5. F E M W G

1			
	L		

次

1. はじめに	5- 1
2. FEM解析の現状	
2.1 鋼構造へのFEM解析の適用状況	5- 2 5- 3
3.格子解析とFEM解析	
3.1 比較対象橋梁 3.2 格子モデル 3.3 FEMモデル	5—24 5—26 5—27
4. 解析結果	
4.1 格子モデル 4.2 FEMモデル	5-31 5-37
5. 考察	
5.1 格子解析とFEM解析の比較	5-54 5-65
6.おわりに	5-67

1. はじめに

近年、建設コストの縮減を背景に鋼橋のコストダウンを目的とした合理化設計が主流となっているが、 鋼橋の構造解析は、従来から初等はり理論に基づいた格子解析を用いているのが一般的である。ところ が、その一方で設計を支援するソフト面では、コンピュータの日々の急速な発達に伴い、パソコンレベ ルでも3次元立体FEM解析が行えるほどツールの高度化が進んでいるのが現状である。

そのような中で、鋼道路橋の設計において、従来の格子解析に代わりFEM解析を設計の標準的な手法として導入することを念頭においた研究も行われている。それらによると、格子解析による従来設計と橋梁全体モデルを用いたFEM解析による試設計結果を比較した場合、全体鋼重に対して数パーセントの低減効果があることも報告されている。

当ワーキンググループでは、このような背景のもと、「鋼道路橋の構造解析に橋梁全体モデルによるF EM解析を適用する場合の予備知識を備える」ことを目的とした。その上で、実際の活動の中では、大 別して以下2つの作業を行った。

- ① 橋梁全体モデルによるFEM解析を用いた既往の研究文献を収集し、その中での問題点や留意点 を整理した。
- ② 3径間連続 I 桁を例にとり、従来の格子解析と橋梁全体モデルによるFEM解析を行い、結果を 比較した。さらに、橋梁全体FEMモデルのモデル化に関する留意点を整理し、実務設計レベル での妥当なモデル化(メッシュサイズ、支承部境界条件等)について検討を行った。

本報告書では、2章で鋼構造分野におけるFEM解析の現状にふれた上で、収集した文献の概要を紹介する。さらに、3章で実際に行った格子解析とFEM解析のモデルを比較し、4章でその解析結果を まとめ、最後に5章でモデル化に関する留意点や条件について考察を行っている。

今後、さらなる合理的な設計手法を模索する観点からも、本報告書が設計実務者の一助になれば幸い である。

2. FEM解析の現状

2.1 鋼構造物へのFEM解析の適用状況

現在、鋼橋の設計は依然としてはり理論や格子解析理論をもとに行われており、FEM解析は、これ らの理論との比較検討や、以下のように鋼構造物の部分的な箇所の検討に適用されているのが現状であ る。

- 応力集中が発生すると予想される場合 (円孔部を有する板)
- 構造物の中で応力の流れが不明な場合
 (脚やラーメンの隅角部、アーチリブの基部)
- 応力の分配が不明な場合 (腹板からブラケットを張り出した構造)
- 多くの部材が結合された状態での応力の流れ、分配等が不明な場合 (トラス部材の結合部)
- ・ 多数の方向の異なった板が結合されている場合 (吊橋の塔頂部)
- ・ 境界の形状が複雑で、連続体の力学では解析が不可能な場合 (吊橋のサドル、ケーブルバンド)

しかし、現在用いられているはり理論や格子解析理論は、計算の簡便性に優れているが、多くの仮定 が用いられており、精度的には総じて安全側の設計となっている。

そのような状況の中、近年のコンピュータ技術の進歩は目覚しく、その性能や利用環境は著しく改善 されている。また、FEM解析の理論の発展も著しく、多様な機能を備えたアプリケーションプログラ ムが開発され、数万程度の有限要素を用いた構造解析であれば、パソコンで手軽に行えるようになって きている。

このため、建設費削減が強く求められている現状では、実橋に即した精度の高い、橋梁全体モデルを 使用した設計手法を適用することも考えられている。

しかし、その場合には以下のようなFEM解析特有の多くの問題点がある。

- FEM解析のモデルの作成に関して、要素分割(メッシュの作り方)、モデル化の範囲、境界条件、 与える荷重、使用要素など各々の段階で個人差が生じる
- ・ 計算結果の評価は担当する技術者の知識と経験が頼りで確立されていない

以上より、橋梁全体モデルを用いたFEM解析を汎用的な設計手法とするためには、既設橋梁を対象 とした実測値と解析値の比較検討を繰り返し行い、その有用性を証明していく必要がある。その際には、 先ほどの問題点に関して検討を行い、FEM解析に関するガイドライン等の作成を行い評価の判断材料 として信頼性を向上させていく必要があると考えられる。

5 - 2

2.2 **既**往の研究状況

橋梁全体モデルのFEM解析をテーマしている文献・論文の中から、20編を選定して以下の項目につい てまとめた。

- ① 題名
- ② 出典·著者
- ③ FEMを使っている目的及び結果
- ④ 問題点、注意点
- ⑤ モデル化の方法
- ⑥ その他

参考文献・論文の一覧表

番号	題名	出典
1	FEMと数値最適化に基づいた鋼橋コスト最小化設計の試	土木学会論文集No.717
	<i>Ъ</i>	
2	設計ツールの高度化に対応した道路橋の設計に関する研	土木学会第57回年次学術講演会
	究	
3	超高性能ゲーム機時代の橋梁設計	土木技術資料43-1(2001)
4	合成2主桁橋の横桁配置に関する研究	橋梁と基礎97-3
5	本州四国連絡橋におけるFEM解析の適用事例	本四技報
6	「鋼上部構造の設計にFEM解析を適用するためのガイド	本四技報
	ライン(案)」の運用上の留意点	
7	下横構を省略したプレートガーダー橋の提案	橋梁と基礎93-11
8	プレートガーダー橋の下横構の省略に関する一考察	橋梁と基礎89-9
9	スタッドの非線形性を考慮したPCプレキャスト床版を有	土木学会第57回年次学術講演会
	する合成2箱桁構造の解析的検討	
10	2 主桁橋梁の床版死荷重曲げモーメントに関する簡易モ	土木学会第55回年次学術講演会
	デルの提案	· · · · · · · · · · · · · · · · · · ·
11	2 主 桁橋の設計における曲線橋への適用性に関する検	土木学会第55回年次学術講演会
	討	
12	曲線2主1桁橋の立体的挙動と設計に関する検討	土木学会第56回年次学術講演会
13	鋼2主 桁橋の固有振動数算定法について	土木学会第57回年次学術講演会
14	ハイアラーキ有限要素解析システム (HIASA)~橋梁全体	川田技報Vol.21 2002
	解析への適用~	
15	京都南道路木津川橋(連続合成開断面箱桁)の設計・施コ	5 駒井技報Vol.22
16	重ね継手を有する波形鋼板ウェブのせん断強度に関する	横河ブリッジグループ技報No.31 2002年1月
	検討	
17	一定せん断流パネルを用いた波形鋼板ウェブ合成橋の立	横河ブリッジグループ技報No.30 2001年1月
	体解析法に関する検討	
18	場所打ちPC床版を有する閉断面箱桁橋の床版応力性状に	横河ブリッジグループ技報No.30 2001年1月
	ついて	
19	合成床版底板の架設時補強材としての有効性に関する検	横河ブリッジグループ技報No.28 1999年1月
	討	
20	一定せん断流パネルを用いた鋼床版合成橋梁の解析	横河ブリッジグループ技報No.24 1995年1月

① 題 名:FEMと数値最適化に基づいた鋼橋コスト最小化設計の試み	
② 出 典:土木学会論文集 No.717	
著 者:小西拓洋(住友重機械工業(株))、冨澤雅幸、三木千寿(東京工業大学)	
③ FEM を使っている目的及び結果	
〈目的〉	
 FEMと設計照査プログラムを最適化ルーチンで組み合わせた、橋梁の設計支援システム 	の
開発。	
く結果と	
◇№~~	
④ 問題点、注意点	
・ 計算速度の急速な向上を勘案しても、最適解を得るためにFEMを繰り返す現在のアルゴ	リ
ズムでは計算時間の制約が大きい。	
・ 解析時間を短縮するため、設計の経験則の取り込み、設計パラメータ数の減少、ケースの	限
定、等の工夫が有効である。	
 FEM解析に基づいた設計を行うための新たな設計法の整備が必要である。 	
⑤ エデルルの支払	
- 休瓜、土竹、便竹・シェル安米 - 庄臣と士佐とフランジは 剛な沙西妻で連結	
・ 水亚	
・ 鄒安レコンカリートの泪度美、コンカリートの泪度広力、カリープ、乾燥収縮は無相	
・ 荷面は	
・ 活荷重け道示のB活荷重のI荷重を採用し、 n1 荷重を橋軸方向に移動し、 もっとも不利	ىل
なる載荷位置を決定して載荷	_
- · · · · · · · · · · · · · · · · · · ·	
⑥ その他 (キーワード)	
 ・ 2 主鈑桁橋 	
・ コスト最小化	

[① 題	名:設計ツールの高度化に対応し	した道路橋の設計	計に関す	る研究	
② 出	典:土木学会第57回年次学術語	講演会論文集			
③ 著	者:独立行政法人 土木研究所	平原伸幸、高格	喬 実、	山森誠史、	徳橋亮治
④ FEM	を使っている目的及び結果:				

〈目的〉

・ 立体FEM解析を用いた鋼道路橋の傾向を把握し、設計段階での問題点を整理するもの。 <結果および考察>

格子解析と Case-1の比較では、Case-1で応力は概ね30%の低減効果が見られ変形量でも同様な結果となった。さらに Case-2から Case-3へと要素を高次化するに従い応力、変形量の減少傾向がみられた。Case-1に対して Case-2では6%程度の応力低下が見られたが、Case-2に対して Case-3では変形量には影響が見られるが、応力に関してはほとんど低下は見られなかった。

⑤ 問題点、注意点:

- ・ 最も詳細なFEMを使用した Case-3 は、現状ではモデル作成段階における解析者の自由 裁量に依存するところが多く、その違いが解析結果に及ぼす影響が無視できない。
- 設計ツールの高度化に対応した設計手法の確立にどのように結び付けるのか。
- ・ 床版が各 Case ともシェル要素であるが、ソリッド要素にすると床版の変形量が小さく なる可能性がある。
- ・ 活荷重の載荷では、格子解析をして決定しているが、他の方法がないのか。

⑥ 対象橋梁:

· 3径間連続非合成鈑桁

FEMモデル:

- 4節点シェル要素、梁要素を使用
- 主桁と床版は梁要素で結合させ、実橋の非合成桁がもつフレキシビリティを考慮した 剛性を使用している。

モデル Case-1 :鋼桁全要素(梁要素)主桁補剛材、対傾構なし

モデル Case-2 : 主桁フランジ(梁要素)ウェブ(シェル要素) 垂直補剛材(梁要素) 横桁フランジ(梁要素)ウェブ(シェル要素)対傾構、横構(梁要素) モデル Case-3 : 主桁、横桁、横構(シェル要素) 垂直補剛材、対傾構、横構(梁要素) Case-1~3共通: R C 床版(シェル要素) 地覆(梁要素) スラブアンカー(梁要素)

⑦ その他:荷重

- 活荷重は道路橋示方書のB活荷重
- ・ P1、P2 荷重が共に着目部材に最も不利となる位置を格子解析により決定している。

 1 題 名: 超高性能ゲーム機時代の橋梁設計
②出典: 土木技術資料43-1 (2001)
③ 著 者:西川和廣、中谷昌一、小野 潔、中洲啓太
 ④ FEM を使っている目的及び結果:
〈目的〉
 近年の家庭用のゲーム機の中には、スーパーコンピュータに肉薄する動画の表現能力を
有するものがあり、これを用いれば橋梁全体系の動的解析による耐震設計や車両の
走行による疲労設計において、現象をありのままに再現することが可能である。その際、
構造の最適化は、精巧な画面を見ながらゲーム感覚で行うことができる。
このような革命的な状況の変化によって、橋の設計や姿がどのように変わるのか。
このような設計手法を完成させるにはどのような研究が必要なのかを述べたもの。
〈研究が必要とされる事項(問題点)〉
・安全性評価手法の確立
局部的な応力集中が起こるような部位では、許容応力度を大きく上回る応力が発生する
ため、これをどのように扱うか。
・モデル化における留意点
モデル化(メッシュの切り方、拘束条件や材料特性の与え方)が解析結果に影響を及ほす
場合があり、基本的なルールを定めることが必要。
FEMでは、影響線解析か必すしもベストであるとは限らない。FEMに対応した何里の 静葉士法を始まれるいませる。
戦何力法を検討する必要かめる。 割割ますがます、ステン・の明認
・ 設計を又援りるン人ナムの開発
FEMの汎用ノロクフムは簡楽を設計することを息因して作られていないため、ナーク処理 たじた期がかかえ、そのたみ読書を主感するシスティの思惑が必要
んとに十间がかかる。てのため設計を又後りるシステムの開光が必要。 「「「ころの地
③ ての他 ・
- 現在の橋梁設計の十伝
新面形状を考慮することができるが、補剛材や対傾構築を考慮することは困難であり、
一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
3次元的に分布している実際の応力状態を厳密に反映することはできない。
 FEMでの設計
どのような形状の物体でも材料の物性値、作用力、支持条件が決めれば、すべての要素の
内力や変形を求めることができるため、あるがままの姿で数値シュミレーションが可能。
 橋の姿はどう変わるか。
1) 独創的な形の橋が設計でき、デザイン重視へと変わる。2) どんな橋でも設計できる。
3)応力の流れを考える設計となる。 4)精度の高い設計ができる。
5)全体系での設計が可能。

⑥ 事例

- ・ 少数主桁橋:床版の荷重分配効果が考慮され構造の大幅な簡素化、合理化が可能。
- ・ 上下部一体構造:脚と鋼桁との接合部の挙動が明らかになり、全体系で評価が可能。
- ・ 鋼・コンクリート合成構造:異種材料間の力の伝達機構などが明らかになりつつある。

.

「EMに関する職人 NO.4
 題名:合成2主桁橋の横桁配置に関する研究
② 出 典:橋梁と基礎(1997-3)
著 者:坂井藤一、八部順一、大垣賀津雄、橋本靖智(川崎重工業(株))
③ FEM を使っている目的及び結果
〈目的〉
・ 横桁間隔、横桁位置(上段、中段、下段)をパラメーターとした死・活荷重に対する立体挙動
に着目し、構造各部の発生応力度等を明らかにする。
・ 床版と主桁上フランジを結合するジベル軸力による偶力の影響を把握する。
・ 横桁間隔により断面変形量、主桁の2次応力および横桁軸力に影響を与え、パラメーター解
析の結果、横桁位置としては上方配置より中央および下方配置が望ましい。
・ ジベルに作用する偶力はジベルの引き抜きせん断力に影響を与えるものであり、横桁間隔に
制限を要する。
④ 問題占 注音占
□ ○ □ ○ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
当成後元何重として、
析あたり線荷重を逆載荷している。
 活荷重の載荷に関しては、簡便のため、側径間と中央径間に着日した固定載荷を考え 組み
合わせ計算を行っている。
 ⑤ モデル化の方法
・ 3径間連続2主鈑桁の直線橋全体モデル
・ 主桁腹板と床版を板要素とし、その他部材を梁要素にモデル化
・ 主桁上フランジと床版を結合するジベル部材は、曲げに対し剛な部材にモデル化
・ 支点条件は、橋軸方向は端支点のみ固定とし、橋軸直角方向は全8支点固定、また回転につ
いては全方向自由としている。
IR R
(編要素) (編要素) (編要素) (編要素) (編要素)
[#****] 図-3 FEM 解析の全体モデル
表-1 支桁断面號元 21 11 11 11 レーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
ム <u>新商1</u> <u>新商2</u> <u>新商2</u> <u>新商3</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まフランジ</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつ</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつ</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつ</u> <u>まつの</u> <u>まつの</u> <u>まつの</u> <u>まつ</u> <u>まつ</u> <u>まつの</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>まつ</u> <u>ま</u> <u>ま</u> <u>ま</u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>
⑥ その他
・ keywords:合成 2 主桁橋、横桁配置、下フランジ水平曲げ応力、横桁軸力、ジベル偶力

① 題 名:本州四国連絡橋における FEM 解析の適用事例

②出典:本四技報(Vol.15 No.60 '91.10)

③ 概要:

本州四国連絡橋公団において鋼上部構造に FEM 解析を適用した事例の調査結果を取りまとめ ている。FEM 解析を行う目的、FEM 解析結果の評価法、モデル化の手法(要素の種類、要素に よるモデル化、要素分割、境界条件の設定)等について記述されている。

FEM 解析の適用の目的:

- 1)応力の流れの把握
- 2) 複雑な境界条件を持つ構造ディテールの応力解析

5 FEM 解析のモデル化手法:

- 1)要素の種類 平面三角形要素、平面四角形要素、シェル要素が多く用いられている。
- 2)要素によるモデル化 複雑な構造ディテールに対しては、面外応力を考慮できる自由度の大きい要素を用い、それ 以外の部分に対してはより簡単な要素を用い、数種類の要素で構成されたモデルで解析をし ている事例が多い。曲面に対しては一般にシェル要素、アイソパラメトリック要素でモデル 化している。
- 3)要素分割 部材の形状の急変点、部材の交差部等の応力の急変点では要素を細かく分割されている。FEM 解析では要素間の力の伝達は要素節点のみで行われているといる仮定の基に解析されてい ることを考慮して要素分割をすることが肝要である。

4)境界条件の設定 FEM 解析の適用事例ではモデル化する構造ディテールに対称性がある場合には、1/2 モデル、 1/4 モデルを用いて簡略化したモデルで解析を行っている。

5) その他 平面モデルと立体モデルとの割合は、4:6でほとんどが弾性 FEM 解析である。

① 題 名:「鋼上部構造の設計に FEM 解析を適用するためのガイドライン (案)」の運用上の留 意点

②出典:本四技報(Vol.19 No.75 '95.7)

③ 概要:

鋼上部鋼の設計に適用されている FEM においては、解析手法、モデル化の方法、解析結果の 評価方法等は、一般的な基準がないまま、設計実務技術者にその判断が委ねており、その結果、 FEM の適用に当たり統一された評価がなされていないなどの問題が生じている。そこで、設計 実務技術者を対象として、FEM 解析に伴う問題点への対処方法の目安および判断材料を示すこ とを目的に、「鋼上部構造の設計に FEM 解析を適用するためのガイドライン(案)」を制定した。 本文は、ガイドラインの運用上の留意点、特に解析結果の評価法を重点に述べたものである。

④ 用途:

- ・ 応力集中が予想される場合
- ・ 応力の流れが不明確な場合
- ・ 応力の分配が不明な場合
- ・ 構造の複雑さから FEM 以外の適当な設計手法が無い場合
- ・ 多数の部材が結合された構造で応力の流れ・分配が不明な場合
- ・ 多数の方向の異なる板が結合された場合
- ⑤問題点、注意点:
 支点条件を設定する上での注意点
 ① 固定支点
 - 解析上の固定支点を離れたところに多数設けることは、支点から支点へ流れる力をつくることになり好ましくないので、安全側に一方を自由端とするか荷重端とすることもあり得る。
 - ⑦ バネ支点

支承を含めて解析領域から切り捨てた部分の剛性がバネの形で評価できるときは、極力 バネ支持とする。

- ③ 着目点と支点との関係 FEM 解析の目的が、応力の流れをみることにあり変形が重要でない場合は、着目点から 離れた支点は固定支点としてもバネ支点としても応力に大きな差はないので、固定支点 に統一して良い。
- ④ 支点近傍の応力集中
- ⑤ 支点近傍に着目した解析においては、この部分の要素を細分する必要があるが、それにともない支点数も増やさなければ支点上の要素に応力集中が生じる。

① 題 名:下横構を省略したプレートガーダー橋の提案
② 出 典:橋梁と基礎 93-11
③ 著 者:(社)日本橋梁建設協会·設計部会
 ④ FEM を使っている目的及び結果:
〈目的〉
・ 立体解析モデルを用い鉛直荷重を載荷して、下横構の有無による力学的挙動の比較を行い、
下横構の省略の提案している。また製作・施工・維持管理・景観などの面からも検討を行っ
ている。
〈結果〉
・ 主桁の鉛直変位は偏載荷の場合、外桁で3.6mm(合計たわみ量の12)の差が生じ、下
横構が橋梁全体のねじり剛性の向上に寄与している。中央載荷では下横構の有無による差異
はほとんどみられない。主桁下端の水平変位も変位量は小さいが傾向は鉛直変位と同じであ
る。格子解析結果との比較では、床版の剛性により立体モデルの方が小さい値となる。
・ 下横構有りの場合、下横構無しに比べ、下フランジに作用する水平曲げモーメントに伴う応
力は、許容応力度の3~4%程増える。
 下横構のガセット部に疲労損傷が生じているとの報告されているが、下横構省略により疲労
損傷のおそれはなくなる。
 下横構省略による構造外観の向上、現場の作業性の向上、付属物との干渉トラブルの減、製
作費の減などの利点を上げている。
⑤ 問題点、注意点:
・ 水平力に対する下フランジ断面の応力度の照査式。(解析は格子解析を前提にしている)
・ 架設時の下横構の役割の見直しと足場構造の改善と維持管理方法の改善
 動的荷重に対するト横構省略の影響
 建設省の標準設計を参考に支間が36m、幅負10.75m、桁高1.8mの4本王桁の直
・ 梁 : 主桁と横桁のフランジ・補剛材・床版とフランジの連結材
・ シェル: 王桁と横桁のワェブ・床版
・間素化・標準化
↓ ・ 上争賀の低減 → ために
● <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
•

□ 題 名: フレートガーダー橋の下横構の省略に関する一考察
② 出 典: 橋梁と基礎 89-9
③ 著 者: (社)日本橋梁建設協会·設計部会
④ FEM を使っている目的及び結果:
〈目的〉
↓・ 構造の簡素化の一試案として下横構の省略の可能性を確かめるため、単純合成鈑桁をモデル
化し、風荷重を橋軸直角方向に作用させ、下横構の有無による各部材の荷重分担の差異等を
調べる。またFEMモデルを立体骨組化し固有振動性状を調べる。
〈結果〉
・ 下横構の荷重分担は通常設計で使用する1/2ではなく1/4程度で、3/4は床版が分担
している。
・ 下横構を省略すると、端対傾構・中間対傾構の部材応力度の増加率は、25~240%と大
きい値となるが、通常部材は細長比で決まり、実応力度の値は小さいので実用上問題となら
・ 床版と下フランジに生じる水平曲げ応力度の増加は、わずかであり特別な配慮を行う必要は
 ・ ト横構の有無による振動性状には差異がみられないので、下横構の省略が橋梁全体の剛性に はたし、「ビビジント」、 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
はとんと影響を与えていない。
(5) 問題点、注意点:
 水平荷重に対する計算結果のみなので、鉛直荷重や架設時に対しての剛性・安全性・耐久性
などの検証が必要である。また解析結果の裏付け資料として実験・実測データの蓄積がない。
 ・ 建設省の標準設計を参考に支間が36m、幅員10.75m、桁高1.8mの4本主桁の直
(4) エー・ブル
線橋モデル ・ 梁 :主桁と横桁のフランジ・補剛材・床版とフランジの連結材
線橋モデル ・ 梁 :主桁と横桁のフランジ・補剛材・床版とフランジの連結材 ・ トラス:横構・対傾構 ・ シュル・主振と歴年のウェブ・広照
 線橋モデル 梁 :主桁と横桁のフランジ・補剛材・床版とフランジの連結材 トラス:横構・対傾構 シェル:主桁と横桁のウェブ・床版
 線橋モデル ・ 梁 :主桁と横桁のフランジ・補剛材・床版とフランジの連結材 ・ トラス:横構・対傾構 ・ シェル:主桁と横桁のウェブ・床版 ⑦ その他(キーワード): ・ 節素化・標準化
 線橋モデル 梁 :主桁と横桁のフランジ・補剛材・床版とフランジの連結材 トラス:横構・対傾構 シェル:主桁と横桁のウェブ・床版 ⑦ その他(キーワード): ・ 簡素化・標準化 ・ 工事費の低減
 線橋モデル 梁 :主桁と横桁のフランジ・補剛材・床版とフランジの連結材 トラス:横構・対傾構 シェル:主桁と横桁のウェブ・床版 ⑦ その他(キーワード): 簡素化・標準化 工事費の低減 立休骨組・立休解析
 線橋モデル 梁 :主桁と横桁のフランジ・補剛材・床版とフランジの連結材 トラス:横構・対傾構 シェル:主桁と横桁のウェブ・床版 ⑦ その他(キーワード): 簡素化・標準化 工事費の低減 立体骨組・立体解析 振動解析
 線橋モデル 梁 :主桁と横桁のフランジ・補剛材・床版とフランジの連結材 トラス:横構・対傾構 シェル:主桁と横桁のウェブ・床版 ⑦ その他(キーワード): 簡素化・標準化 工事費の低減 立体骨組・立体解析 振動解析 ・

① 題 名:2 主桁橋梁の床版死荷重曲げモーメントに関する簡易モデルの提案
② 出 典:土木学会 第55回 年次学術講演会(平成12年9月)
著 者:坂本純男、端本勝介(片山ストラテック(株))、中薗明広、稲葉尚文(日本道路公団)、
長井正嗣(長岡技術科学大学)
③ FEM を使っている目的及び結果
〈目的〉
・ 張出し部床版、壁高欄荷重や中間横桁による主桁の変形拘束などの影響による床版の挙動を把握
する。
く結果〉
・ 床版の死荷重曲げモーメントは、横桁上の垂直補剛材断面、主桁の変形を抑える横桁取付高さ、
および主桁・横桁の間隔などの影響を受ける。
 床版の死荷重曲げモーメントの値は、床版を単純梁でモデル化した状態と固定梁との中間値であ
り、拘束力が生じている。
 横桁がある位置と横桁がない位置とでの床版下面応力は、ほとんど変わらない。
④ 問題点、注意点
・ 特になし
(5) モデル化の方法
・ 有効幅員 10m程度の 2 主鈑桁の直線橋モデル
表-3 解析パラメータ
- 摂桁取付高さ→ h 1.5m 1.0m 0.5m 補刷材高さ→ b 390mm 310mm 250mm
· 横桁胸隔····································
<u>王術師總人」。6.0m 5.5m</u>
・図~2 立体 F E M解析モデル 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<u>一 愛出し長</u> 主折間隔 張 張出し長
К θ:回転パネ
1 ¹ 1 ¹
図-3 簡易モデル図
⑥ その他
keywords:2 主桁橋、床版死荷重曲げモーメント、回転バネモデル

① 題 名: 2主 | 桁橋の設計における曲線橋への適用性に関する検討

② 出 典: 土木学会 第 55 回 年次学術講演会(平成 12 年 9 月)

③ FEM を使っている目的及び結果:

〈目的〉

・ 2主 I 桁橋の曲線橋への適用に関して、曲線橋に対する適用限界などについて検討している。

・ 格子解析では把握し得ない床版を考慮した立体挙動について検討している。

〈結果〉

- ・ 曲線橋のたわみは中心角が大きくなるにつれ減少するため、剛性一定下における曲率とたわ みの比較のみを基準に曲線橋への適用性は判断できない。
- ・ 従来の多主桁橋と同等の曲率範囲以下であれば、横桁の設計は可能であり、疲労強度も問題 とならない。
- 床版は主桁のねじりを拘束する働きをし、曲線橋では横桁位置の接合部で両者に局部応力が 発生するため、これに対する設計手法を考える必要がある。
- ・ 床版が主桁のねじりを上フランジで拘束していることがわかった。
- ・ 曲率半径中心側の床版に引張応力が発生しており、連続桁の中間支点付近と同様の処置が必要と考えられる。

④ 問題点、注意点:

・ 特になし

⑤ 検討モデルおよび解析方法:

- ・ 支間長 50mの単純桁橋を対象に直線橋を1ケース、曲率半径を変化させた曲線橋を5ケース について格子解析及び試設計をしている。
- ・ 3 次元 FEM 解析モデルは、直線橋と曲率半径 200mの曲線橋を対象としている。
- ・ 試設計では、非合成桁としているが FEM 解析ではコンクリート床版と主桁は合成させて床版 の影響を考慮している。

⑥ その他 (キーワード):

- ・ 鋼橋
- ・ 2主 I 桁橋
- ・ 曲線桁
- ・ FEM 解析
- ・ 床版応力

FEMに関する論文 No.12
① 題 名: 曲線2主1桁橋の立体的挙動と設計に関する検討
② 出 典:土木学会第56回年次学術講演会
著 者:中田知志、勝俣徹(佐藤鉄工(株))
 FEM を使っている目的及び結果
〈目的〉
・ 支間長 50m、曲率半径 200m の単純 2 主 I 桁橋において、曲率に起因する床版挙動の分析、横
桁取付け部の詳細検討、立体FEM動的解析による地震時動的特性の検討を行う。
〈結果〉
○ 平面曲率による床版の挙動は、ねじりに対するそりモーメントの影響が大きくなり、場合に
よっては考慮の必要がある。
・ 横桁取付け部の断面力は、平面骨組み解析による算出解と、FEM解でほぼ一致した。
・ 固有値解析より得られた3次までの振動モードでは、3つとも横断面方向の振幅が大きく、
橋軸方向への動きは微小であった。橋軸直角方向地震入力時には2次モードが卓越し、桁端
部に大きな力が集中する。
(4) 問題点、注意点
⑤ モデル化の方法
・ 単純曲線 I 桁橋、曲率半径 200m、支間長 50m
⑥ その他 (キーワード)
 曲線2主I桁橋
・動的解析

 題 名:鋼2主I桁橋の固有振動数算定法について
② 出 典:土木学会第57回年次学術講演会
著 者:枝元勝哉(川田工業(株))、米田昌弘(近畿大学)
③ FEM を使っている目的及び結果
〈目的〉
・ 鋼少数 I 桁橋の風による振動現象(主としてねじれ渦励振)の発現性についての検討するた
め鋼2主I桁橋の固有振動数を簡易推定する手法を提案する。
・ はりのねじれ理論による解析解とFEMの解析解を比較して、等価ねじれ剛性に対する補正
係数κを定める。
〈結果〉
 補正係数 κ は κ = 1.33 となる。
・ 50m モデル橋、ホロナイ川橋、75m モデル橋の実橋値と推定値を比較した結果、全体的に良好
な推定結果を示している。
・ 補正を加えない場合、実況のねじれ振動数を過小評価する傾向にあることがわかる。
④ 問題点、注意点
・ 変断面桁や支点条件の異なる場合は、別途検討が必要となる。
⑤ モデル化の方法:
・ 単純2主桁橋の全体モデル。(支間長 L=50m)
(⑥ その他 (キーワード)
・ 2 主桁橋
・ 固有振動数
・ ねじれ

;

	」 超 石: ハイ アラーキ有限要素解析システム(HISAS) ~ 橋梁全体解析への適用
2) 出 典: 川田工業技報 Vol. 21 2002
3	著 者: 林 正、齋藤道生、石井喜代志、佐藤貞芳、宮田幸治、田中大策
4	FEM を使っている目的及び結果:
< E	目的〉
•	ハイアラーキ有限要素法を用いた解析システムHISASにより橋梁全体の応力解析を
	行い、粗い要素分割でも十分な解析精度を確保できることを検証するとともに、
	疲労照査や応力解析を全橋規模で実施する場合にも低コストで構造解析が可能である
	ことの有用性を確認する。
く糸	
•	本システムにより、ズーミング手法を用いずに粗い要素分割で精度の良い局所応力を
	計算できる。
•	遷移要素により、所要の点の応力をより少ない自由度数で効率的に計算できる。
•	実橋における有限要素解析で、橋梁全体解析および局所応力解析を対象とした場合でも
	同一の橋梁全体モデルで精度良く計算することができる。
٠	h法に比べて、入力データ数が少なく、また要素次数を変えることで簡単に解の精度を
	確保できるので、容易に有限要素解析が実施できる。
(5) •	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか
(5) •	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか
(5) • •	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか
(5) • •	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか ハイアラーキ有限要素法の特徴 本型要素を用いて知い要素分割を行うことができる
(5) • • •	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか ハイアラーキ有限要素法の特徴 大型要素を用いて粗い要素分割を行うことができる 一般化変位として節点変位の他に 節線 節両 体積自由度を有する真体の名自由度更
(5) • •	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか ハイアラーキ有限要素法の特徴 大型要素を用いて粗い要素分割を行うことができる 一般化変位として節点変位の他に、節線、節面、体積自由度を有する高次の多自由度要 である。ここに、節線、節面、体積自由度を有する高次の多自由度要
(5) · · · · · ·	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか ハイアラーキ有限要素法の特徴 大型要素を用いて粗い要素分割を行うことができる 一般化変位として節点変位の他に、節線、節面、体積自由度を有する高次の多自由度要 である。ここに、節線、節面、体積自由度は変位を級数展開したときの係数である。 形状関数は階層的な形になるので、条節線お上び節面ごとに独立に真な頂を加えること
(5) • • • •	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか ハイアラーキ有限要素法の特徴 大型要素を用いて粗い要素分割を行うことができる 一般化変位として節点変位の他に、節線、節面、体積自由度を有する高次の多自由度要 である。ここに、節線、節面、体積自由度は変位を級数展開したときの係数である。 形状関数は階層的な形になるので、各節線および節面ごとに独立に高次項を加えること きる。
(5) · · · · · ·	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか ハイアラーキ有限要素法の特徴 大型要素を用いて粗い要素分割を行うことができる 一般化変位として節点変位の他に、節線、節面、体積自由度を有する高次の多自由度要 である。ここに、節線、節面、体積自由度は変位を級数展開したときの係数である。 形状関数は階層的な形になるので、各節線および節面ごとに独立に高次項を加えること きる。 要素上の任意な点で精度のよい応力を求めることができる
(5) • • • • •	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか ハイアラーキ有限要素法の特徴 大型要素を用いて粗い要素分割を行うことができる 一般化変位として節点変位の他に、節線、節面、体積自由度を有する高次の多自由度要 である。ここに、節線、節面、体積自由度は変位を級数展開したときの係数である。 形状関数は階層的な形になるので、各節線および節面ごとに独立に高次項を加えること きる。 要素上の任意な点で精度のよい応力を求めることができる。
	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか ハイアラーキ有限要素法の特徴 大型要素を用いて粗い要素分割を行うことができる 一般化変位として節点変位の他に、節線、節面、体積自由度を有する高次の多自由度要 である。ここに、節線、節面、体積自由度は変位を級数展開したときの係数である。 形状関数は階層的な形になるので、各節線および節面ごとに独立に高次項を加えること きる。 要素上の任意な点で精度のよい応力を求めることができる。 数値計算例
(5) · · · · · ·	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか ハイアラーキ有限要素法の特徴 大型要素を用いて粗い要素分割を行うことができる 一般化変位として節点変位の他に、節線、節面、体積自由度を有する高次の多自由度要 である。ここに、節線、節面、体積自由度は変位を級数展開したときの係数である。 形状関数は階層的な形になるので、各節線および節面ごとに独立に高次項を加えること きる。 要素上の任意な点で精度のよい応力を求めることができる。 数値計算例 半無限円孔板の平面応力解析
	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか ハイアラーキ有限要素法の特徴 大型要素を用いて粗い要素分割を行うことができる 一般化変位として節点変位の他に、節線、節面、体積自由度を有する高次の多自由度要 である。ここに、節線、節面、体積自由度は変位を級数展開したときの係数である。 形状関数は階層的な形になるので、各節線および節面ごとに独立に高次項を加えること きる。 要素上の任意な点で精度のよい応力を求めることができる。 数値計算例 半無限円孔板の平面応力解析 半無限円孔板の平面応力解析
(5) · · · · · ·	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか ハイアラーキ有限要素法の特徴 大型要素を用いて粗い要素分割を行うことができる 一般化変位として節点変位の他に、節線、節面、体積自由度を有する高次の多自由度要 である。ここに、節線、節面、体積自由度は変位を級数展開したときの係数である。 形状関数は階層的な形になるので、各節線および節面ごとに独立に高次項を加えること きる。 要素上の任意な点で精度のよい応力を求めることができる。 数値計算例 半無限円孔板の平面応力解析 半無限円孔板の応力集中問題をHISASと汎用プログラムによるh法で計算して、 HISASによる計算結果の妥当性を検証している。
	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか ハイアラーキ有限要素法の特徴 大型要素を用いて粗い要素分割を行うことができる 一般化変位として節点変位の他に、節線、節面、体積自由度を有する高次の多自由度要 である。ここに、節線、節面、体積自由度は変位を級数展開したときの係数である。 形状関数は階層的な形になるので、各節線および節面ごとに独立に高次項を加えること きる。 要素上の任意な点で精度のよい応力を求めることができる。 数値計算例 半無限円孔板の平面応力解析 半無限円孔板の応力集中問題をHISASと汎用プログラムによるh法で計算して、 HISASによる計算結果の妥当性を検証している。 2 主桁橋の全体構造解析
	問題点、注意点: ハイアラーキ有限要素法の汎用プログラムがあるか ひとつの要素の大きさどの程度まで粗くできるのか ハイアラーキ有限要素法の特徴 大型要素を用いて粗い要素分割を行うことができる 一般化変位として節点変位の他に、節線、節面、体積自由度を有する高次の多自由度要 である。ここに、節線、節面、体積自由度は変位を級数展開したときの係数である。 形状関数は階層的な形になるので、各節線および節面ごとに独立に高次項を加えること きる。 要素上の任意な点で精度のよい応力を求めることができる。 数値計算例 半無限円孔板の平面応力解析 半無限円孔板の応力集中問題をHISASと汎用プログラムによるh法で計算して、 HISASによる計算結果の妥当性を検証している。 2主桁橋の全体構造解析 2主桁橋の構造解析にHISASを適用し、橋梁全体解析を行う場合の実用性を確認す

Mに関オス論文 No. 15

ΗE	.Mに関する語文 NO. 15
1	題名:京都南道路木津川橋(連続合成開断面箱桁)の設計・施工
2	出 典:駒井技報 Vol.22
	著 者:玉田和也、真嶋敬太、安永正道(駒井鉄工(株))
3	FEM を使っている目的及び結果
<目	的〉
•	分配横桁の省略による床版曲げモーメントに及ぼす影響を評価する。
•	鋼桁架設時、床版打設時における全体横倒れ座屈に対する安全性の照査。
く結	结果》
•	分配横桁を省略することによる影響は、道示Ⅱの活荷重曲げモーメントを用いれば、荷重分
	配機能を負担できるレベルである。拡幅部において10~20%道示の値を超過したが、床版の
	曲げ耐力に対して十分余裕がある。
•	支間部に 20m程度の間隔で横繋ぎ材(H=700mm程度)を追加した結果、座屈安全率 3.59 と
	なり、施工上の安全性を確保できる。
(4)	問題点、注意点
•	何重分配効果を評価するためには、 活荷重による解析が必要たが、影響線載荷が不可である
	ため、何重載何万法に上夫が必要である。
•	本又獣では、沽何重について1つの載何万法を提案している。
	本欄における活剤量製膏方法 他分組(
	Etell
	, 図-11 全体モデルでの活荷載荷要領
(5)	モデル化の方法:
	2径間モデルと下り線全体6径間モデルを作成
•	床版:2層のソリッド要素
•	主構造:シェル要素、横桁フランジは棒要素
•	主桁と床版を連結するスタッド:接点バネ(剛バネ)
•	支点:バネ支点
	CASE-1
	図-3 近年158 滞在218 時モナル図 図-10 プ配例作かない場合の変形図
6	
key	ywords:連続台成桁、開断面箱桁、鋼・コンクリート合成床版、ライフサイクルコスト(LCC)

① 題 名:一定せん断流パネルを用いた波形鋼板ウェブ合成橋の立体解析法に関する検討
② 出 典:横河ブリッジグループ技報 No.30 2001 年1月
著者:白水晃生、尾下里治(横河ブリッジ)、江川定利、早坂賢一(横河技術情報)
③ FEM を使っている目的及び結果:
〈目的〉
・ 実橋で行われている梁理論による解析と FEM 解析および一定せん断流パネルを用いた立体解
析による結果の比較検討を行う。
・ 比較項目は、ねじりによる変位、ウェブのせん断応力度、コンクリートフランジのそり応力
〈結果〉
・ 一定せん断流パネルによる立体解析は FEM 解析と比較してもせん断応力度や垂直応力度は安全側の値を示している。
・ FFM 解析の結果は、波形鋼板の波形形状の影響を受けウェブのせん断応力度が変動している。
• FEM 解析による断面変形から、断面形状は保持されず、ウェブが上下に変形していることが
わかった。これから、ねじりによるせん断力は全てウェブで自相しているような挙動を示し
ていると言える。
④ 問題点、注意点:
・ 鋼桁とコンクリート床版とは完全合成としてモデル化
⑤ モデル化の方法:
・ 単純粱の2分の1モデル(折り返しモデル)
・ 鋼桁:シェル要素(フランジ、波形鋼板ウェブ)
・ 床版:ソリッド要素(上床版、下床版)
・ 隔壁:シェル要素(全方向変位拘束)
福田方向 福田方向 第日方 第日方 第日方 第日方 第日方 第日方 第日方 第日方
150 250 次日前板0エブ 下床版 250 250 250 250 250 250 250 250
⑥ その他(キーワード): 図-3 FEM解析モデル
・ 一定せん断流パネル
 波形鋼板ウェブ合成橋
 せん断変形
・ ねじり特性

,	FEMに関する職文 NO.18
	① 題 名:場所打ちPC床版を有する閉断面箱桁橋の床版応力性状について
	② 出 典:横河ブリッジグループ技報 No.30 2001 年 1 月
	著 者:亀川博文、竹野晃司、春日井俊博、北村明彦((株)横河ブリッジ)
	 FEM を使っている目的及び結果:
	〈目的〉
	 場所打ちPC床版を有する閉断面箱桁橋の、床版に生じる応力性状や有効プレストレスカの
•	低下を明らかにする。
	・ 検討内容は、開断面および閉断面構造について、FEM解析を実施し比較を行う。また、2/
	3スケール供試体によるプレストレス導入試験を実施し、FEM解析との比較を行う。
	〈結果〉
	・ 開断面箱桁は外ウェブ部、主桁中心部、内ウェブ部と 10%程度であった。閉断面箱桁は、外
	ウェブ部、内ウェブ部で同様に 10%程度、主桁中心部で 15%以上(ダイヤフラム位置で 40%程
	度)となる。
ľ	・ 主桁中心部でのプレストレス応力度の低下は大きいが、逆に死・活荷重等の鉛直荷重による
	発生応力も小さいため、結果的には、開断面箱桁と閉断面箱桁の構造に関係なく同程度のP
ľ	C 床版設計となる。
	・ 供試体試験による実測値とFEM解析値では、変位、応力性状ともによく一致しており、F
	EM解析のモデル化の妥当性を確認できた。

④ 問題点、注意点:

・ PC鋼材のプレストレスカを外力として与えると、PC鋼材の偏心配置効果が正しく把握で きないため、PC鋼材を棒要素と定義し、その棒要素にプレストレスカと等価となる温度変 化を与えることにより、コンクリート要素にプレストレス力を伝達できるようにした。

⑤ モデル化の方法:

- ・ 2 主桁の開断面および閉断面箱桁橋、橋軸方向 49m(横桁 5 パネル分)。
- 床版(コンクリート): Solid 要素、床版(PC鋼材):棒要素、床版(鉄筋):なし
- ・ 主桁(フランジ・ウェブ)、横桁、垂直補剛材:Shell 要素
- ・ スタッドジベル:なし(主桁上フランジと床版との節点共通)

⑥ その他 (キーワード)

- 場所打ちPC床版 / 閉断面箱桁橋
- ・ プレストレスロス

① 題 名:合成床版底板の架設時補強材としての有効性に関する検討									
② 出 典:横河ブリッジグループ技報 No.28 1998 年1月									
著 者:高田和彦、永田 淳、清田錬次((株)横河ブリッジ)、名取 暢((株)横河メンテック)									
③ FEM を使っている目的及び結果:									
〈目的〉									
・ 開断面箱桁における合成床版の架設時剛性への寄与と補強効果を解析にて検証する。									
〈結果〉									
 ・ 合成床版の補強効果として、桁の変形が風荷重時に約 1/17、ねじり荷重載荷時に 1/100 	以下								
となり、横構で開断面箱桁を補剛するモデルとほぼ同等の値となった。									
・ 合成床版端部の桁との結合部に応力集中が生じ、結合部の補強が必要な場合は、床版パ	ネル								
端部の結合部に対して行えばよい。									
④ 問題点、注意点:									
Ⅰ ・ 合成床版と主桁との連結については剛結としており、結合方法の影響については別途検	讨扱								
いとしている。									
⑤ モデル化の方法:									
・ 張出し架設を想定した 60mスパン片持ち梁モデル。6m間隔に対傾構を設置。									
・ ①主桁、②主桁+横構、③主桁+合成床版の各モデルを作成									
・ 主桁:シェル要素(上フランジ、ウェブ、下フランジ、縦リブ、垂直補剛材)									
・ ダイアフラム:梁要素(上弦材)、トラス要素(斜材)									
・ 合成床版:シェル要素(底鋼板、リフ) 									
リア									
<u> ゆま 単数視期</u> 上フランジ 上フランジ 上フランジ 上フランジ シェル要素 t = 20 mm t = 20 mm レ = 24 mm ・									
ダフト注射 ダフト注射 ダブト注射 ダブト注射 ダブト注射 ダブト注射 ダブト注射 メーモック 本 - 88.14cm2, I = 8360cm4 ユージーン イエアスタム単計 イーマスタム単計 イーマスタム単計 イーマスタム単計 イーマスタム									
第97 アム 青 村 P 7 大黄浦 A = 139,000年2									
at リプノアンジ 下フランジ 成 版 リブ シェル要素 $t = 24 (リブビッチ600 ma)$									
ボリオ/ア 日 床 King K シェル要素 t = 24 (リブビッチ600ma) 図-4 解析モデル	<u> </u>								
Imp アクション Tr アランタ B - 4 無折モデル									
Imp Imp Imp Imp F73>2 Imp 2x ル要素 1 = 24 (リブビッチ600mm) Imp Imp Imp 1 = 24 (リブビッチ600mm) Imp Imp Imp Imp Imp Imp Imp Imp <t< th=""><td></td></t<>									
エリナ/アナ 日本 K K ビー 0 F7329 東京 リブ シェル要素 1 = 24 (リブビッチ600ma) 図-4 無折モデル ⑥ その他 ・ keywords:合成床版 (パワースラブ)、開断面箱桁、架設時の安全性									
Imp Imp Imp Imp F7355 R Imp Imp B-4 解析モデル ⑥ その他 • keywords:合成床版 (パワースラブ)、開断面箱桁、架設時の安全性									
Imp Imp <td></td>									
ボリア アラシジ ボボボ (1 - 0									
エリナ/ア 日本 本 ビー 0									
ボリア F7325 ボボボボ シェル要素 ビー 0									

F と M に 側 9 る 翻 文 No. 20
① 題 名:一定せん断流パネルを用いた鋼床版合成橋梁の解析
② 出 典:横河ブリッジグループ技報 No.24 1995 年1月
著 者:尾下里治(横河ブリッジ)、江川定利、矢野久元(横河技術情報)
③ FEM を使っている目的及び結果:
〈目的〉
• FEM 解析および一定せん断流パネルを用いた立体解析による結果の比較検討を行う。
〈結果〉
・ 両者の解析結果はよく一致している。
 ・ 鋼床版の橋軸方向垂直応力は、橋端部で急激な応力集中が生じている。
④ 問題点、注意点:
 ・荷重ケースは、鉛直荷重の活荷重満載(L)と、水平横荷重の風荷重満載(W)で、格点位置 に集中荷重として与える。
⑤ モデル化の方法:
・ 鋼床版部分とアーチリブ起点部のみシェル要素で詳細にモデル化し、その他のアーチリブや
上支材などは梁部材でモデル化している。
・ 支間中央までの 1/2 モデル
図-9 FEMにおける解析モデル
(b) その他(キーリード):
・ 一上でん町流ハイル ・ 鋼店街へは掻沙
・ ニールセンローゼ桁極
・せん断遅れ

3.格子解析とFEM解析

3.1 比較対象橋梁

1) 目的

橋梁全体モデルを用いた FEM 解析における実務設計レベルでの妥当なモデル化(メッシュサイズ、 支承部境界条件等)を検討するため、3径間連続合成2主 I 桁橋を対象とし、従来の格子解析と比較を おこなう。

2) 形式

構造形式	3径間連続合成2主1桁橋
橋長	132.000 m
支間	40.0m + 50.0m + 40.0m
床版	場所打ちプレストレスコンクリート床版(t=230mm)
舗装	アスファルト舗装(t=80mm)
平面線形	直線
斜角	90度

3) 断面形状

4) 平面形状

5)荷重

現状、FEM 解析において荷重の影響線載荷が困難なことを加味し、今回は固定荷重の死荷重のみを 対象とした。なお、最近は活荷重合成桁がほとんどであるが、比較解析の便宜上、合成前死荷重に対し ても合成断面で抵抗するものとした。

3.2 格子モデル

格子解析に用いるモデルでは、FEM 解析との比較を意識して、2 つのモデルを作成した。

1) 骨組図

2) 格子·MODEL1

中間支点付近の床版コンクリートはひび割れを考慮して無視し、鉄筋のみを鋼断面に考慮する。なお、 中間支点付近で鋼断面とする範囲は、各支間の0.15L程度とした。

3) 格子·MODEL2

全断面で床版コンクリートを有効とした断面剛性を用いる。

3.3 FEM モデル

1) 要素および物理定数

・床版

床版厚方向に2分割、張出部は橋軸直角方向に6分割、主桁上フランジ設置位置は、橋軸直角方向に 8分割、中央部は橋軸直角方向に6分割のソリッド要素でモデル化する。

・主桁

フランジは橋軸直角方向に8分割、ウェブは鉛直方向に8分割のシェル要素でモデル化する。なお、 主桁と床版は節点を共有させた完全合成モデルとした。

・横桁

フランジは橋軸方向に2分割、ウェブは鉛直方向に2分割、橋軸直角方向に10分割のシェル要素で モデル化する。

以下に使用する要素およびヤング係数、ポアソン比をまとめた。

部位	要 素	ヤング係数(kN/m2)	ポアソン比
床 版	ソリッド要素	3.1E07	0.167
主 桁	シェル要素	2.0E08	0.3
横桁	シェル要素	2.0E08	0.3

2) メッシュ分割

ここでは、橋梁全体モデルを用いた FEM 解析による実務設計を想定した場合に、モデル化の作業量 を左右するメッシュサイズについて3タイプの設定をした。なお、メッシュサイズを変化させる部材と して、今回はウェブに限定した。

・メッシュ中(FEM-MODEL1)

ウェブを鉛直方向に8分割したモデル

・メッシュ小(FEM-MODEL2) ウェブを鉛直方向に 26 分割したモデル

・メッシュ大(FEM-MODEL3) ウェブを鉛直方向に4分割したモデル

3) 支承部境界条件

支承部の境界条件についても、桁の曲げモーメント性状等に及ぼす影響を確認するため、以下3タイ プのモデルを作成した。なお、メッシュ分割は前述の FEM-MODEL1 を基本とし桁端部および中間支 点上の下フランジを拡幅させている。

・支承モデル1(最も一般的に用いられていると思われるモデル)

支承線上の格点を拘束したモデル

中間支点上モデル

・支承モデル2

ソールプレート上の格点を拘束したモデル

・支承モデル3

ソールプレート上の格点と中央格点を剛はり要素を配置し中央格点のみを拘束したモデル

端支点上モデル

中間支点上モデル

4. 解析結果

4.1 格子解析

1) 格子·MODEL1

・断面力

部材	始端	終端	軸力	せん断力	せん断力	ねじりモーメント	曲げモーメント	曲げモーメント
番号	番号	番号	FX(kN)	FY(kN)	FZ(kN)	MX(kN.m)	MY(kN.m)	M Z (k N. m)
101	101*	102	0.00	0.00	956.11	0.00	0.00	0.00
	101	102*	0.00	0.00	326.18	0.00	6411.44	0.00
102	102*	103	0.00	0.00	326.18	0.00	6411.44	0.00
	102	103‡	0.00	0.00	-303.76	0.00	6523.54	0.00
103	103*	104	0.00	0.00	-303.76	0.00	6523.54	0.00
	103	104*	0.00	0.00	-933.69	0.00	336.28	0.00
104	104*	105	0.00	0.00	-933.69	0.00	336.28	0.00
	104	105*	0.00	0.00	-1185.67	0.00	-3902.44	0.00
105	105*	106	0.00	0.00	-1185.67	0.00	-3902.44	0.00
	105	106*	0.00	0.00	-1563.63	0.00	-12150.32	0.00
106	106*	107	0.00	0.00	1574.84	0.00	-12150.32	0.00
	106	107*	0.00	0.00	1102.39	0.00	-2110.73	0.00
107	107*	108	0.00	0.00	1102.39	0.00	-2110.73	0.00
	107	108#	0.00	0.00	944.90	0.00	448.38	0.00
108	108‡	109	0.00	0.00	944.90	0.00	448.38	0.00
	108	109*	0.00	0.00	314.97	0.00	6747.73	0.00
109	109*	110	0.00	0.00	314.97	0.00	6747.73	0.00
	109	110#	0.00	0.00	-314.97	0.00	6747.73	0.00
110	110#	111	0.00	0.00	-314.97	0.00	6747.73	0.00
	110	111*	0.00	0.00	-944.90	0.00	448.38	0.00
111	111+	112	0.00	0.00	-944.90	0.00	448.38	0.00
	111	112*	0.00	0.00	-1102.39	0.00	-2110.73	0.00
112	112*	113	0.00	0.00	-1102.39	0.00	-2110.73	0.00
	112	113*	0.00	0.00	-1574.84	0.00	-12150.32	0.00
113	113*	114	0.00	0.00	1563.63	0.00	-12150.32	0.00
	113	114*	0.00	0.00	1185.67	0.00	-3902.44	0.00
114	114‡	115	0.00	0.00	1185.67	0.00	-3902.44	0.00
	114	115*	0.00	0.00	933.69	0.00	336.28	0.00
115	115*	116	0.00	0.00	933.69	0.00	336.28	0.00
	115	116*	0.00	0.00	303.76	0.00	6523.54	0.00
116	116#	117	0.00	0.00	303.76	0.00	6523.54	0.00
	116	117‡	0.00	0.00	-326.18	0.00	6411.44	0.00
117	117*	118	0.00	0.00	-326.18	0.00	6411.44	0.00
	117	118#	0.00	0.00	-956.11	0.00	0.00	0.00

・断面力図

・変位図

2)格子·MODEL2

節点	X軸方向反力	Y軸方向反力	Z軸方向反力	X軸回転反力	Y軸回転反力	Z軸回転反力
番号	(k N)	(kN)	(k N)	(k N. m)	(k N.m)	(k N. m)
101	0.00	0.00	921.52	0.00	0.00	0.00
105	0.00	0.00	3173.06	0.00	0.00	0.00
110	0.00	0.00	3173.06	0.00	0.00	0.00
114	0.00	0.00	921.52	0.00	0.00	0.00
201	0.00	0.00	921.52	0.00	0.00	0.00
205	0.00	0.00	3173,06	0.00	0.00	0.00
210	0.00	0.00	3173.06	0.00	0.00	0.00
214	0.00	0.00	921.52	0.00	0.00	0.00
合計反力	0.00	0.00	16378.31	0.00	0.00	0.00

・変位

節点	X方向変位	Y 方向変位	Z方向変位	X軸回転角	Y軸回転角	Z軸回転角
番号	(mm)	(mm)	(mm)	(mrad)	(mrad)	(mrad)
101	0.000	0.000	0.000	0.000	1.238	0.000
102	0.000	0.000	-10. 529	0.000	0.684	0.000
103	0.000	0.000	-12.007	0.000	-0. 381	0.000
104	0.000	0.000	-5.120	0.000	-0.813	0.000
105	0.000	0.000	0.000	0.000	0.047	0.000
106	0.000	0.000	-5. 709	0.000	0.859	0.000
107	0.000	0.000	-13.335	0.000	0. 492	0.000
108	0.000	0.000	-13.335	0.000	-0.492	0.000
109	0.000	0.000	-5.709	0.000	-0.859	0.000
110	0.000	0.000	0.000	0.000	-0.047	0.000
111	0.000	0.000	-5.120	0.000	0.813	0.000
112	0.000	0.000	-12.007	0.000	0.381	0.000
113	0.000	0.000	-10. 529	0.000	-0.684	0.000
114	0.000	0.000	0.000	0.000	-1.238	0.000

5 - 34

J	l
	J

部材	始端	終端	軸力	せん断力	せん断力	ねじりモーメント	曲げモーメント	曲げモーメント
番号	番号	番号	FX(kN)	FY(kN)	FZ(kN)	MX(kN.m)	MY(kN.m)	M Z (k N.m)
101	101*	102	0.00	0.00	921.52	0.00	0.00	0.00
	101	102*	0.00	0.00	291.58	0.00	6065.52	0.00
102	102*	103	0.00	0.00	291.58	0.00	6065.52	0.00
	102	103*	0.00	0.00	-338.35	0.00	5831.68	0.00
103	103*	104	0.00	0.00	-338.35	0.00	5831.68	0.00
	103	104*	0.00	0.00	-968.29	0.00	-701.50	0.00
104	104*	105	0.00	0.00	-968.29	0.00	-701.50	0.00
	104	105‡	0.00	0.00	-1598.22	0.00	-13534.04	0.00
105	105*	106	0.00	0.00	1574.84	0.00	-13534.04	0.00
	105	106‡	0.00	0.00	944. 90	0.00	-935. 34	0.00
106	106*	107	0.00	0.00	944. 90	0.00	-935. 34	0.00
	106	107‡	0.00	0.00	314.97	0.00	5364.01	0.00
107	107‡	108	0.00	0.00	314.97	0.00	5364.01	0.00
	107	108*	0.00	0.00	-314.97	0.00	5364.01	0.00
108	108‡	109	0.00	0.00	-314.97	0.00	5364.01	0.00
	108	109*	0.00	0.00	-944.90	0.00	-935. 34	0.00
109	109*	110	0.00	0.00	-944. 90	0.00	-935.34	0.00
	109	110*	0.00	0.00	-1574.84	0.00	-13534.04	0.00
110	110#	111	0.00	0.00	1598.22	0.00	-13534.04	0.00
	110	111#	0.00	0.00	968.29	0.00	-701.50	0.00
111	111‡	112	0.00	0.00	968.29	0.00	-701.50	0.00
	111	112*	0.00	0.00	338.35	0.00	5831.68	0.00
112	112#	113	0.00	0.00	338. 35	0.00	5831.68	0.00
	112	113*	0.00	0.00	-291.58	0.00	6065.52	0.00
113	113*	114	0.00	0.00	-291.58	0.00	6065.52	0.00
	113	114#	0.00	0.00	-921.52	0.00	0.00	0.00

・変位図

5 - 36

4.2 FEM 解析

下図に示す着目位置のうち 103 格点付近の要素について FEM-MODEL1、FEM-MODEL2、 FEM-MODEL3の3モデルの応力コンター図を示す。なお、コンター図の色別レンジは、局部的な設計 としてではなく全体の断面設計に適用することを意識して 20N/mm2 刻みとした。

1) メッシュ中 (FEM-MODEL1)

ウェブを鉛直方向に8分割したモデルの103格点位置(第1径間、支間中央)要素の応力コンター図 を以下に示す。

2) メッシュ小 (FEM-MODEL 2)

ウェブを鉛直方向に26分割したモデルの103格点位置(第1径間、支間中央)要素の応力コンター 図を以下に示す。

全体

上フランジ

5 - 40

3) メッシュ大 (FEM-MODEL3)

ウェブを鉛直方向に4分割したモデルの103格点位置(第1径間、支間中央)要素の応力コンター図 を以下に示す。

全体

4) 支承部境界条件

下図に示す着目位置のうち 101、105 格点付近の要素について支承部境界条件の違う 3 モデルについ て応力コンター図を示す。なお、コンター図の色別レンジは、局部的な設計としてではなく全体の断面 設計に適用することを意識して 20N/mm2 刻みとした。

・支承モデル1 (支承線上の格点を拘束したモデル)

格点 101(下フランジ表面)

格点 101(下フランジ裏面)

格点 105(全体)

格点 105 (下フランジ表面)

5 - 46

格点 105 (下フランジ裏面)

・支承モデル2(ソールプレート上の格点を拘束したモデル) 格点 101(全体)

格点 101 (下フランジ表面)

格点 101(下フランジ裏面)

格点 105(全体)

格点 105(下フランジ表面)

5 - 49

・支承モデル3(ソールプレート上の格点と中央格点を剛はり要素を配置し中央格点のみを拘束したモ デル)

格点 101(全体)

格点 101(下フランジ表面)

格点 105(全体)

格点 105(下フランジ表面)

格点 105(下フランジ下面)

5. 考察

5.1 格子解析とFEM解析の比較

今回は、主桁の断面設計を念頭におき、桁の応力度、断面力、変位に対して比較をおこなった。さら にそれぞれの比較項目に対して、メッシュサイズ、支承部境界条件の影響がどの程度かを確認した。 なお、FEM解析モデルを一覧で示すと下記となる。

モデル	メッシュサイズ	支承モデル
FEM-MODEL1	中	支承モデル1
FEM-MODEL2	小	支承モデル1
FEM-MODEL3	大	支承モデル1
FEM-MODEL5	中	支承モデル1
FEM-MODEL6	中	支承モデル 2
FEM-MODEL7	中	支承モデル3

支承モデル	支承境界条件
支承モデル1	支承線上の格点を拘束したモデル
支承モデル2	ソールプレート上の格点を拘束したモデル
支承モデル 3	ソールプレート上の格点と中央格点を剛はり要素を配置し中央格点のみを拘束し たモデル

1) 応力度

格子・MODEL1、格子・MODEL2、FEM・MODEL1、FEM・MODEL2、FEM・MODEL3の格点105 (中間支点上断面)、格点107(第2径間中央付近格点位置断面)、MAX(第2径間中央断面)の応力度 を以下に示す。

単位: M	1/m	mZ
--------------	-----	----

$\tau = \mu$	格点	105	格点	107	MAX	
モナル	U-FLG	L-FLG	U-FLG	L-FLG	U-FLG	L-FLG
格子-MODEL1	11.7	-61.7	-5.3	69.1	-5.9	77.1
格子-MODEL2	13.1	-68.7	-4.2	54.9	-4.8	63.0
FEM-MODEL1	13.18 (7.02)	-80.59 (-73.79)	-8.33 (-3.54)	50.39 (49.23)	-4.26 (-3.94)	56.67 (56.45)
FEM-MODEL2	12.35 (6.63)	-85.90 (-75.38)	-8.62 (-3.64)	50.59 (49.34)	-4.26 (-3.94)	56.68 (56.47)
FEM-MODEL3	15.34 (7.47)	-75.55 (-71.25)	-8.74 (-3.49)	51.00 (49.63)	-4.25 (-3.93)	56.77 (56.41)

()内は平均値

格子-MODEL2とFEM-MODEL1、FEM-MODEL2、FEM-MODEL3の応力度の差を以下に示す。

モデル	格点	ī 105	格点	107	MAX			
	U-FLG	L-FLG	U-FLG	L-FLG	U-FLG	L-FLG		
FEM-MODEL1	0.08 (-6.08)	-11.89 (-5.09)	-4.13 (0.66)	-4.51 (-5.67)	0.54 (0.86)	-6.33 (-6.55)		
FEM-MODEL2	-0.75 (-6.47)	-17.20 (-6.68)	-4.42 (0.56)	-4. 31 (-5. 56)	0.54 (0.86)	-6.32 (-6.53)		
FEM-MODEL3	2.24 (-5.63)	-6.85 (-2.55)	-4.54 (0.71)	-3.90 (-5.27)	0.55 (0.87)	-6.23 (-6.59)		
()内は平均値								

単位:N/mm2

格子-MODEL2とFEM-MODEL1、FEM-MODEL2、FEM-MODEL3の応力度の比を以下に示す。

モデル	格点 105		格点	107	MAX	
	U-FLG	L-FLG	U-FLG	L-FLG	U-FLG	L-FLG
FEM-MODEL1	101%	117%	198%	92%	89%	90%
	(54%)	(107%)	(84%)	(90%)	(82%)	(90%)
FEM-MODEL2	94%	125%	205%	92%	89%	90%
	(51%)	(110%)	(87%)	(90%)	(82%)	(90%)
FEM-MODEL3	117%	110%	208%	93%	89%	90%
	(57%)	(104%)	(83%)	(90%)	(82%)	(90%)

()内は平均値

着目位置の格点 107、MAX 位置では、格子解析よりも FEM 解析での応力度が最大値で1割程度、平均値で2割程度、小さい傾向である。中間支点上格点 105 では、支点拘束の影響と思われるが他の着目 位置とは傾向が違っている。

ウェブメッシュサイズが違うモデルの比率を以下に示す。

モデル	格点	ī 105	格点	į 107	MAX	
	U-FLG	L-FLG	U-FLG	L-FLG	U-FLG	L-FLG
FEM-MODEL1	100%	100%	100%	100%	100%	100%
	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)
FEM-MODEL2	107%	94%	97%	100%	100%	100%
	(106%)	(98%)	(97%)	(100%)	(100%)	(100%)
FEM-MODEL3	86%	107%	95%	99%	100%	100%
	(94%)	(104%)	(101%)	(99%)	(100%)	(100%)

今回は、メッシュサイズの変化をウェブに限定してモデルを作成したが、メッシュサイズ大、中、小に よる応力度の違いはほとんど見られない。 2) 断面力

FEM 解析で計算した応力から断面力を以下の方法で求める。なお、今回は主桁断面に着目しており、床版分の応力度は加算していない。

M₁= σ₁・A₁・L₁ M: 曲げモーメント σ: 応力度 A : 断面積

L:中立軸からの距離

 $M_{all} = M_1 + M_2 + \cdots + M_n$

単位:kN·m

モデル	格点 102	格点 103	格点 104	格点 105	格点 106	格点 107	MAX
格子-MODEL1	6411.44	6523. 54	336.28	-12150.32	448.38	6747.73	7535.10
格子-MODEL2	6065.52	5831.68	-701.50	-13534.04	-935.34	5364.01	6151.40
FEM-MODEL1	4893.09	4537.46	-1003.43	-10996.86	-1313.32	3860.77	4606.62
FEM-MODEL2	4901.00	4553.69	-905.89	-11006.16	-1318.56	3874.98	4619.96
FEM-MODEL3	4831.52	4480.85	-992.70	-10975.96	-1303.33	3813.27	4565.09

格子-MODEL2とFEM-MODEL1、FEM-MODEL2、FEM-MODEL3の断面力の比を以下に示す。

モデル	格点 102	格点 103	格点 104	格点 105	格点 106	格点 107	MAX
FEM-MODEL1	81%	78%	143%	81%	140%	72%	75%
FEM-MODEL2	81%	78%	129%	81%	141%	72%	75%
FEM-MODEL3	80%	77%	142%	81%	139%	71%	74%

着目位置では、格子解析よりも FEM 解析での断面力が2割程度、小さい傾向である。

ウェブメッシュサイズが違うモデルの比率を以下に示す。

モデル	格点 102	格点 103	格点 104	格点 105	格点 106	格点 107	MAX
FEM-MODEL1	100%	100%	100%	100%	100%	100%	100%
FEM-MODEL2	100%	100%	90%	100%	100%	100%	100%
FEM-MODEL3	99%	99%	99%	100%	99%	99%	99%

今回は、メッシュサイズの変化をウェブに限定してモデルを作成したが、メッシュサイズ大、中、小による断面力の違いはほとんど見られない。

3) 変位

格子-MODEL1、格子·MODEL2、FEM·MODEL1、FEM·MODEL2、FEM·MODEL3の格点101 ~格点107の変位を以下に示す。

単位:mm

モデル	格点 101	格点 102	格点 103	格点 104	格点 105	格点 106	格点 107
格子-MODEL1	0.00	-11.82	-13.91	-6.40	0.00	-8.88	-18.99
格子-MODEL2	0.00	-10.53	-12.01	-5.12	0.00	-5.71	13.34
FEM-MODEL1	0.00	-14.72	-17.23	-9.05	0.00	-10.42	-19.94
FEM-MODEL2	0.00	-14.69	-17.20	-9.02	0.00	-10.40	-19.92
FEM-MODEL3	0.00	-14.67	-17.18	-9.00	0.00	-10.37	-19.89

変位図

格子-MODEL2とFEM-MODEL1、FEM-MODEL2、FEM-MODEL3の変位の比を以下に示す。

モデル	格点 101	格 点 102	格点 103	格点 104	格点 105	格点 106	格点 107
FEM-MODEL1	·	140%	143%	177%		183%	150%
FEM-MODEL2		140%	143%	176%		182%	149%
FEM-MODEL3		139%	143%	176%		182%	149%

着目位置では、格子解析よりも FEM 解析の変位が 2 割~ 8 割程度、大きい傾向である。

4) 支承部境界条件

FEM-MODEL5、FEM-MODEL6、FEM-MODEL7の格点 103(第1径間支間中央)、格点 105(中間支点上断面)、格点 107(第2径間中央付近格点位置断面)の応力度を以下に示す。

					単	立:N/mm2
モデル	格点	ī 103	格点	ī, 105	格点 107	
	U-FLG	L-FLG	U-FLG	L-FLG	U-FLG	L-FLG
FEM-MODEL5	-3.62	56.01	5.90	-68.45	-3.01	48.54
	(-3.18)	(55.22)	(4.27)	(-60.62)	(-2.57)	(47.93)
FEM-MODEL6	-3.47	53.94	6.26	-57.80	-2.95	49.31
	(-3.03)	(53.18)	(4.82)	(-55.26)	(-2.51)	(48.60)
FEM-MODEL7	-3.54	55.66	7.08	0.00	-2.81	47.33
	(-3.10)	(54.35)	(5.78)	(0.00)	(-2.37)	(46.30)

()内は平均値

FEM-MODEL5、FEM-MODEL6、FEM-MODEL7の応力度の比を以下に示す。

モデル	格点 103		格点	į 105	格点 107	
	U-FLG	L-FLG	U-FL G	L-FLG	U-FLG	L-FLG
FEM-MODEL5	100%	100%	100%	100%	100%	100%
	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)
FEM-MODEL6	96%	96%	106%	84%	98%	102%
	(95%)	(96%)	(113%)	(91%)	(98%)	(101%)
FEM-MODEL7	98%	99%	120%		93%	98%
	(97%)	(98%)	(135%)	()	(92%)	(97%)

()内は平均値

FEM-MODEL7 の中間支点上位置(格点 105)の下フランジは応力がほとんど発生していないため、比較対象から除外した。格点 103、格点 107 では、支承モデルを変更しても応力度には、ほとんど影響ないことがわかる。

単位:kN·m

					15 5 4 9 7
モデル	格点 102	格点 103	格点 104	格点 106	格点 107
FEM-MODEL5	4886.50	4520.10	-1031.03	-1349.41	3823. 39
FEM-MODEL6	4570.47	4350.30	-1059.79	-1299. 46	3877.15
FEM-MODEL7	4834. 19	4444. 80	-1137.71	-1481.65	3690.80

・支承モデル1 (支承線上の格点を拘束したモデル) での断面力を示す。

支点上付近の断面力に着目し拡大図を示す。

・支承モデル2(ソールプレート上の格点を拘束したモデル)での断面力を示す。

支点上付近の断面力に着目し拡大図を示す。

・支承モデル3(ソールプレート上の格点と中央格点を剛はり要素を配置し中央格点のみを拘束したモデル)での断面力を示す。

支点上付近の断面力に着目し拡大図を示す。

断面力についても、支承モデルの影響はほとんどみられない。

FEM-MODEL5、FEM-MODEL6、FEM-MODEL7の格点 101~格点 107の変位を以下に示す。

モデル	格点 101	格点 102	格点 103	格点 104	格点 105	格点 106	格点 107
FEM-MODEL5	0.00	-14.52	-17.06	-8.94	0.00	-10.30	-19.74
FEM-MODEL6	0.00	-13.35	-15.78	-7.93	0.00	-9.78	-19.33
FEM-MODEL7	0.00	-14.04	-16.36	-8.16	0.00	-9.10	-18.24

単位:mm

FEM-MODEL5、FEM-MODEL6、FEM-MODEL7の格点 101~格点 107の変位比を以下に示す。

モデル	格点 101	格点 102	格点 103	格点 104	格点 105	格点 106	格点 107
FEM-MODEL5	100%	100%	100%	100%	100%	100%	100%
FEM-MODEL6	100%	92%	92%	89%	100%	95%	98%
FEM-MODEL7	100%	97%	96%	91%	100%	88%	92%

変位図

変位についても、支承モデルの影響はほとんどみられない。

局部的な設計をする場合には、メッシュサイズは重要なファクターになるが、今回のような全体的な 設計をする場合においては、メッシュサイズでの違いはほとんどなく、むやみに分割数を多くする必要 はなく、今回行った最も粗いメッシュ分割で十分であると思われる。また、支承部の境界条件について も支承線上の格点を拘束するモデルで十分であると思われる。

ただし、今回は固定荷重の死荷重のみを対象としているため上記のような結果になっているが、活荷 重を考慮したモデルについても同じような傾向であるか検討する必要がある。 5.2 FEM 解析のモデル化に関する留意点

ここでは、前述した FEM 解析を行うにあたり、そのモデル化について実務経験者からのヒアリングを含めて留意点をまとめてみた。

FEM 解析では、まずその目的によって使用する要素やメッシュ分割の方法がかわり、モデル作成が 異なるため、解析を始める前に何の目的で解析するのか、どの部位を対象とするのか十分に計画をして からモデル化を行うことが重要となる。また、一度作成したモデルからのメッシュの変更は、修正に時 間を要するばかりでなく、ミスの要因になる可能性があり、慎重に修正する必要がある。

これらのことを念頭に、以下に、FEM 解析のモデル化に関する留意点やキーワードを記す。

1)FEM解析で使用する主な物性について

弾性係数

ポアソン比

単位体積重量

線膨張係数(温度荷重を使用する場合)

バネ剛性(支承タイプとしてゴム沓を使用する場合、上床版と主桁間で剛結しない場合く曲げ を伝達させないピンのような状態>など)

2)橋梁の解析で使用する主な要素タイプについて

床版は、「ソリッド要素(立体要素)」または「プレート要素(板要素)」のどちらかでモデル化 する。

主桁は、「プレート要素」または「ビーム要素(棒要素)」のどちらかでモデル化する。しかし、 ほとんどの場合はプレート要素でモデル化する。ビーム要素でモデル化する場合は、主桁の上フ ランジ・ウェブ・下フランジを考慮した「I型鋼」のような剛性(断面積・断面二次モーメント・ ねじり)で入力する必要がある。

横桁は、「プレート要素」または「ビーム要素(棒要素)」のどちらかでモデル化する。こちら も主桁と同様に、ほとんどの場合はプレート要素でモデル化する。

対傾構は、「プレート要素」または、「トラス要素(棒要素の1種で軸力部材く横方向(曲げ)に 対する剛性を持たない部材>)」のどちらかでモデル化する。この部材については、着目部となる ことが少ないことから、トラス要素でモデル化することが多い。

3) 寸法について

横断勾配・縦断勾配は、ほとんどの場合で無視している。

ランプ橋などで R が大きい場合(直線に近い場合)は、R を無視することがある。

上床版をプレート要素でモデル化する場合は、上床版の板厚変化を要素毎に階段状に設定する。 桁高変化位置・床版ハンチ・横桁など着目部となる箇所の寸法は必ず把握しておく。

構造物(橋梁形式)と荷重条件が対称の場合は、1/2モデルや1/4モデルでモデル化する のが一般的である。

支承の周辺だけをモデル化するなど着目部だけをモデル化する局部解析の場合は、着目範囲の 3倍程度の長さを確保する。この長さに明確な根拠はなく経験的な数値である。

4) モデル化する部材について

アスファルト舗装はモデル化せず、荷重として入力する。(これは、アスファルト舗装の剛性(弾 性係数・ポアソン比)に明確な基準がないため。)

高欄などについてもモデル化せず、荷重として入力する。(大抵の場合は、高欄が着目と成らないため。)

主桁上フランジは、モデル化するのが一般的である。(モデル化を行わないと、主桁が上床版を 支える形状がライン上となり、せん断力・曲げモーメントに誤差が生じる可能性が大きくなるた め。)

支承自身をモデル化することは、ほとんどない。しかし、ソールプレート(主桁下フランジの 支承位置に設置する補強板のこと)をモデル化することは時々ある。

横桁は、ほとんどの場合でモデル化する。

対傾構や横構は、モデル化することは少ない。

対傾構をプレート要素でモデル化する場合は、接合部材までモデル化することが多い。

対傾構をトラス部材でモデル化する場合は、トラス部材と主桁の接合条件を「ピン(曲げの伝 達がない)」でモデル化するため、接合部材までモデル化することは少ない。

5)荷重について

橋面荷重(舗装重量・高欄荷重など)は、面分布荷重もしくは線分布荷重で入力する。しかし、 活荷重の影響のみを評価する場合は、入力しないこともある。

床版重量は、物体力(単位体積重量による部材の重さ)で入力する。こちらも「橋面荷重」と 同様に、活荷重の影響のみを評価する場合は、入力しないこともある。

主桁などの桁重量は、考慮する場合は物体力で入力する。しかし、桁重量の影響を無視した解 析を行うこともあるため、必ずしも入力する数値ではない。

活荷重(輪荷重)は、車輪の接触面積を考慮した面分布荷重もしくは集中荷重で入力する。 地震時荷重は、分布荷重もしくは物体力で入力する。物体力として入力する場合は、地震時慣 性力が向かう方向に注意すること。

6)拘束について

「ピンヒンジ支承」は、橋軸方向・橋軸直角方向・鉛直方向を拘束し、回転は自由とする。 「ピンローラー支承」は、橋軸直角方向・鉛直方向を拘束し、橋軸方向・回転は自由とする。 「ゴム支承」は、バネ要素を設置する。このとき、橋軸直角方向についてはバネ要素を設置せ ず、拘束することもある。

7) モデル化する上での注意点

床版をプレート要素でモデル化する場合、床版厚の変化を板厚で表現するが、板厚はモデル化 したプレート要素を中心に表現するため、モデル化したプレート要素の高さ位置(中立軸)と、 実際の上床版が持つ中立軸にはずれが生じてしまう。このような場合には、オフセット機能(数 値計算を行う時に、モデル化したプレート要素の中立軸を移動させること。)を使用することがあ る。

床版をプレート要素でモデル化する場合、床版の板厚よりも短い幅で要素を作成すると、解析 結果に誤差が生じる可能性が大きいため、必ず床版の板厚よりも長い幅でモデル化すること。

主桁をビーム要素でモデル化する場合、実際の構造物では主桁上フランジ全体で床版を支える 状態(面で支える)を、主桁軸線で支える状態(ラインで支える)でモデル化することとなるた め、上フランジ幅分に剛な梁を設置し、面で支える状態を擬似的に表現することがある。

解析モデルでプレート要素を使用する場合、要素の短辺と長辺の比率を「1:10」以内で作成すること。この比率よりも大きくなると解析結果に誤差が生じる可能性が大きくなる。

入力荷重として、「集中荷重」を使用する場合、荷重を与えた箇所で集中的な応力・断面力が発 生し、荷重が広範囲に伝達しない。 平成14年の道路橋示方書に構造解析の項目が追加され、構造特性を評価するツールとして3次元立体FEM解析が認められ、設計の妥当性を検証するツールとして多用されつつある。

従来は、収集した文献にあるように、格子解析とFEM解析の両方をおこない、設計の妥当性を検証 するツールとして利用されてきた。また、文献の一部に実験報告があり、それらには、実橋載荷による 応力測定結果とFEM解析の計算結果がほぼ一致することが報告されており、実応力状態にあわせた断 面構成を設計する有力なツールと認識されてきている。FEM解析による設計手法の提案とその問題点 が提示されているが、当ワーキンググループ内では、FEM解析の未経験者がほとんどで、FEM解析 の理解を深めるため、格子解析で試設計をおこない、FEM解析のモデル化と計算結果を比較し検討を 進めた。

実務設計者がFEMによる設計を平常業務とするには、モデル化および境界条件の設定が標準化、出 カデータが大量にあり計算結果の明示方法、ズレ止め・補剛材・継手の設計など、解決すべき問題が判 明したが、現在、別計算で行われている耐震設計・疲労設計や複合(合成)構造などの新形式の橋梁を 合理的に設計をおこなうには、有力なツールであると意見が一致した。

今後、汎用FEMソフトの橋梁用システムへの改善が進み、実務設計者が平常業務で使用できれば、 応力集中・耐震性・疲労を考慮し、鋼橋のコストダウン・耐久性の向上を計った精度の高い詳細設計を おこなえると思われる。