.2.1 検討ケース

検討ケースは、水平方向のサグの影響として、支間中央のケーブル間隔は同一(28m)とし、主塔位 置でのケーブル間隔を変えた①~③、および2箱桁形式の内外にケーブルを配置した4本ケーブルを2 ケース試算した(④~⑤).4本ケーブルは主塔位置で2本の塔柱に収束する3次元形状をなしている (図-2.3.4参照).

- ① 通常の平行線ケーブル,ケーブル間隔 B=28m
- ② 3次元ケーブル, 主塔位置 B=2m (モノドュオケーブル)
- ③ 3次元ケーブル、主塔位置 B=38m
- ④ 4本ケーブル,主塔位置 B=28m
- ⑤ 4本ケーブル、主塔位置 B=38m

また, 櫻井らにより提案されている2重ケーブル吊橋についても数値解析を実施し, 耐風性を比較した. ⑥ 2 重ケーブル

(2) 補剛桁

補剛桁形状は土木研究所にて検討されている2箱桁形式を参考とする.横梁は箱桁を30m ピッチで 配置する. 主桁,横梁の剛性を表-2.3.1,2 に示す.

図-2.3.2 補剛桁仮定断面

表-2.3.1 補剛桁諸元

	項目		諸元
形状	高さ	(m)	4.00
	桁幅	(m)	12.10
	ケーブル間隔	(m)	28.00
	図心(鉛直、デッキより)	(m)	1.627
	図心(水平,中心より)	(m)	10.588
剛性	断面積	(m2)	0.529
	鉛直曲げ剛性	(m4)	1.35
	水平曲げ剛性	(m4)	7.04
ł	ねじり剛性	(m4)	2.65
重量	重量	(kN/box)	89.24(89.34)
	極慣性重量	(kNm2/m/box)	2108(2108)

表-2.3.2 開口部横梁

	項目		諸元
剛性	断面積	(m2)	0.31
ł	鉛直曲げ剛性	(m4)	0.83
	水平曲げ剛性	(m4)	1.51
	ねじり剛性	(m4)	1.34

(3) ケーブル断面

表-2.3.3 にケーブルの概略設計結果を示す.

表-2.3.3 メインケーブルおよびハンガー断面

メインケーブル _____

項目		諸元
	破断強度	1800 Mpa
	安全率	1.8
11=0	午容応力度	1000 Mpa
	水平張力	415335 KN/cable
設計張力	死荷重	454838 KN/cable
	活荷重+温度荷重	39186 KN/cable
	素線径	5.2 mm
	素線本数	23368 本
	断面積	0.4963 m2
応力		995 Mpa
重量	中央径間	43.085 kN/cable
(ケーブルなり	侧径間	43.056 kN/cable

ハンガー

項目	諸元
ケーブルタイプ	PWS 151×φ7
破断強度	10290 kN
単位重量	467 kN/m
断面積	5811 mm2
外径	108 mm

2.3.3.1 検討結果概要

3次元ケーブルの検討総括を表-2.3.4 に示す. また, それぞれのケーブルシステムの解析結果は 2.3.3.2 節に示す. 解析は3次元骨組みモデルについて固有値解析を実施した. また, 4本ケーブルのケーブル断面 積は, それぞれのケーブルで荷重分担率が変わると考えられるが, ここでは, ケーブル配置の特性を明らか にすることを目的として, 2本ケーブルの半分と仮定した.

表-2.3.4 3次元ケーブルシステムの振動特性とフラッター発現風速

		公本店業 業(and the test that the	6.460	つういた 登現国法	
case	リーブル配置	111回復刻致 1∨ (安広番号)	ねしれ波動致↑0 (安広辺信件書号)	10/10	フリリアー元のALAA calibateです」「よろ	
	·····	<u>、支援業員/</u>	(守護信賀江三里)		Seideig Latie State	
		2.0	201	0.51	661 (100)	
U		0.0557	0.1396	2.51	00.1 (1.00)	通常の吊橋
		(601.1)	(99285)			
		2次	23次			ねじれ毎勤数が高く耐燥性は最
2		0.0556	0.1515	2,72	74,4 (1.13)	も優れる。
		(600.8)	(108165)			
	主塔位置を閉じたケーブル案					
		2次	12次			①と同様であるが、 塔柱開稿が
3		0.0555	0.1336	2.41	62.6 (0.95)	広がり、増柱のねじれ剛性が低
		(600.9)	(98014)			「トリのにの、ねしれ無動気はご」
	外側に開いた3次元ケーブル来					
		2次	11次			2箱桁に独立したねじり変形は
4		0.0555	0.1336	2.41	57.0 (0.86)	生じない。ケーブルによるねじれ
		(601.1)	(78633)			朝性が低下するため. ねじれ振 動教は下がる
	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー					14030(IA 1/1/1-0
		2次	11次	-		のと思禁であるが 様は問題が
5		0.0555	0.1258	2.27	55.1 (0.83)	広がり、塔柱のねじれ剛性が低
-		(600.9)	(78934)			下するため、ねじれ振動数はさ
						51-1700
			23次			
ന'	¥	-	0.1516		_	主塔の開性の影響の確認のた
Ű			(110179)			の、①、③の主増位置を固定したケース①、②のねじれ振動
	①の様の言ち分よ於いたケーフ		(110110)			教を見ると、振動数はほぼ同値
			23.27		·····	であり,超長大吊橋では,ケー ブルシステムの変化より 主様
() '		_	A 1517		-	のねじれ開性がフラッターに対
J		_	(107090)			する安定性を左右することが分
			(10/920)			ກາວ.
	(4)の塔の寄与分を除いたケース			L		

1)3次元ケーブルの振動特性

検討ケース①~③は主塔位置でのケーブル間隔のみを変えたケースであり、主塔位置でのケーブル間隔が 広いほど、ねじり振動数が低く、フラッター発現風速が低下している.ケーブル間隔が広いケース③と狭い ケース②は一見すると、異なった構造のように考えられるが、ケーブルの橋軸直角面内の角度が同一であれ ば、ケーブル断面積、初期張力による鉛直方向、水平方向の剛性は同じであり、構造系全体としては、鉛直 方向、ねじり方向に同じ剛性を持つものと考えられる.確認のため、①、③のケースから主塔の剛性の影響 を排除したケースとして、①、③の固有値解析を実施した.この結果、主塔の影響を排除した振動数は主塔 のねじり剛性の影響をうけない②モノデゥオ形式とほとんど同じ振動数となっており、①~③のねじり振動 数の違いは、ケーブルシステムではなく、主塔の剛性の違いによることが確認された.

2)4本ケーブルの振動特性

4本ケーブル形式④,⑤では、基本ケースと比べて、ねじり振動数が低くなった.このため、フラッター 発現風速はそれぞれ 57m/sec、55m/secと、基本形状より 10m/sec 程度低下している.4本ケーブルのねじ り振動モードとしては、理論的には図-2.3.3のような3ケースが生じる可能性がある.モード2はブラウン 博士の提案による twin-bridge[®]で期待されるモードである.本橋の諸元では、モード1が基本ケースよりも 低い振動数で生じており、本橋の横梁の剛性では、モード2、3はモード次数 50 次以内には見られない. このため、今回対象としたような、一定の横梁剛性をもつ2 箱桁形式では、ケーブルの鉛直方向の剛性によ る橋梁全体のねじり剛性が低下する4本ケーブル吊橋は、耐風上不利であると考えられる.

ねじれモード1

ねじれモード2

ねじれモード3

図-2.3.3 4本ケーブル吊橋のねじり振動モード

図-2.3.4 4本ケーブル概念図

(1) 平行ケーブルの振動解析結果

基本の平行ケーブル吊橋の固有値解析結果を図-2.3.5に示す.

図-2.3.5(2) 基本ケースの振動モード図(ねじり対称1次)

(2) 3次元ケーブル, 主塔位置 B=2m(モノドュオケーブル)の振動解析結果

1) 構造概要

主塔位置でケーブル間隔を狭めたケーブルシステムはモノデゥオケーブルとも呼ばれ, 表-2.3.5 に示すように, フラッターに対する安定性に関して様々な論文が発表されている.

モノデュオ形式(図-2.3.6)の基本的な考え方はは、主ケーブルの塔頂サドルを中央に集中して配置し、補 剛桁の捩り変形における主ケーブル両面の橋軸方向相対変位を塔頂部で拘束することによって、構造系全体 の捩り変形を増すことができる(文献1).このねじり剛性の高さにより、「ねじり1次の固有振動数の増加 および等価質量・極慣性モーメントの増加によりフラッター発現風速は増加する(文献7)」などの報告がな されている.

図-2.3.6 モノデュオケーブル形式

 文献 番号 	論文名	論文集名	年次	頁	著者名
1	MONO-DUO 形式による超長大吊橋の副風安定化に対する基礎的検討	土木学会年次学術 講演会講演概要集	1994 年	1110頁	森園康之,藤野陽三,前田研一,長 井正嗣
2	MONOーDUO 形式による超長大吊橋の耐風安定化対策と静的構造特性	土木学会年次学術 講演会講演概要集	1995 年	1386 頁	田平 秀和,森園康之,藤野陽三,前 田研一,長井正嗣
3	MONOーDUO 形式による超長大吊橋の耐風安定化対策と捩り振動特性	土木学会年次学術 講演会講演概要集	1995 年	1388頁	保坂俊晃,前田研一,藤野陽三,森 園康之,長井正嗣
4	補助ハンガーシステムを併用した MONO DUO 形式超長大品橋の構造特性	土木学会 構造工学論文集	1996 年	1049 頁	前田研一,森園康之,岩本政巳,長 井正嗣,藤野陽三
5	リジッドハンガーフレームを用いた MONO-DUO 形式超長大吊橋の耐風安 定性	土木学会年次学術 講演会 講演概要 集	1996 年	410頁	田平秀和,岩本政已,前田研一,長 井正嗣,藤野陽三
6	ステイハンガーを用いた MONO・DUO 形式超長大吊橋の耐風安定性	上木学会年次学術 講演会講演概要集	1996 4 [:]	412 頁	志水平,森園康之,藤野陽三,岩本 政已,前田研一
7	超長大橋の耐風安定性に関する調査研究報告書	土木研究所資料 3429	1996 年	_	佐藤弘史,荻原勝也。松藤洋照 嶋 本栄治,星加益朗
8	MONO-DUO 形式超長大吊橋の耐風安定性に及ぼすリジッドハンガーの効果	土木学会 構造工学論文集	1997年	1209 頁	前田研一,岩本政已,森園康之,田 平 秀和 ,長井正嗣,藤野陽三
9	超長大吊橋の耐風安定化対策と暴風時における静的不安定問題	土木学会年次学術 講演会講演概要集	199 7 年	118頁	田平秀和,前田研一,森園康之,岩 本正巳,藤野陽三
10	超長大吊橋の耐風安定化対策と連成フラッター特性	土木学会年次学術 講演会講演概要集	1997 年	120頁	中津川宏和,岩本正巳,藤野陽三. 前田研一,長井正嗣
11	MONO-DUO 形式化とリジッドハンガーによる超長大吊橋の耐風安定化策 の実現性	土木学会 構造工学論文集	1998 年	1199頁	前田研一,岩本政已,森園康之,田 平 秀和,長井正嗣,藤野陽三
12	作用空気力が変化した場合の連性フラッター特性について ー従来形式とモノデュオ形式に対する検討-	土木学会年次学術 講演会講演概要集	1998年	126 頁	上田宗志,米田昌弘、西澤毅
13	MONO DUO 形式超長大吊橋の MONO 区間長と耐風安定性に関する研究	上木学会年次学術 講演会講演概要集	1998,年	132 H	志水平,森園康之、藤野陽三。前田 研一,岩本正巳

表-2.3.5 モノデュオ形式による超長大吊橋に関する参考文献一覧

14	超長大箱桁形式吊橋の連成フラッター特性に関する2,3の考案 -作用空気力を変化させた従来形式とモノデュオ形式に対する検討-	土木学会 構造工学論文集	1999年	1047 頁	米田昌弘,	上田宗志,	西澤毅	
15	MONO-DUO 形式超長大吊橋のフラッター解析に関する研究	土木学会年次学術 講演会講演概要集	2001年	722頁	宇都宮実, 保喜延	山口栄輝,	木村吉郎,	久
16	モノデュオ形式吊橋の連成フラッター特性を支配する空気力成分について	土木学会 構造工学論文集	2002年	909頁	米田昌弘。	和田識司		

2) 固有振動数

モノデゥオタイプの固有値解析結果を図-2.3.7に示す.

図-2.3.7(1) モノデュオ形式 振動モード図(鉛直たわみ対称1次)

図-2.3.7(2) モノデュオ形式 振動モード図(ねじり対称1次)

(2)のモノデゥオ形式と逆に主塔位置のケーブル間隔を開いたケースについて,固有値解析の結果を図-2.3.9に示す.

図-2.3.9(2) 3次元ケーブル(主塔位置拡張)振動モード図(ねじり対称1次)

(4) 4本ケーブル吊橋の振動解析結果

1) 平行ケーブル(主塔位置ケーブル間隔 28m)

ケーブルを2箱桁の内外に配置した4本ケーブル吊橋の固有値解析結果を示す.ケーブルを平行にしたケースの固有値解析結果を図-2.3.11に示す.

図-2.3.11(2) 4本ケーブル吊橋の振動モード図(ねじり対称1次)

2) 拡張型ケーブル(主塔位置ケーブル間隔 38m)

ケーブルを2箱桁の内外に配置した4本ケーブル吊橋の固有値解析結果を示す.ケーブルを主塔位置で外 側に開いたケースの固有値解析結果を図-2.3.13に示す.

図-2.3.13(2) 4本ケーブル吊橋(主塔位置拡張)の振動モード図(ねじり対称1次)

主塔の影響を確認するため、基本ケースの塔を剛にしたケースと、3次元ケーブル(主塔位置拡張型)の 塔を剛にしたケースの固有値解析を行った.それぞれのねじり振動モードを図-2.3.14,15 に示す.

図 2.3.15 3 次元ケーブル, 主塔位置 B=38m の主塔を剛にしたときのねじり振動モード

R. 2

ТX

29.806

-274.908

2.3.4 2重吊橋の振動特性とフラッター発現風速

2.3.4.1 2重吊橋の特徴

耐風安定性を向上させるケーブルシステムの1つとして、2重吊橋が考えられる.2重吊橋は、補剛桁の 下方にケーブルを張り渡して上段のケーブルとハンガーロープで連結し、ハンガーロープに張力を導入して 耐風安定性の向上を図るケーブルシステムである(図-2.3.16).

図-2.3.16 2重吊橋の概念図

2重吊橋の特徴を以下に示す.

- ① 上下のケーブルにプレストレスを導入することで、橋梁全体の剛性が高まる
- ② 活荷重,風荷重による鉛直・水平方向の変位,および曲げモーメントは通常の吊橋と比較して小さくなる
- ③ 耐風安定性が改善され、限界風速が向上する

2.3.4.2 耐風安定性の概念モデル

通常吊橋は,耐風安定性の概念図として図 2.3.17 のような補剛桁を2本のバネで吊り下げたモデルと考えることができる. 吊橋に強風が作用するとき,抗力と揚力と空力モーメントの空力の3分力を受け,この揚力成分が自重より小さければハンガーは緩まないが,大きくなると不安定な状態になる.

2重吊橋は、図-2.3.18 に示すように補剛桁を上下から4本のバネで引張り合った構造モデルと考えることができる.このバネは、上向きの変位が生じると下ハンガーの張力を増大させ、下向きの変位が生じると上ハンガーの張力を増大させて変形を抑制する方向に作用する.そのため、ハンガーケーブルが破断しない限り上下のハンガーは緩まないので、耐風性は不安定になりにくいと考えられる.

揚力成分: P_L $P_L = L/2 + Mc/b + D \cdot \theta/2$

T=Wd/2- PL>0 安定

2.3.4.3 2 重吊橋の振動解析結果

表-2.3.6に2重吊橋の振動特性とフラッター発現風速をまとめる.

検討の結果,ケーブルシステムを2重とすることで,鉛直振動数が高くなることが確認された.ねじり振動 数については,今回の検討では基本ケースと変化が小さく,今後,下ハンガー張力の係数に関してより詳細 な検討が必要である.

今回の比較解析では、他のケーブルシステムと同じ鋼製ケーブルを使用したモデルに設定しているため、 桁下ケーブルを追加している分、経済性に劣っている.2重吊橋を経済的に構成するためには、ケーブル材 料に炭素繊維を使用して軽量化を図り、補剛桁および主塔の軽量化などを含めて、総合的に検討する必要が あると考えられる.

表-2.3.6 2重吊橋の振動数とフラッター発現風速

case	ケーブル配置	鉛直接動数 fv (等価 <u>更量</u>)	ねじれ振動数 fθ (等価径慣性重量)	fv/fØ	フラッター発現風速 selbelg式による	コメント
1		2次 0.0557 (601.1)	16次 0.1396 (99285)	2.51	66.1 (1.00)	通常の吊橋
8	福朝祈の下朝にケーブルを掻ったケース	2次 0.0674	11次 0.1393	2.07	63.0 (0.95)	2重ケーブル形式では、鉛直た わみ裏動および水平たわみ覆 動に関しては固有振動数が上 昇するが、ねじれ固有振動数へ の影響は少ない。

鉛直振動モードを図-2.3.19(1)に、ねじれ振動モードを図-2.3.19(2)に示す.

モード 次数	固有円振動数 (rad./sec)	固有振動数 (cyc./sec)	固有周期 (sec)	刺激係數	有効質量	有効質量率	累積有効質量率
2	4. 23804E-01	6. 74505E-02	1. 48257E+01	1. 613€+02 X (-2.087€-01) Y (1.615€+02) Z (6.122€-05) -3.946€-03 RX (-3.946€-03 RY (0.000€+00) RZ (0.000€+00)	2.601E+04 X(4.358E-02) Y(2.607E+04) Z(3.747E-09) 1.557E-05 RX(1.557E-05) RY(0.000E+00) RZ(0.000E+00)	2. 331E+00 X (1. 170E-05) Y (7. 004E+00) Z (1. 010E-12) 7. 414E-10 RX (7. 414E-10) RY (0. 000E+00) RZ (0. 000E+00)	8.628E+00 X(1.170E-05) Y(7.004E+00) 2(1.893E+01) 9.105E-07 RX(9.105E-07) RX(9.105E-07) RX(0.000E+00) RX(0.000E+00)

図-2.3.19(1) 2重吊橋の振動モード図(鉛直たわみ対称1次)

モード 次数	固有円振動数 (rad./sec)	固有摄動数 (cvc./sec)	固有周期 (sec)	刺激係数	有効貿量	有効質量率	累積有効質量率
11	8.75191E-01	1.39291E-01	7. 17922E+00	-5. 096E+01 X (-1. 761E-01) Y (-1. 677E-01) Z (-5. 062E+01) -1. 804E+02 RX (-1. 804E+02) RY (0. 000E+00) RZ (0. 000E+00)	2.597E+03 X(3.100E-02) Y(2.812E-02) Z(2.562E+03) 3.256E+04 RX(3.256E+04) RY(0.000E+00) RZ(0.000E+00)	2. 328E-01 X (8. 328E-06) Y (7. 552E-06) Z (6. 904E-01) 1. 550E+00 RX (1. 550E+00) RY (0. 000E+00) RZ (0. 000E+00)	2.949E+01 X(3.104E+00) Y(4.023E+01) Z(4.526E+01) I.588E+00 RX(1.588E+00) RY(0.000E+00) R7(0.000E+00)

図-2.3.19(2) 2重吊橋の振動モード図(ねじれ対称1次)

2.4 主塔形式の検討

2.4.1 はじめに

前節までの検討により、ケーブルシステムとしてモノデュオケーブルが優れることから、ケーブル配置に 適した主塔形式として、A型主塔の設計を行う.2500m級長大吊橋の主塔には、高い耐荷力性能および耐震 性能が要求されると同時に、経済性も考慮しなければならない.このような問題に対し鋼管にコンクリート を充填した複合構造が注目されており、本WGにおいて主塔に複合構造を検討する.複合主塔形式としては、 UOE 既成鋼管により構成される構造としコストの縮減を図る.

また,比較案として,RC 主塔,鋼製主塔の概略設計を行い,経済性,全体系の耐風性の比較,単独形の 耐風性の比較を行う.

2.4.2 複合主塔の検討

2.4.2.1 検討条件

(1) 適用基準

コンクリートを充填した合成柱の設計は,

①合成柱(充填方式)を有する鋼製橋脚の設計施工指針(案):昭和 61.3,阪神公団 を基本に,

②複合構造物の性能照査指針(案):H14.10,土木学会

を参照して設計をおこなう.

なお、荷重・組合せ等は、上部工設計基準(本四公団)を参照する.

(2) 設計方針

複合主塔の試設計をおこなう上で以下の点を条件とした.

- ・コンクリートは塔柱にのみ充填するものとし、水平材には充填しない.
- ・塔柱の設計は性能照査型とし、塔柱に作用する断面力に対して断面耐力を照査する.
- ・水平材は許容応力度設計法で設計する.
- ・UOE 鋼管, 鋼板で構成される塔柱部材断面は板厚のみ変化させ,外側寸法は主塔高さに対して一定と する.よって断面耐力は鋼材板厚により調整される.
- ・充填されたコンクリートの引張側を無視する.
- ・鋼材の最小板厚は鋼板で10mm, UOE 鋼管で9.5mm とする.

(3) 設計断面力の算出

本試設計で対象とする載荷状態は以下の5ケースとする.

- ① Vcmax時 :完成系塔頂鉛直反力最大時 (D+L+T+SD+E)
- ② δ_{max}時 : "頂点水平変位最大時(D+L+T+SD+E)
- ③ W_{LL} 時 : " 橋軸方向暴風時 (D+W₁+T+SD+E)
- ④ W_{TT} 時 : " 橋軸直角方向暴風時(D+W_{TT}+T+SD+E)
- ⑤ W_{LL,ER} 時:架設系橋軸方向暴風時 (D+W_l+T)

2) 設計荷重

a)	死荷重	(D)
----	-----	-----

・補剛桁 ; 174.6kN/m/Br.

・主ケーブル; 43.1kN/m/Cable (重量)

- ・ハンガー ; 467kN/m/Br.
- ・主塔 ; 形式毎に別途算出
- b) 活荷重(L)

本四公団・上部工設計基準に準じ、以下の設計活荷重(曲げ着目時)をレーン載荷(車道幅 3.50m× 4 車線=14.0mのみに載荷)する. なお、載荷位置は各桁上とし、橋梁中央で分割し載荷させる.

主載荷 $p_1=10.0$ kN/m² (載荷長D=10.0m) $p_2=3.0 \times (0.57+300/(200+L)) = 3.0 \times (0.57+300/(200+2500)) = 2.04$ kN/m² 従載荷 p_1 および p_2 の 1/2

①着目主桁(柱)側に作用させる活荷重

<鉛直分布荷重>

- ・P₁; p₁×5.5m+p₁/2×1.5m=62.5kN/m/Br. (片側)
- P_2 ; $p_2 \times 5.5m + p_2 / 2 \times 1.5m = 12.8$ kN/m/Br. (片側)
- <トルクモーメント(BOX 中立軸回り(内側向きトルク)>
- ・ t P₁; p₁×5.5m× (0.338+5.5m/2) =169.8kN⋅m/m/Br. (片側)
- ・ t P₂; p₂×7.0m+ (0.338+7.0m/2) = 54.9kN·m/m/Br. (片側)

②反対側主桁に作用させる活荷重

< 鉛直分布荷重>

- ・P₁; p₁/2×7.0m=35.0kN/m/Br. (片側)
- ・P₂; p₂/2×7.0m= 7.2kN/m/Br. (片側)
- <トルクモーメント(BOX 中立軸回り(内側向きトルク)>
- $t P_2$; $p_2 \times 7.0m + (0.338 + 7.0m/2) = 54.9kN \cdot m/m/Br.$ (片側)

注1) V cmax時における活荷重の橋軸方向の載荷長は、全径間とする.

注2) ô max 時における活荷重の橋軸方向の載荷長は、中央径間のみとする.

c) 温度変化(T)

・鉛直たわみの解析においては、基準温度T=+20℃に対してΔT=±30℃の変化量を考える.

・暴風時の水平たわみの解析においては、△T=+15℃の温度上昇を考える.

d) 支点移動の影響(SD)

地盤のクリープおよび地震後の残留変位などによる支点移動として、本四公団・上部工設計基準 に示される基準変位量を用いる.

アンカレイジの着目点位置における水平変位量

・ δ =0.02L =0.02×2500=50.0cm (L:中央径間におけるケーブル支間長を用いる)

e) 製作および架設誤差の影響(E)

主塔設計時に考慮する製作および施工誤差として、ケーブルのそれも含めた値として、本四公団・上部工設計基準に準じ、 $\delta_{\rm E}$ =H_T/2000 を考える.なお $\delta_{\rm E}$ は、主塔頂点に位置に水平たわみとして与える.

・中央径間中央 δ_E=326.75/2000=0.163m(Hr:主塔基部~ケーブル理論頂までの高さ)

f) 風荷重(WTT)

①基本風速

 $U_{10} = 50 \text{m/s}$

②設計基本風速(基準海面高をT.P)

・補剛桁:基準高度は、補剛桁中心線の高度とする.

基準高度 Z = (65.0+83.75) / 2-4.0 / 2=72.4m

補正係数 $\mu_1 = (72.4/10)^{1/10} = 1.22$

設計基準風速 $U_z = \mu_1 \cdot U_{10} = 1.22 \times 50.0 = 61.0$ m/s

・主ケーブルおよびハンガー:基準高度は、補剛桁の平均高度と塔頂高度との平均値とする.

Z = (72.4 + 336.75) / 2 = 204.6 m

 $\mu_1 = (204.6 \times 10)^{1/10} = 1.35$

 $U_z = \mu_1 \cdot U_{10} = 1.35 \times 50.0 = 67.5 \text{ m/s}$

・主塔:基準高度は、塔高の65%高度とする.

 $Z = (336.0 - 10.0) \times 0.65 + 10.0 = 163.4 m$

$$\mu_1 = (163.4/10)^{1/10} = 1.32$$

 $U_z = \mu_1 \cdot U_{10} = 1.32 \times 50.0 = 66.0 \text{ m/s}$

③投影面積

・補剛桁:補剛桁構造高に橋面設備の高さ(補剛桁の2割増と仮定)を考慮する.

投影面積 An=4.0×1.2=4.80m²/m/Br.

・主ケーブルおよびハンガー:主ケーブルの投影面積にケーブルハンドやハンドローブなどの投影面 積(主ケーブルの2割増と仮定)を考慮する.

 $A_n = 0.795 \times 1.2 = 0.95 \text{ m}^2/\text{m/Cable}$

・ハンガーケーブル:補剛桁と主ケーブルにその投影面積それぞれ1/2づつ振分ける(主ケーブルの 2割と仮定).

 $A_n = 0.95 \times 0.2 = 0.19 \text{ m}^2/\text{m/Cable}$

→補剛桁+0.10 m²/m/Br., 主ケーブル+0.05 m²/m/Cable

・主塔:橋軸方向および直角方向の塔柱断面長とする.

複合主塔 (LL) 柱; $An=7.0+1.42=8.42m^2/m/柱$ 梁; $An=10.0m^2/m/梁$ 複合主塔 (TT) 柱; $An=7.0+1.42=8.42m^2/m/柱$ 鋼製主塔 (LL) 柱; $An=8.50m^2/m/t$ 鋼製主塔 (TT) 柱; $An=8.50m^2/m/t$ 解製主塔 (TT) 柱; $An=14.0\sim9.0m^2/m/t$ RC主塔 (LL) 柱; $An=8.50m^2/m/t$ 梁; $An=10.0m^2/m/梁$, $6.50m^2/m/$ 梁 RC主塔 (TT) 柱; $An=12.0\sim9.0m^2/m/t$

④設計風荷重

 $P_{D} = \mu_{2} \cdot (1/2 \cdot \rho \cdot U_{z^{2}}) \cdot Cd \cdot An; 補剛桁, 主ケーブル$ $P_{D} = \mu_{3} \cdot (1/2 \cdot \rho \cdot U_{z^{2}}) \cdot Cd \cdot An; 主塔$ $ここに, \rho = 0.12 \times 10^{.2} kN/m^{3}$ $\mu_{2} = 1.40, \mu_{3} = 1.55 (主塔設計時)$

· · · · · · · · · · · · · · · · · · ·					
	μ_2, μ_3	U _z (m/s)	Cd	An (m²/m)	P _D (kN/m)
補剛桁	1.40	61.0	1.2	4.90	18.4
主ケーブル	1.40	67.5	0.7	0.10	2.7
主塔(複合-LL)	1.55	66.0	1.8	柱;8.42	柱;34.1
				梁;10.0, 6.5	梁;40.5,26.3
主塔(複合-TT)	1.55	66.0	1.8	柱;8.42	柱;34.1
 	1 55	66.0	10	柱;8.5	柱;34.4
	1.55	00.0	1.0	梁;15.0, 8.0	梁;60.8,32.4
主塔 (鋼製-TT)	1.55	66.0	1.8	柱;14.0~9.0	柱;56.7~36.5
主楼(PC-II)	1 55	0.00	1.0	柱;8.5	柱; 34.4
	1.00	0.00	1.8	梁;10.0, 6.5	梁;40.5,26.3
主塔(RC-TT)	1.55	66.0	1.8	柱;12.0~9.0	柱;48.6~36.5

表-2.4.1 設計風荷重

注) 抗力係数Cdは、過去の設計事例を基に仮定した.

主塔形状を図-2.4.2に、主塔の断面形状を図-2.4.3に示す.

図-2.4.2 複合主塔形状

複合主塔は図-2.4.3に示すような UOE 鋼管と鋼板で構成された多柱式構造を橋軸方向に2つ配置した.

2.4.2.3 照査手法

全体解析より求めた断面力を用い,複合主塔の塔柱および水平材の断面寸法を決定する.主塔においては, 合成断面の効果を期待するために終局限界による照査をおこなった.ただし,塔頂部近辺においては,断面 力の減少に伴いコンクリート充填が不経済となる可能性も考えられるので,以下に示す照査式においては複 合製塔柱と鋼製塔柱の両方を示した.一方,水平材に関しては従来同様,許容応力度設計法により求めるの で省略した.

(1) 終局限界状態

複合製塔柱は合成柱部材として、鋼製塔柱は鋼部材としてそれぞれ照査する.塔柱は、大きな圧縮力を受けると同時に橋軸方向と橋軸直角方向に曲げモーメントを受けるので、

軸方向力と二軸曲げモーメントを受ける場合の照査式を用いることとする.

a) 鋼部材

鋼部材が圧縮の軸方向力と二軸曲げモーメントを受ける場合には以下の式を満足しなければならない.

$$\nu \frac{P}{P_{cu}} + \nu \frac{M_y}{M_{cuy} \left(1 - \nu \frac{P}{P_{cry}}\right)} + \nu \frac{M_z}{M_{cuz} \left(1 - \nu \frac{P}{P_{crz}}\right)} \le 1$$

ここに,

v:荷重の組合せによる安全率()

P:軸方向力

P_{cu}:断面の基本圧縮耐荷力であり次式で算出する.

$$P_{cu} = A_g \sigma_{cug} \sigma_{cul} / \sigma_{cuo}$$

 P_{crv}, P_{crz} : それぞれ弱軸,および強軸まわりのオイラーの座屈強度であり次式で算出する.

$$P_{cry} = 2 \times 10^5 \frac{I_{yy}}{l^2}$$
$$P_{crz} = 2 \times 10^5 \frac{I_{zz}}{l^2}$$

M₁,M₂: それぞれ弱軸,および強軸まわりに作用する曲げモーメント

M_{cuy},*M_{cuz}*:それぞれ照査する断面の引張側における弱軸,および強軸まわりの幸福曲げモーメントで, 次式により算出する.

$$M_{cuy} = \frac{I_{yy}}{y_c} \sigma_{buo}$$
$$M_{cuz} = \frac{I_{zz}}{z_c} \sigma_{bugz}$$

A。: 照査する断面の総断面積

 σ_{cug} :局部座屈を考慮しない弱軸まわりの軸方向圧縮強度

 σ_{cul} :両縁支持板,自由突出板,および補剛板について規定した局部座屈強度

 σ_{cuo} :強度の上限値

σ_{hua}:局部座屈を考慮しない曲げ圧縮強度の上限値

 $\sigma_{\scriptscriptstyle buoz}$:局部座屈を考慮しない強軸まわりの曲げ圧縮強度

I_w,I_{zz}:それぞれ照査する断面における弱軸,および強軸まわりの断面二次モーメント

 y_c, z_c :それぞれ y 軸,および z 軸の原点(中立軸)から引張側縁,および圧縮側縁までの距離

b) 合成柱部材

合成柱部材が圧縮の軸方向力と二軸曲げモーメントを受ける場合には以下の式を満足しなければならない.

$$v\frac{M_y}{M_{uy}} + v\frac{M_z}{M_{uz}} \le \phi$$

ここに

$$M_{y} = M_{y0} \frac{1}{1 - v \frac{P}{P_{cry}}}$$
$$M_{z} = M_{z0} \frac{1}{1 - v \frac{P}{P_{cry}}}$$

$$1 - v \frac{P}{P_{crz}}$$

 M_{y} : 付加曲げモーメントを考慮した充填コンクリートの硬化後の y 軸まわりの曲げモーメント M_{z} : 付加曲げモーメントを考慮した充填コンクリートの硬化後の z 軸まわりの曲げモーメント M_{y0} : y 軸まわりに作用する曲げモーメント M_{z0} : z 軸まわりに作用する曲げモーメント M_{uy} : y 軸まわりの破壊抵抗曲げモーメント M_{uz} : z 軸まわりの破壊抵抗曲げモーメント

$$\phi = 1 - \left(1 + \beta\right) \left(\nu \frac{P}{P_u}\right)^2 + \beta \left(\nu \frac{P}{P_u}\right)$$

β:次式による

$$\beta = 9.17\gamma^2 - 13.75\gamma + 4.63$$

$$\gamma = \frac{P_{ss}}{P_{ss} + P_{cs}}$$

P.::鋼部材の圧壊荷重

$$P_{ss} = \sigma_{cuo} A_s$$

P_{cs}: コンクリートの圧壊荷重

$$P_{cs} = 0.85\sigma_{ck}A_c$$

 σ_{ck} :コンクリートの設計基準強度

A.: 鋼材の断面積

A.: 充填コンクリートの断面積

P₄: 柱断面の耐荷力

$$P_{\mu} = P_{ss} + P_{cs}$$

(2) 断面形状

断面を決定するにあたり、多柱式構造の外寸法を基部から塔頂まで一定とし、多柱式構造の橋軸方向間隔 と鋼板・UOE 鋼管の板厚を変化させて所定の耐荷力を満足することとした.また基部から第六水平材まで 水平材毎に6分割し、それぞれについて断面照査をおこなった.ただし、第四水平材-第六水平材間は同一 寸法とした.板厚を除く断面寸法を表-2.4.2 に示す.

	L	В	W	D	р
	(mm)	(mm)	(mm)	(mm)	(mm)
基 部-第一水平材	14000				
第一水平材-第二水平材	8000				
第二水平材-第三水平材		5800	3000	965	650
第三水平材-第四水平材	7000				
第四水平材-第六水平材					

表-2.4.2 断面寸法

(3) 使用材料

解析に用いる鋼材の材質はSM490Y($\sigma_{cuo}=355$ N/mm₂)とし、コンクリートは設計基準強度 $\sigma_{ck}=30$ N/mm²とした.

2.4.2.4 全充填形式と一部充填形式の設計結果

(1) 全体解析

全体解析で求められた設計断面力を図-2.4.3に示す.

衣-2.4.3 谷断回照直世道しの故計断回り									
		基部-第-	第一一第二	第二-第三	第三-第四	第四-第五			
	N (kN)	647, 610	578, 368	503, 109	442, 757	405, 410			
D+L+T (Vmax)	MY (kN∙m)	23, 347	9, 579	4, 243	4, 230	8,087			
	MZ (kN·m)	260, 529	224, 975	148, 119	76, 727	52,704			
	N (kN)	638, 659	572, 690	497, 427	437, 026	399, 520			
D+L+T (δMax)	MY (kN⋅m)	17,488	5, 885	4, 320	4, 898	9,008			
	M2 (kN⋅m)	697, 322	602,159	396, 449	205, 357	140, 603			
	N (kN)	622, 830	556, 285	481,099	420, 818	383, 759			
D+W(LL)+T	MY (kN⋅m)	6,827	2, 235	2, 244	2, 791	4, 723			
	MZ (kN⋅m)	675, 100	367, 622	66, 318	183, 907	160, 619			
	N (kN)	843, 063	741, 733	642, 661	557, 860	477, 361			
D+W(TT)+T	MY (kN·m)	571, 738	263, 450	240, 560	182, 478	319, 678			
	MZ (kN·m)	60, 393	52,151	34, 335	17,788	12, 352			
	N (kN)	453, 870	453, 870	453, 870	378, 001	378, 001			
D+W(LL)+T(架設時)	MY (kN·m)	35, 535	55, 807	53, 784	21, 423	6,469			
	MZ (kN·m.)	1, 799, 680	1, 338, 730	573, 038	147, 269	65,667			

表-2.4.3 各断面照査位置での設計断面力

(2) 照査結果

設計断面力を用いた終局限界状態での照査結果を表-2.4.4に示す.

ν 基部一第一 第一一第二 第二一第三 第三一第四 第四一第五 L (mm) 14,000 8,000 7,		·	ست		LAHA		
L (umm) 14,000 8,000 7,000		V	基部-第-	第一一第二	第二-第三	第三一第四	第四-第五
B (nm)5,8005,8005,8005,8005,8005,800W (nm)3,0003,0003,0003,0003,0003,000p (nm)650650650655665t $_1$ (nm)28.022.013.010.010.0D (nm)965965965965965t $_1$ (nm)25.420.614.39.599.5H (nm)44,50096,50089,50030,50030,500 72y // Attain22,25048,25044,75015,25015,250 7 /24 7777777777777896 Vs (n3)1,0192,2562,11,9201,487,9121,041,7352,083,470 7 Vs (n3)1,0192,2562,1527461,499Vs (n3)1,0192,2562,1527461,499W s (kh)9,52216,65910,2542,4474,892Ps (kh)986,561795,882528,209369,816369,816Ps (kh)986,561795,882528,209369,816369,816Ps (kh)986,561795,882528,209369,816369,816Ps (kh)986,561795,882528,209369,816369,816Ps (kh)986,561795,882528,209369,816369,816Ps (kh)1.500,0700.5250.1190.6140.0750.726	L (mm)		14,000	8, 000	7,000	7,000	7,000
W (mm) 3,000	B (mm)	}	5, 800	5, 800	5, 800	5, 800	5,800
p (mm) 650 650 650 650 650 650 650 t_{p1} (mm) 28.0 22.0 13.0 10.0	W (mm)		3, 000	3, 000	3, 000	3, 000	3,000
$t_{p1}(mm)$ 28.022.013.010.010.0D(mm)965965965965965 $t_{p1}(mm)$ 25.420.614.39.59.5H(mm)44,50096,50089,50030,50030,500有効座組長さ(mm)22,25048,25044,75015,25015,250方均項有有有有有方均原第490YSM490YSM490YSM490YSM490Y σ cuo (N/mn2)355355355355 σ ck (N/mn2)30303030 σ cuo (N/mn2)22,905,49623,382,57224,041,09824,453,969 $As (mm2)$ 22,905,49623,382,57224,041,09824,453,96948,907,938 $Vs (m3)$ 1,0192,2562,1527461,492Ws (kN)9,52216,65910,2542,4474,893 $Y c (m3)$ 1,0192,256528,209369,816369,816Pss (kN)986,561795,882528,209369,816369,816 γ 0.6280.5770.4630.3720.372 β -0.389-0.2340.2300.7820.372 γ 0.6280.5770.4630.3720.372 β -0.389-0.2340.2300.7820.772 β -0.389-0.2340.2300.7820.757 ρ 0.610.1550.5640.3060.6250.1900.740 $P+UL+T (Vmax)$ <	p (mm)		650	650	650	650	650
D (mm) 965 9	t _{pl} (mm)		28.0	22.0	13. (10.0	10.0
t_{p1} (mm)25.420.614.39.59.5H (mm)44,50096,50089,50030,50030,500 <i>有効座</i> 屈長さ (mm)22,25048,25044,75015,25015,250 <i>元</i> 岐 <i>有有fffR</i> 10SM490YSM490YSM490YSM490YSM490Y σ cuo (N/mm2)355355355355355 σ ck (N/mm2)2,779,0462,241,9201,487,9121,041,7352,083,470As (mm2)2,779,0462,382,57224,041,09824,453,96948,907,938Vs (m3)1,2421613332264Vs (m3)1,0192,2562,1527461,492Ws (kN)9,52216,65910,2542,4474,893Pss (kN)9,8620.5720.4630.3720.372 β -0.389-0.2340.2300.7820.782 γ 0.6280.5720.1190.6140.0750.7260.059 γ 0.6280.5720.4630.3720.372 β -0.389-0.2340.2300.7820.782 γ 0.6280.5770.1190.6140.0750.7260.059 γ 0.6280.5770.1190.6140.0750.7260.0590.811D+L+T (Vmax)1.500.1560.5350.2900.5610.0470.7330.1600.3840.923D+W (LL)+T1.350.379	D (mm)	İ	965	965	965	965	965
H (mm)44,50096,50089,50030,50030,500 \bar{q} \bar{m} $22,250$ $48,250$ $44,750$ $15,250$ $15,250$ $15,250$ $\bar{\pi}$ \bar{m} \bar{q} \bar{q} \bar{q} \bar{q} \bar{q} \bar{q} \bar{r} \bar{q} \bar{q} \bar{q} \bar{q} \bar{q} \bar{q} \bar{q} \bar{r} \bar{q} \bar{q} \bar{q} \bar{q} \bar{q} \bar{q} \bar{q} σ cuo (N/mn2) 355 355 355 355 355 355 355 355 σ ck (N/mn2) $2,779,046$ $2,241,920$ $1,487,912$ $1,041,735$ $2,083,470$ As (mm2) $22,905,496$ $23,382,572$ $24,041,098$ $24,453,969$ $48,907,938$ Vs (m3) $1,019$ $2,256$ $2,152$ 746 $1,492$ Ws (kN) $9,522$ $16,659$ $10,254$ $2,447$ $4,892$ Wc (kN) $23,444$ $51,898$ $49,489$ $17,154$ $34,300$ Pss (kN) $986,561$ $795,882$ $528,209$ $369,816$ $369,816$ Pes (kN) $584,090$ $596,256$ $613,048$ $623,576$ $623,576$ $\bar{\gamma}$ 0.628 0.572 0.463 0.372 0.372 $\bar{\beta}$ -0.389 -0.234 0.230 $0.755 <0.726$ $0.059 <0.811$ D+L+T (Vmax) $1.500.156 <0.535$ $0.290 <0.564$ $0.306 <0.625$ $0.190 <0.740$ $0.138 <0.823$ D+W (LL)+T $1.350.379 <0.397$ $0.402 <0.435$ $0.458 <0.464$ $0.267 <0$	t _{pi} (man)		25.4	20.6	14.3	9.5	9.5
有効座屈長さ (nm) 22,250 48,250 44,750 15,250 15,250 充填 有 有 有 有 有 有 有 有 7 材質 SM490Y SM490Y SM490Y SM490Y SM490Y SM490Y SM490Y σ cuo (N/ma2) 355	H (mm)		44, 500	96,500	89, 500	30, 500	30, 500
	有効座屈長さ(mm)		22, 250	48, 250	44, 750	15, 250	15,250
材質SM490YSM490YSM490YSM490YSM490YSM490Y $\sigma \operatorname{cuo}(N/\operatorname{mn2})$ 355355355355355355 $\sigma \operatorname{ck}(N/\operatorname{mn2})$ 303030303030As (\operatorname{mn2})2,779,0462,241,9201,487,9121,041,7352,083,470Ac (\operatorname{mn2})22,905,49623,382,57224,041,09824,453,96948,907,938Vs (\operatorname{m3})1242161333264Vc (\operatorname{m3})1,0192,2562,1527461,492Ws (kN)9,52216,65910,2542,4474,893Wc (kN)23,44451,89849,48917,15434,305Pss (kN)986,561795,882528,209369,816369,816Pcs (kN)584,090596,256613,048623,576623,576 γ 0.6280.5720.4630.3720.372 β -0.389-0.2340.2300.7820.782PtL+T (δ max)1.500.1560.5350.2900.5640.3060.6250.1900.138<	充填		有	有	有	有	有
σ cuo (N/mm2)355355355355355355 σ ck (N/mm2)303030303030As (mm2)2, 779, 0462, 241, 9201, 487, 9121, 041, 7352, 083, 470Ac (mm2)22, 905, 49623, 382, 57224, 041, 09824, 453, 96948, 907, 938Vs (m3)1242161333264Vc (m3)1, 0192, 2562, 1527461, 492Ws (kN)9, 52216, 65910, 2542, 4474, 893Wc (kN)23, 44451, 89849, 48917, 15434, 305Pss (kN)986, 561795, 882528, 209369, 816369, 816Pcs (kN)584, 090596, 256613, 048623, 576623, 576 γ 0. 6280. 5720. 4630. 3720. 372 β -0. 389-0. 2340. 2300. 7820. 782 $24\pm$ 1. 500, 0700. 5260. 1190. 5570. 1190. 6140. 0750. 7260. 0590. 811D+L+T (\begin{tabular}{l} 0. max)1. 500, 1560. 5350. 2900. 5640. 3060. 6250. 1900. 7400. 1380. 823D+W(LL)+T1. 350, 1290. 6170. 1550. 6510. 0470. 7330. 1500. 8640. 1340. 923D+W(LL)+T1. 350, 3790. 3970. 4020. 4350. 4580. 4640. 267<	材質		SM490Y	SM490Y	SM490Y	SM490Y	SM490Y
$\sigma \operatorname{ck}(\operatorname{N/\operatorname{mn}2})$ 303030303030As (\operatorname{mn2})2,779,0462,241,9201,487,9121,041,7352,083,470Ac (\operatorname{mn2})22,905,49623,382,57224,041,09824,453,96948,907,938Vs (\operatorname{m3})1242161333264Vc (\operatorname{m3})1,0192,2562,1527461,492Ws (kN)9,52216,65910,2542,4474,893Wc (kN)23,44451,89849,48917,15434,309Pss (kN)986,561795,882528,209369,816369,816Pcs (kN)584,090596,256613,048623,576623,576 γ 0.6280.5720.4630.3720.372 β -0.389-0.2340.2300.7820.782D+L+T ($\delta \operatorname{max}$)1.500.1560.5560.5170.1190.6140.0750.7260.0590.811D+W(LL)+T1.350.1290.6170.1550.6510.0470.7330.1500.8640.134<	$\sigma \operatorname{cuo}(N/mm2)$		355	355	355	355	355
As (nm2)2, 779, 0462, 241, 9201, 487, 9121, 041, 7352, 083, 470Ac (nm2)22, 905, 49623, 382, 57224, 041, 09824, 453, 96948, 907, 938Vs (m3)1242161333264Vc (m3)1, 0192, 2562, 1527461, 492Ws (kN)9, 52216, 65910, 2542, 4474, 893Wc (kN)23, 44451, 89849, 48917, 15434, 305Pss (kN)986, 561795, 882528, 209369, 816369, 816Pcs (kN)584, 090596, 256613, 048623, 576623, 576 γ 0. 6280. 5720. 4630. 3720. 372 β -0. 389-0. 2340. 2300. 7820. 782D+L+T (δ max)1. 500. 070<	$\sigma ck (N/mm2)$		30	30	30	30	30
Ac (nm2)22,905,49623,382,57224,041,09824,453,96948,907,938Vs (n3)1242161333264Vc (n3)1,0192,2562,1527461,492Ws (kN)9,52216,65910,2542,4474,893Wc (kN)23,44451,89849,48917,15434,309Pss (kN)986,561795,882528,209369,816369,816Pcs (kN)584,090596,256613,048623,576623,576 γ 0.6280.5720.4630.3720.372 β -0.389-0.2340.2300.7820.782 γ 1.500.0700.5260.1190.5570.1190.6140.0750.7260.0590.811D+L+T (Vmax)1.500.5350.2900.5640.3060.6250.1900.7400.138<	As (mm2)		2, 779, 046	2, 241, 920	1, 487, 912	1,041,735	2, 083, 470
Vs (m3)1242161333264Vc (m3)1,0192,2562,1527461,492Ws (kN)9,52216,65910,2542,4474,893Wc (kN)23,44451,89849,48917,15434,305Pss (kN)986,561795,882528,209369,816369,816Pcs (kN)584,090596,256613,048623,576623,576 γ 0.6280.5720.4630.3720.372 β -0.389-0.2340.2300.7820.782 $2 \pm$ 1.500.0700.5260.1190.5570.1190.6140.0750.7260.0590.811D+L+T (Vmax)1.500.1560.5350.2900.5640.3060.6250.1900.7400.138<	Ac (mm2)		22, 905, 496	23, 382, 572	24, 041, 098	24, 453, 969	48,907,938
Vc (m3)1,0192,2562,1527461,492Ws (kN)9,52216,65910,2542,4474,893Wc (kN)23,44451,89849,48917,15434,305Pss (kN)986,561795,882528,209369,816369,816Pcs (kN)584,090596,256613,048623,576623,576 γ 0.6280.5720.4630.3720.372 β -0.389-0.2340.2300.7820.782 γ 0.6280.5570.1190.6140.0750.7260.059 β -0.389-0.2340.2300.7820.782D+L+T (Vmax)1.500.0700.5260.1190.5570.1190.6140.0750.7260.0590.811D+L+T (δ max)1.500.0700.5260.1190.5570.1190.6140.0750.7260.0590.811D+W(LL)+T1.350.1290.6170.1550.6510.0470.7330.1500.8640.1340.923D+W(TT)+T1.350.3790.3970.4020.4350.4580.4640.2670.5690.4490.757D+W(LL)+T (2 1.350.3540.7550.6000.7490.4550.7690.1460.9310.0610.931	Vs (m3)		124	216	133	32	64
Ws (kN)9, 52216, 65910, 2542, 4474, 893Wc (kN)23, 44451, 89849, 48917, 15434, 305Pss (kN)986, 561795, 882528, 209369, 816369, 816Pcs (kN)584, 090596, 256613, 048623, 576623, 576 γ 0. 6280. 5720. 4630. 3720. 372 β -0. 389-0. 2340. 2300. 7820. 782 β 1. 500. 0700. 5260. 1190. 5570. 1190. 6140. 0750. 7260. 0590. 811D+L+T (Vmax)1. 500. 1560. 5350. 2900. 5640. 3060. 6250. 1900. 7400. 138<	Vc (m3)		1,019	2,256	2, 152	746	1,492
Wc (kN)23,44451,89849,48917,15434,309Pss (kN)986,561795,882528,209369,816369,816Pcs (kN)584,090596,256613,048623,576623,576 γ 0.6280.5720.4630.3720.372 β -0.389-0.2340.2300.7820.782 β 1.500.0700.5260.1190.5570.1190.6140.0750.7260.0590.811D+L+T (Vmax)1.500.1560.5350.2900.5640.3060.6250.1900.7400.138<	₩s (kN)		9, 522	16,659	10, 254	2, 447	4,893
Pss (kN)986, 561795, 882528, 209369, 816369, 816Pcs (kN)584, 090596, 256613, 048623, 576623, 576 γ 0. 6280. 5720. 4630. 3720. 372 β -0. 389-0. 2340. 2300. 7820. 782 γ 1. 500. 0700. 5260. 1190. 5570. 1190. 6140. 0750. 7260. 0590. 811D+L+T (δ max)1. 500. 1560. 5350. 2900. 5640. 3060. 6250. 1900. 7400. 138<0. 823D+W(LL)+T1. 350. 1290. 6170. 1550. 6510. 047<0. 7330. 1500. 8640. 134<0. 923D+W(LL)+T1. 350. 3790. 3970. 402<0. 4350. 458<0. 4640. 267<0. 5690. 449<0. 757D+W(LL)+T1. 350. 3540. 7550. 6000. 7490. 4550. 7690. 1460. 9310. 0610. 931	Wc (kN)		23, 444	51,898	49, 489	17, 154	34, 309
Pcs (kN)584,090596,256613,048623,576623,576 γ 0.6280.5720.4630.3720.372 β -0.389-0.2340.2300.7820.782D+L+T (Vmax)1.500.0700.5260.1190.5570.1190.6140.0750.7260.0590.811D+L+T (δ max)1.500.1560.5350.2900.5640.3060.6250.1900.7400.138<	Pss(kN)		986, 561	795, 882	528, 209	369, 816	369, 816
γ0.6280.5720.4630.3720.372β-0.389-0.2340.2300.7820.782325345D+L+T (Vmax)1.500.0700.5260.1190.5570.1190.6140.0750.7260.0590.811D+L+T (δ max)1.500.1560.5350.2900.5640.3060.6250.1900.7400.138<	Pcs (kN)		584, 090	596, 256	613, 048	623, 576	623, 576
β-0.389-0.2340.2300.7820.782 325 D+L+T (Vmax)D+L+T (δ max)D+L+T (δ max)D+W(LL)+T1.500.1560.5350.1190.5570.1190.6140.0750.7260.0590.8111.500.1560.5350.2900.5640.3060.6250.1900.7400.1380.823D+W(LL)+T1.350.1290.6170.4020.4020.4350.4580.4580.4640.2670.5690.4490.7550.6000.7490.4550.7690.1460.9310.0610.931	γ		0.628	0.572	0. 463	0.372	0.372
3 査 D+L+T (Vmax) D+L+T (\delta max) D+L+T (\delta max) D+W(LL)+T 1.500.070 0.526 0.119 0.557 0.119 0.557 0.119 0.614 0.075 0.726 0.059 0.811 0.138 0.823 D+W(LL)+T 1.350.129 0.617 0.155 0.651 0.047 0.733 0.150 0.150 0.138 0.923 D+W(LL)+T 1.350.379 0.397 0.402 0.435 0.458 0.464 0.267 0.569 0.449 0.757 0.409 0.455 0.769 0.146 0.931 0.061 0.931 0.061 0.931 0.061 0.931 0.061 0.93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	β		-0.389	-0.234	0. 230	0. 782	0.782
D+L+T (Vmax) $1.500.070 < 0.526$ $0.119 < 0.557$ $0.119 < 0.614$ $0.075 < 0.726$ $0.059 < 0.811$ D+L+T (δ max) $1.500.156 < 0.535$ $0.290 < 0.564$ $0.306 < 0.625$ $0.190 < 0.740$ $0.138 < 0.823$ D+W(LL)+T $1.350.129 < 0.617$ $0.155 < 0.651$ $0.047 < 0.733$ $0.150 < 0.864$ $0.134 < 0.923$ D+W(TT)+T $1.350.379 < 0.397$ $0.402 < 0.435$ $0.458 < 0.464$ $0.267 < 0.569$ $0.449 < 0.757$ D+W(LL)+T (架設時) $1.350.354 < 0.755$ $0.600 < 0.749$ $0.455 < 0.769$ $0.146 < 0.931$ $0.061 < 0.931$	猹						
D+L+T (δ max)1.500.1560.5350.2900.5640.3060.6250.1900.7400.1380.823D+W(LL)+T1.350.1290.6170.1550.6510.0470.7330.1500.8640.1340.923D+W(TT)+T1.350.3790.3970.4020.4350.4580.4640.2670.5690.4490.757D+W(LL)+T(架設時)1.350.3540.7550.6000.7490.4550.7690.1460.9310.0610.931	D+L+T (Vmax)	1.50	0.070< 0.526	0.119< 0.557	0.119< 0.614	0.075< 0.726	0.059< 0.811
D+W(LL)+T 1.350.129 0.617 0.155 0.651 0.047 0.733 0.150 0.864 0.134 0.923 D+W(TT)+T 1.350.379 0.397 0.402 0.435 0.458 0.464 0.267 0.569 0.449 0.757 D+W(LL)+T(架設時) 1.350.354 0.755 0.600 0.749 0.455 0.769 0.146 0.931 0.061 0.931	D+L+T (δmax)	1.50	0.156< 0.535	0.290< 0.564	0.306< 0.625	0.190< 0.740	0.138< 0.823
D+W(TT)+T 1.350.379 0.397 0.402 0.435 0.458 0.464 0.267 0.569 0.449 0.757 D+W(LL)+T(架設時) 1.350.354 0.755 0.600 0.749 0.455 0.769 0.146 0.931 0.061 0.931	D+W(LL)+T	1.35	0.129< 0.617	0.155< 0.651	0.047< 0.733	0.150< 0.864	0.134< 0.923
D+W(LL)+T(架設時) 1.350.354 0.755 0.600 (0.749 0.455 (0.769 0.146 (0.931 0.061 (0.931	D+W(TT)+T	1.35	0.379< 0.397	0.402< 0.435	0.458< 0.464	0.267< 0.569	0.449< 0.757
	D+₩(LL)+T(架設時)	1.35	0.354< 0.755	0.600< 0.749	0.455< 0.769	0.146< 0.931	0.061 < 0.931
1. 注) 第五水平材一第六水平材間は第四水平材一第五水平材間と	·			注)第五水平		間は第四水平材-	-第五水平材間と

表-2.4.4 照査結果

ここに,

tpl:鋼板の板厚(mm)

tpi:UOE 鋼管の板厚(mm)

照査の結果,どの断面位置についても荷重組合せ(D+W(TT)+T)にて断面が決定された.また,第三水平材 -第六水平材間の鋼板および UOE 鋼管の板厚は,最小板厚(鋼板 10mm, UOE 鋼管 9.5mm)となった.

(3) 充填区間について

主塔高 300m を超える超長大吊橋の主塔では、基部断面に及ぼす主塔自重の影響も大きい. このため、断 面力に余裕のある主塔上部には、コンクリートを充填しないケースも考えられる. ここでは、塔柱上部の 1/3 にコンクリート充填しないケース(部分充填)を検討し、全て充填したケース(全充填)との経済性の比較を行う. 3.3 と同様に、塔柱上部の 1/3 の未充填部、つまり鋼部材についても終局限界状態で照査する.

	全充填	部分充填
基 部-第一水平材	充填	充填
第一水平材-第二水平材	充填	充填
第二水平材-第三水平材	充填	充填
第三水平材-第四水平材	充填	未充填
第四水平材-第六水平材	充填	未充填

表-2.4.5 各断面での充填の違い

部分充填とした場合の照査結果を表-2.4.6に示す.

•

<u> </u>	V	基部	一第一	第一	一第二	第二	-第三	第三	-第四	第四	
L (mm)			14,00	0	8,00	0	7,00	0	7,00	0	7,000
B (mm)			5,80	0	5, 80	0	5, 80	0	5, 80	0	5, 800
W (mm)		Ì	3, 00	0	3, 00	0	3, 00	0	3, 00	0	3, 000
p (mm)			65	0	65	0	65	0	65	0	650
t _{pl} (mm)			19.	0	16.	D	, 10. (0	22.	D	25.0
D1 (mm)		1	96	5	96	5	96	5	96	5	96 5
D2 (mm)			96	5	96	5	96	5	96	5	96 5
t _{pi} (mm)			19.	1	14.	3	9.8	5	20. (6	22.2
H (mm)			44, 50	p	96, 50)	89, 500	D	30, 500	b	30, 500
有効座屈長さ(mm)			22, 25)	48, 25	D	44, 750	b	15,250		15, 250
充填			有		有	;	 有		蕉		 無
材質		SM	490Y	SM	490Y	SM	490Y	SM	490Y	SM	490Y
σ cuo (N/mm2)			35	3	35	3	355	2	358	×	355
σck (N/mm2)			30		30		3()	_		-
As (mm2)	[2	, 033, 934	4 1	, 592, 71	1	, 041, 735	2,	241,920) 4	, 911, 582
Ac (mm2)		23	, 559 , 46 1	23	, 968, 858	24	, 453, 969)	_		-
Vs (m3)			91		154	ų –	93	\$	68		150
Vc (m3)	·		1,048	\$	2, 313	\$	2,189		_		-
Ws (kN)			6,969)	11,838	i.	7,179		5,265		11,535
Wc (kN)			24,113	5	53, 199		50, 338	8	-	1	-
Pss(kN)			722, 047	7	565, 413		369, 816	i i	795, 882		871,806
Pcs (kN)			600, 766	i	611, 206		623, 576		-		-
γ			0.546	;	0.481		0.372		_		-
β			-0.143		0.140		0. 782		-		-
軸力											
D+L+T (1+2+4)	1.50	0.659く	1.000	0.755く	1.000	0.716<	1.000	0.650<	1.000	0.586<	1.000
D+L+T(1+3+4)	1.50	0.649く	1.000	0.746<	1.000	0.706<	1.000	0.639<	1.000	0.575く	1.000
D+WLL+T(1+7+6)	1.35	0.567く	1.000	0.648<	1.000	0.609<	1.000	0.548<	1.000	0.493<	1.000
D+WTT+T(1+8+6)	1.35	0.804く	1.000	0.910<	1.000	0.866<	1.000	0.780<	1.000	0.638<	1.000
D+WLL+T(架設時)	1.35	0.392く	1.000	0.513<	1.000	0.577く	1.000	0.476<	1.000	0.434<	1.000
照査					_						
D+L+T (Vmax)	1.50	0.080<	0.578	0.140<	0.658	0.142<	0.811	0.707く	1.000	0.630<	1.000
D+L+T (δmax)	1.50	0.187く	0.590	0.353く	0.667	0.370<	0.823	0.785<	1.000	0.675く	1.000
D+₩(LL)+T	1.35	0.185く	0.677	0.234<	0.758	0.031<	0.924	0.662く	1.000	0.589く	1.000
D+\(TT)+T	1.35	0.382<	0.396	0.479く	0.481	0.486く	0.602	0.970<	1.000	0.959く	1.000
D+W(LL)+T(架設時)	1.35	0.471<	0.829	0.796<	0.861	0.599<	0.952	0.642<	1.000	0.493<	1.000

表-2.4.6 照查結果

注)第五水平材-第六水平材間は第四水平材-第五水平材間と同じ.

全充填の場合と同じく,どの断面位置についても荷重組合せ(D+W(TT)+T)にて断面が決定された.また, 第二水平材-第三水平材間の鋼板およびUOE鋼管の板厚は,最小板厚(鋼板 10mm, UOE 鋼管 9.5mm) となった.

(1) 全区間充填 CFT と部分充填 CFT 主塔の比較

全区間充填 CFT と上部 1/3 を未充填とした部分充填 CFT の設計の結果,基部断面では,充填コンクリート重量の減少により,軸力が約 50,000kN/shaft 低減される.これは塔頂反力を含めた基部軸力の 9%にあたり,主塔基部では,部分充填 CFT の鋼材断面積が 27%低減した.全体では,未充填部では,鋼材数量が 増加するものの,合計鋼材数量は全充填よりも 2%低減し,より経済的な設計とすることができる. 2.4.3 鋼製, RC主塔と複合主塔の比較

2.4.3.1 鋼製主塔の概略設計

(1) 構造諸元

鋼製主塔の塔頂部,塔基部の断面諸元を示す.材質はSM490Yとする.

図-2.4.5 鋼製主塔断面

	断面積	面内剿性	面外剛性	捩り剛性	部材長	プロック重量※
Member No.	A (m2)	lx(m4)	ly(m4)	lx(m4)	L(m)	W(tf)
8001	3. 5206	34. 5052	67.6492	50. 3745	27.50	989
8005	2.7910	27.0506	46.3087	37.8066	108.5	3093
8010	2.4530	22.5505	28. 3863	27. 5841	91.25	2286
8019	2.2017	19.7668	19.5100	21.5989	30.50	686
8023	2.2017	19.7668	19.5100	21.5989	64.25	1445
				Σ(Tower)	322	8499
			Σ (Corss Beam)	-	925
		2 × 2	[(Tower)+Σ((Cross Beam)	-	17923

表-2.4.7 鋼製主塔断面諸元

※リブ重量等30%合む

(2) 設計断面力

設計断面力は、全体系解析により、以下の荷重組合せについて求めた.

D+L+T (Vmax)

D+L+T (δ max)

D+W(LL)+T(15deg)

D+W(TT)+T(15deg)

(2) 断面照查結果

各荷重組み合わせによる塔基部,主塔上部の応力分布を図-2.4.6に示す.

図-2.4.6 鋼製主塔の応力分布

		ĥ	許容応力度			
Member No.	t (mm)	D+L+T	D+WLL+T	D+WTT+T	D+WLL+T (架設時)	σ a (N/mm2)
8001	45	142	139	186	170	204. 7
8005	40	163	138	186	172	202.7
8010	38	163	121	186	100	197.0
8019	36	159	147	180	34	190. 4
8023	36	149	139	182	16	191.0

応力度

2-44

2.4.3.2 RC主塔の概略設計

(1) 構造諸元

RC 主塔の断面諸元を示す. 使用材料は以下の通りである. コンクリート設計基準強度 σ ck=60MPa

鉄筋 SD345

表-2.4.8 RC 主塔剛性

RC 主塔剛性

		ərea		KLL)			I(TT)				J				
	1		lg-plate*?	tr_plate*?	bulk-el	sum	tr-plate*?	lg-plate*2	buik-pl	sum	ь1	b2	cell	plate	sum
	<u> </u>		hh3/12+2	bh3/12*2	bh3/12	ll-niste-ni	hb3/12#2	bh3/12+2	bh3/12	ll-ol+tr-ol	le	tr	4bb/Σb/t	Σ 1/3bt3	
			0110/12+2	+bh#12*2	0/10/12	n pro pr		+bh*l2*2	0110/ 12	. p. o p.		-			
NODE	8031											-			022.02
member		76.656				579.5				401.3					022.02
joint	3031		100.1			005.4	100.4	170.0	22.0	206.1	0 177	7 700	442 47	3 96	446 30
member	0007	34.983	103.1	231.8	0.5	333.4	102.4	1/0.8	22.9	290.7	6.177	1.700	442.45	5.30	440.00
joint	8027							1775	00.0	202.7	0.450	7 700	464.22	4.01	469.24
member		35.433	112.8	247,9	0.5	361.3	102.4	1/7.5	22.9	302.7	0.400	1.100	404.23	4.01	400.24
joint	8023									200.4	0 720	7 700	496.22	4.06	100 99
member		35.882	123.1	264.6	0.5	388.3	102.4	184.2	22.9	309.4	8./38	1,700	400.22	4.00	430.20
joint	8019						100.4	100.0	20.0	216.1	0.010	7 700	609.29	4.11	512 48
member		36.331	134,1	281.8	0.5	416.4	102.4	190,9	22.9	3/6./	9.019	7.700	208.36	4.17	J12.40
joint	8012									250.0	0.006	7 500	579.75	5.60	594 74
member		40.090	181.9	281.9	0.5	464.3	102.4	234./	22.9	359.9	9.295	7.500	5/8./3	5.00	304.34
joint	8011										0.507	7 500	602.00	5 60	600.00
member		40.633	196.6	298.5	0.5	495.7	102.4	242.4	22.9	307.0	9.50/	7.500	003.29	5.05	000.30
joint	8010									075.0	0.000	7 500	600.00	6 70	677 01
member		41.176	212.2	315.7	0.5	528.4	102.4	250.0	22.9	3/5.3	9,838	7.500	628.03	5.78	033.01
joint	8009					-								5.03	050.01
member		41.719	228.5	333.3	0.5	562.3	102.4	257.7	22.9	383.0	10,110	/,500	652.94	5.8/	038.81
joint	8008														
member		42.262	245.7	351.3	0.5	597.6	102.4	265.4	22.9	390.6	10.381	7.500	678.03	5.96	683,99
joint	8007						<u> </u>								
member		42.566	255.7	361.6	0.5	617.9	102.4	269.7	22.9	394.9	10.533	7.500	692.13	6.01	698.14
joint	8006							_						· · -	
member		42.640	258.1	364.2	0.5	622.8	102.4	270.7	22.9	396.0	10.570	7,500	695.56	6.02	701.58
joint	8005														L
member		42.722	260.9	367.0	0.5	628.5	102.4	271.9	22.9	397.2	10.611	7.500	699.41	6.04	705.45
joint	8004														
member		43.690	266.2	391.2	0.5	658.0	108.7	270.6	22.9	402.2	10.627	7.500	718.34	6.54	724.88
joint	8003														L
member		45.113	274,1	427.1	0.5	701.8	118.1	268.7	22.9	409 .7	10.650	7.500	744.12	7.39	751.52
joint	8002													L	
member		101.413				1203.0				610.6					1369.69
ioint	8001									1			1	1	t

Cross Beam

		area				ly				Iz					J
member	top	22.450	58.5	111.3	0.0	169.8	48.1	71.9	0.0	120.0	6.550	5,700	204.74	3.32	208.06
member	top	22.450	58.5	111.3	0.0	169.8	48.1	71.9	0.0	120.0	6.550	5.700	204.74	3.32	208.06
member	top	22.450	58.5	111.3	0.0	169.8	48.1	71.9	0.0	120.0	6.550	5.700	204.74	3.32	208.06
member	top	22.450	58.5	111.3	0.0	169.8	48.1	71.9	0.0	120.0	6.550	5,700	204.74	3.32	208.06
member	2nd	25.920	63.3	154.3	0.0	217.6	89.6	118.7	0.0	208.3	6.750	7.200	308.86	3.93	312.79
member	3rd	36.180	110.3	201.4	0.0	311.7	151.9	209.7	0.0	361.6	6.950	7.800	488.50	9.08	497.58
member	lower	39.400	122.8	252.1	0.0	375.0	208.3	280.5	0.0	488.8	7.250	8.800	622.31	9.91	632.22

.

(2) 断面照查結果

図-2.4.8 RC 主塔の桁下水平材位置の照査結果

図-2.4.9 RC 主塔の主塔上部(No. 8023)の照査結果

2-47

2.4.3.3 主塔形式の比較

(1) 経済性の比較

各主塔形式の概算工費の比較を図-2.4.10に示す.

各工種別の単価は、実勢を考慮して、鋼構造 90 万/ton,鉄筋コンクリート 30 万/m³,充填コンクリート 10 万/m³ とした.実際には、充填鋼管は補剛材が省略出来るため、さらに単価は抑えられると予想される. 各主塔形式の鋼主塔に対して、RC 主塔は 58%、複合主塔(全充填)は 63%の工費となった.また、部分充 填とした複合主塔は 60% となり、RC 主塔とほぼ同等の工費となった.

また、複合主塔は鋼製主塔に比べて、鋼殻内部の補剛が不要となり、溶接延長、塗装面積が小さい点も有利である. RC 主塔はスリップフォーム工法など、施工の高速化が図られているが、大ブロック架設の可能な鋼製主塔に比べて、工期は長くなる傾向があり、鋼殻を型枠として利用出来る複合主塔は工期短縮という 点でも経済的なメリットがあると考えられる.

表-2.4.10 に各主塔の自重による基礎反力を示す. RC 主塔は鋼製主塔の 1.69 倍となるが,部分充填とした複合主塔では 1.19 倍と小さい. 今回は基礎の設計は行っていないが,基礎の設計にとっても RC 主塔より 複合主塔は有利であると推察される.

図-2.4.10 主塔形式による工費比較

表-2.4.9 各主塔形式の数量,工費

			CFT主塔(部分充填)	CFT主塔(:	全充填)	鋼製主塔		RC主塔	
		「工費(千円)	_ <u> </u>	[工査(万円)]	_ 数量(ton)	工費(万円)	数量(ton)	工費(万円)	数量(ton)	工費(万円)
塔柱	塔柱鋼材	900	8,731	785,790	8,934	804,060	16,998	1,529,820	0	0
	塔柱充填コンクリート	100	11,100	111,000	15,330	153,300	0	0	0	0
	<u> 塔柱鉄筋コンクリート</u>	300	. 0	0	0	0	0	0	29,179	875,370
水平材	水平材鋼材	900	712	64,080	712	64,080	925	83,250	0	0
	水平材鉄筋コンクリート	300	Ó	0	0	0	0	0	2,036	61,080
合計(1	主塔あたり)			960,870		1,021,440		1,613,070		936,450

表-2.4.10 各主塔形式の基礎反力

		CFT主塔	CFT主塔	鋼製主塔	RC主塔
		(部分充填)	(全充填)		
塔頂反力	(kN/pylon)	628014	628014	628014	628014
主塔位置	行反力(kN/Br.)	44448	44448	44448	44448
主塔重量	鋼材(kN)	85622	87613	175765	0
	充填コンクリート(m3)	11100	15330	0	0
i i i i i i i i i i i i i i i i i i i	× 23kN/m3	255300	352590	0	0
	鉄筋コンクリート(m3)	0	0	0	31215
	× 24.5kN/m3	0	0	0	764768
	自重合計	340922	440203	175765	764768
基礎反力	合計(kN/pylon)	1013384	1112665	848227	1437230
基礎反力	合計(kN/shaft)	506692	556332	424113	718615
基礎反力	比率	(1.19)	(1.31)	(1.00)	(1.69)

(2) 主塔形式によるフラッター発現風速の比較

主塔形式の違いによる、振動数、および、フラッター発現風速の推定結果を表-2.4.13 に示す.本試設計 で採用したモノデゥオケーブル形式は、ケーブルシステムの検討により、主塔による影響が小さいと考えら れるが、検討の結果からも、主塔形式によるフラッター発現風速の違いはわずかであることが確認された. 剛性の小さい鋼製主塔では、ねじれ振動と主塔の水平振動が連成しており、ねじれ振動数が低下するため、 フラッター発現風速はわずかに低い結果となった.

モード		振動数 Hz		振動エード
次数	①複合主塔	2 鋼製主塔	②RC主塔	
1	0.0368	0.0365	0.0368	
2	0.0545	0.0542	0.0544	 ①~③鉛直たわみ対称1次
3	0.0628	0.0628	0.0628	
4	0.0696	0.0694	0.0696	
5	0.0719	0.0718	0.0716	
6	0.0751	0.0751	0.0750	
7	0.0792	0.0787	0.0792	
8	0.1041	0.1041	0.1041	
9	0.1134	0.1133	0.1134	
10	0.1198	0.1197	0.1198	
11	0.1339	0.1336	0.1339	
12	0.1436	0.1436	0.1436	
13	0.1456	0.1456	0.1456	
14	0.1469	0.1469	0.1469	
15	0.1503	0.1503	0.1503	
16	0.1534	0.1518	0.1534	①~③ねじれ対称1次
17	0.1537	0.1537	0.1537	1
18	0.1543	0.1542	0.1543	
19	0.1544	0.1543	0.1544	
20	0.1560	0.1544	0.1560	

表-2.4.11 固有振動数の比較

表~2.4.12	固有振動致の比較	(対称)次七一ト)

	振動数 Hz						
	①複合主塔	2 鋼製主塔	②RC主塔				
鉛直たわみ振動	0.0545	0.0542	0.0544				
ねじれ振動	0.1534	0.1518	0.1534				

表-2.4.13	Selbergの近似値に	よるフラッ	ター発現風速
----------	--------------	-------	--------

······································	①複合主塔	②鋼製主塔	②RC主塔
フラッター発現風速	74.1 m/s	73.3 m/s	74.1 m/s

2--52

(3) 主塔耐風性の比較

1) 主塔独立時の渦励振発現風速の推定

主塔の耐風性について,鋼製主塔においてTMDなど耐風対策が必要となることの多い架設時について⁹, 主塔形式による渦励振の発現風速,振幅を比較する.なお,明石海峡大橋では完成時においても、ねじれ振動,橋軸振動を対象としてTMDが設置されており、フレキシブルな超長大吊橋の主塔では、完成時の耐風 安定性が懸念されるが、ここでは、架設時を対象とした.

渦励振は、部材の後流に規則的に発生するカルマン渦の振動数と、部材の固有振動数との共振により生じる. 渦励振が発現する風速は、断面形状と固有振動数から次の関係式により推定される.

Ucr=fs \cdot D/S

Ucr:渦励振の発現風速

fs:風向に直角方向の固有振動数

D;気流直角方向の幅

S:ストローハル数

ストローハル数は形状により変化する.本橋で仮定した主塔の塔頂付近の形状でのストローハル数 S は,

鋼製主塔,RC 主塔

橋軸直角方向風に対して,

```
(D/B=9.0/8.5=1.06) S=0.125
```

橋軸方向風に対して

(D/B=8.5/9.0=0.944) S=0.123

複合主塔

橋軸直角方向風に対して、

(D/B=3.965/6.765=0.586) S=0.095

橋軸方向風に対して

(D/B=6.765/3.965=1.706) S=0.125

表-2.4.14	主塔独立時橋軸方向	(直角方向風による渦励振)
24 21 41 14		

	CFT 主塔	鋼製主塔	RC 主塔
S	0.095	0.125	0.125
D(m)	6.765	8.500	8.500
fs(Hz)	0.0609	0.1097	0.0667
mf(kN/m)	205.3	230.1	1096.8
Ucr=fs · D/S	4.34m/s	7.46m/s	4.54m/s

表-2.4.15 主塔独立時橋軸直角方向(橋軸方向風による渦励振)

	CFT 主塔	鋼製主塔	RC 主塔	
S	0.125	0.123	0.123	
D(m)	7.93(2箱合計)	9.000	9.000	
fs(Hz)	0.4163	0.4719	0.3220	
mf(kN/m)	467.5	231.3	1081.5	
Ucr=fs \cdot D/S	26.41m/s	34.53m/s	23.56m/s	

以上から,主塔独立時の橋軸直角方向の風による渦励振発振風速は4.3m/s(複合主塔),7.46m/s(鋼主塔),4.54m/s(RC主塔)であり,架設作業風速において十分起こり得るため,加速度に対する照査が必要である.

橋軸方向の風による発振風速はいずれも 23m/s 以上と高く, 架設時風荷重と比較して低い場合には, 応力的 な照査を行えばよいと考えられる.

2) 振幅の推定

橋軸直角方向から風が吹く場合、渦励振の振幅は、既往の風洞試験結果より、次式で経験的に与えられる。(道路橋耐風設計便覧)

$$h_{\rm max} = 4D_T \left(\frac{m_{eq} \delta_s}{\rho D_T^2} \right)$$

hmax:塔独立時橋軸方向たわみ渦励振最大振幅(m)
 meq:塔の等価質量(kgfs²/m²)
 δs:塔の構造減衰→鋼製,複合主塔 0.01, RC 主塔 0.02 と仮定する
 ρ:空気密度(0.125kgfs²/m⁴)

鋼製主塔の振幅の推定

hmax =4*8.5/(230.1*0.01/0.001226/8.5^2)

=1.3088m

複合主塔の振幅の推定

hmax =4*6.765/(205.3*0.01/0.001226/6.765^2)

=0.7395m

RC 主塔の振幅の推定

hmax =4*8.5/(1096.8*0.02/0.001226/8.5^2) =0.1373m

```
鋼製主塔の塔頂での加速度 amax は,
```

```
amax =(2\pi f)^2 \cdot hmax
```

 $=(2 \pi \cdot 0.1097)^{2} \cdot 1.3088$

```
=0.6217m/s2 =62gal
```

複合主塔の塔頂での加速度 amax は,

amax = $(2\pi f)^2 \cdot hmax$

 $=(2\pi \cdot 0.0609)^{2} \cdot 0.7395$

=0.1083m/s2 =11gal

鋼製主塔は架設時の渦励振による振幅が 1.3m と推定される. RC 主塔は 0.14m であり渦励振による振幅 が問題となる可能性が少ない. 上部未充填とした複合主塔は、上部の剛性が小さく、振動問題が懸念される が、振幅は 0.74m と推定され、鋼製主塔の半分程度である.

2.5 まとめ

本検討では、2500mの長大吊橋について、試設計を行った.形式の選定にあたっては、長大吊橋でクリティカルとなる耐風性を満たすことを中心に、経済性を考慮した形式選定を行った.本WGで設計した吊橋の特徴を下図に示す.

試設計の結果,一般の吊橋(2箱桁形式,平行ケーブル,RC ラーメン主塔)に比べて,18%耐風性に優れた構造とすることが可能であることを示した.複合主塔は既成鋼管を想定しており,本橋の提案は現在の製作,施工技術で十分可能である.本検討で得られた構造の特徴を構造別に以下にまとめる.

箱桁、ケーブルシステムについて

- 1) 2箱桁,1箱桁併用形式の検討では、ねじり振動時のねじり率をもとに、1箱桁区間の配置を決定した. この結果、主塔位置を1箱桁とするより、中央径間側に配置した方が短い区間でも、効率的に橋梁のね じり剛性を高めることが確認された.
- 2) 水平方向にもサグをもつ3次元ケーブルシステムは、ケーブルの3次元性の影響が小さい長大橋梁では、 ケーブルシステムそのものの影響は小さい.ただし、主塔位置のケーブル間隔により主塔のねじれ剛性の影響が大きく、主塔位置でケーブル間隔を狭めたモノデゥオ形式は耐風性に優れる.
- 3) 4本ケーブル形式のねじり対称1次振動は、1箱桁と同じモード形状となる.このため、ケーブルが内側に入り、ケーブルによる吊構造のねじり剛性が小さくなるため、ねじり振動数は低くフラッターに対して不利である.

主塔形式について

1) 複合主塔の工費は鋼製主塔と比較して、60%程度となり、RC 主塔と同程度である. 断面力に余裕がある 主塔上部の部材を未充填としたケースでは、全充填としたケースに比べて工費が3%低減する. 複合主塔 は内部の補剛材が省略できること、鋼管を型枠として使用できるため、製作、工期の面からも優れた構 造であると考えられる.

- 2) モノデゥオケーブルでは、全橋のフラッターの安定性に与える主塔の形式の影響は小さい.
- 3) 主塔独立時の渦励振による振幅は,経験式によると鋼製主塔では1.3m,複合主塔では0.7m程度であり, 複合主塔では架設時の耐風対策が不要となる可能性がある.
- 4) 主塔基部反力は, RC 主塔では鋼製主塔の 1.7 倍であるが, 複合主塔では 1.2 倍程度であり, 基礎の設計, 耐震上有利であると考えられる.

参考文献

- 1) 土木研究所: 耐風性および経済性に優れた超長大橋の開発に関する共同研究報告書(その1), 1996.3
- 2) 土木研究所:耐風性および経済性に優れた超長大橋の開発に関する共同研究報告書(その2), 1997.3
- 3) 土木研究所:経済性を考慮した超長大橋の耐風設計法に関する共同研究報告書(その1), 2001.3
- 4) 野上,小川,下土居:2箱桁/1箱桁を併用した超長大吊橋(4車線案)の耐風性に関する検討,第53 回土木学会年次講演会,1998
- 5) 辻, 宮田, 山田: スピンドルタイプ補剛桁超長大吊橋の強風時応答特性について, 第52回年次学術講演 会, 1997.9
- 6) 前島, 久保, 山口, 榊:張力を導入したクロスハンガーによる超長大吊橋の耐風性に関する研究, 日本 風工学会誌第71号, 1997,4
- 7) 入部,櫻井:海峡連絡橋への2重ケーブル吊橋の提案,本州・北海道架橋論文集,2004.6
- 8) Bridge-deck twists go straight New Designs aim to reduce motions of long spans in wind, ENR, July, 14,1983
- 9) 土木学会:橋梁の耐風設計-基準と最近の進歩-, 2003.3