3章 設計法の違いによるコスト縮減効果の比較

3.1 はじめに

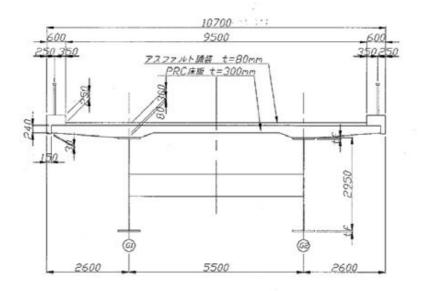
プレートガーダーの腹板の補剛設計については、古くは鋼重削減を目的とし腹板厚を薄くし、腹板の座屈を防止するため多くの垂直・水平補剛材を配置する所謂多補剛設計が行われてきた。しかしながら、鋼材の低価格化、労務単価の高騰により製作コストのうち労務費の占める割合が増えている近年では、多少板厚が増加しても補剛材の数を減らすことで労務費の割合を減じ製作コストを抑える少補剛設計にシフトしている。

旧建設省が提唱した鋼道路橋設計ガイドライン(案)では,道路橋示方書の規定の範囲内で水平補剛材段数を少なくすることで製作コストの低減を図っているが,近年の日本道路公団発注の工事では,主桁の応力状態に応じたアスペクト比の見直し,腹板の安定性照査方法の提案により,道路橋示方書の規定に拘らない少補剛薄板設計が試みられている。その他,曲げモーメントへの抵抗には寄与せずせん断力に対してのみ抵抗する波形ウェブ,欧米の基準等で採用されているコンパクト,ノンコンパクトの区分を取り入れた限界状態設計法などの研究が進められている.

本グループでは、あるモデル橋梁を対象に前述の多種の設計法により試設計を行い、その結果をもとに製作コストを試算し比較することで、それぞれの設計法によるコスト縮減効果を具体例にて確認するものである。このとき、本テーマは設計法の提案を目的とするものではないため、既存の設計基準あるいは研究成果を用いて試設計を行うこととする。

3.2 検討方針

3.2.1 検討対象モデル橋梁


検討の対象とするモデル橋梁は、「連続合成 2 主桁橋の設計例と解説」(日本橋梁建設協会 平成 17 年 8 月)に設計例として示される 3 径間連続 2 主桁橋とする。モデル橋梁の構造一般図および断面構成図を図 -3.2.1 に示す。

3.2.2 検討方法

3.2.1 で示した文献に示される設計例をもとに、各設計法での試設計を行う. 試設計は主桁の断面計算について行うこととし、床版、ずれ止めは検討対象から除外する. 設計断面力は設計例に示される断面力算出結果を用いる. ただし、断面決定後の断面力の再計算は作業量が大きいことを勘案し行わないこととする.

また、断面計算は橋梁の対象性から片側主桁の第1支間~第2支間中央までの7断面について行い、断面変化位置、ブロック数等は設計例に倣うものとする。

断面図

侧面図

平面図

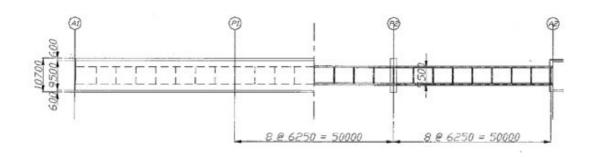


図-3.2.1 モデル橋梁構造一般図

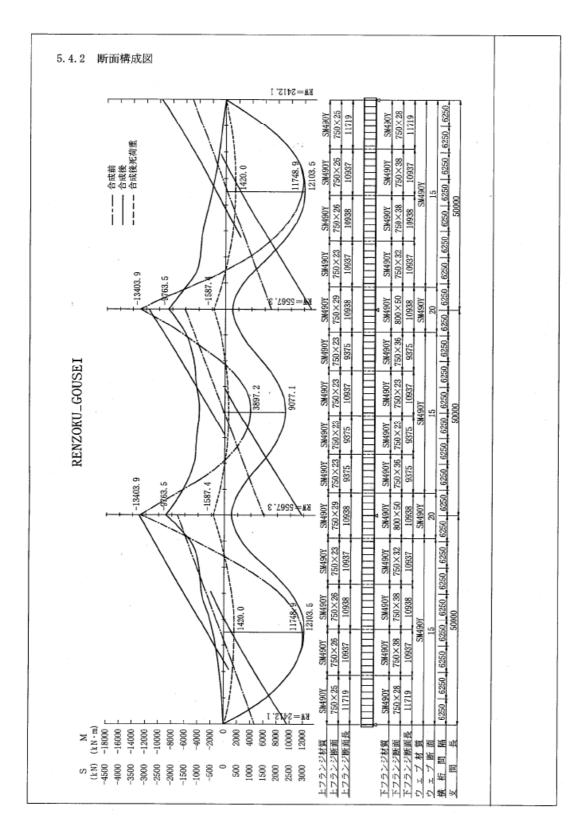


図-3.2.2 モデル橋梁断面構成図

以下の3つの設計法にて試設計を行い比較するものとする. 設計法の概要については後述する.

- (1) 腹板の設計に JH 少補剛薄板設計を取り入れたケース
- (2) 腹板を波形ウェブとしたケース
- (3) 限界状態設計により設計を行ったケース

3.2.3 コスト比較

各設計法での検討結果をもとに、桁製作コストに着目したコスト比較を行う。検討結果より桁製作コスト 算出に必要な数量(鋼材重量、材片数、大型材片溶接延長)を集計し、桁製作コストを算出する。

3.3 各設計法の概要

以下に、検討を行う各設計法の概要を示す.

3.2.1 JH 少補剛薄板設計による合成桁の断面検討

3.2.1.1 検討条件

「連続合成析2主桁橋の設計例と解説」(日本橋梁建設協会 平成17年8月)に設計例として示される3 径間連続2主桁橋をモデル橋梁とし、JH 少補剛設計による場合の断面検討を行う.

- (1) 対傾構間隔 6250mm は変えずに、その間の補剛材を省略することとする. よって最大アスペクト比は 6250/2950=2.12 となる.
- (2) 正曲げ範囲のみ採用するため、適用断面は SECT1, 2, 3, 7とする.
- (3) 水平補剛材間隔配置は断面力分布から推定するものとし、詳細な検討は行っていない.
- (4) 補剛材断面は従来設計の検討より SECT-5 以外は V.Stiff: 180x14, H.Stiff:160x13, SECT-5 は V.Stiff:220x17,H.Stiff:190x15 とする. 支点上補剛材, 横桁・対傾構位置も同じ断面とする.

3.2.1.2 断面決定方法

(1) 応力勾配 ゅについて

応力勾配 ϕ は**図-3.3.1** に示すように、合成前の前死荷重応力状態と合成後の後死荷重+活荷重応力状態を重ね合わせた設計上の応力勾配である。なお、下フランジの応力は孔引きを考慮しない応力を用いる。

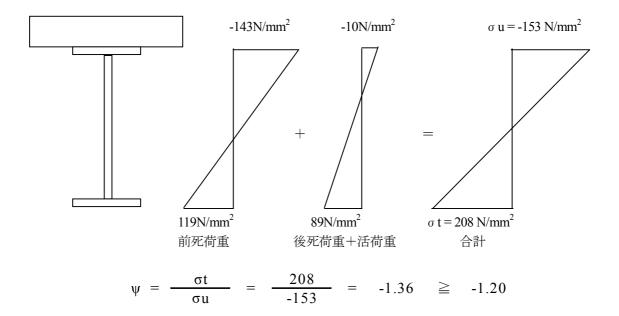


図-3.3.1 応力勾配 φ

(2) 腹板厚の低減について

降伏限界幅厚比を適用して腹板厚の薄板化を図る.

腹板厚の薄板化手順

① 式(1)により上フランジの Rf を算出する

$$R = \sqrt{\left(\frac{\sigma y}{\sigma cr}\right)} = \frac{b}{t} \sqrt{\left(\frac{12\left(1 - v^2\right)\sigma y}{k\pi^2 E}\right)} - \frac{12\left(1 - v^2\right)\sigma y}{k\pi^2 E}$$

ここに, σy: 降伏点(N/mm²), σcr: 弾性座屈応力(N/mm²),

b:フランジの腹板間隔(mm)<Rfの場合>, 腹板高(mm)<Rwの場合>, t:板厚(mm)

 $E: \forall \nu \not \in \mathbb{R}$ (N/mm²), $\nu: \exists \nu : \exists \nu \in \mathbb{R}$ と : 座屈係数 フランジ: 2.31, ウェブ: 23.9

② 算出された Rf を用いて、 表-3.3.1 より腹板の幅厚比 h/tw を求める.

表-3.3.1 少補剛薄板化した腹板の幅厚比 h/tw

Rf		0.47	0.43	0.39	0.34	0.3	0.26	0.21	0.17	0.13
Rw		1.2	1.24	1.29	1.33	1.37	1.42	1.46	1.51	1.55
h/tw	SM400	165	171	177	180	180	180	180	180	180
	SM490Y	134	139	144	149	154	159	164	169	174
	SM570	119	123	128	132	137	141	145	150	154

③ 求まった h/tw により, 腹板厚を決定する.

(3) 安定性の照査について

少補剛薄板化設計における腹板の安定性照査は、各腹板パネル内の設計最大断面力を対象に、曲げとせん断の組合せ終局状態に対する安全性照査として、(2)式を用いて照査することとした.

$$\left[\frac{1.7M}{My}\right]^4 + \left[\frac{1.7Q}{Qu}\right]^4 \le 1.0 \quad \cdots \quad \vec{x}(2)$$

ここに,

M/My: 各荷重の設計モーメントに対する下フランジ応力の組合せ計算を行い、その合計最大応力 (常時換算値)σL の公称降伏点 σy に対する比として評価してよい

Q/Qy: 腹板の平均せん断応力(ねじり応力を含む)の組合せ最大応力 τ から,腹板の設計せん断応力 Q を逆算し,(3)式に示される Basler のせん断強度 Qu で無次元化する.

Basler の算出式

$$\frac{Qu}{Qp} = \frac{\tau cr^e}{\tau y} + \frac{\sqrt{3}}{2} \times \frac{1 - \frac{\tau cr^e}{\tau y}}{\sqrt{(1 + \alpha^2)}} - -$$
 式(3)

ここに、Qp: 全塑性せん断力(kN)、Qp=2・ τy ・h・tw τy : 降伏せん断応力(N/mm²)、 $\tau y = \sigma y / \sqrt{3}$

 α :アスペクト比, $\alpha = a/h$

τcr^e: せん断弾性座屈強度(N/mm²)

$$\tau cr^{e} = Ks \cdot \frac{\pi^{2}E}{12(1-v^{2})} \left[\frac{tw}{h}\right]^{2}$$

ここに, h:腹板高さ(mm), tw:腹板厚(mm) , E:ヤング係数(N/mm²), ν :ポアソン比 Ks:せん断応力度に対する座屈係数

ks =5.34 + 4.00 ×
$$(1/\alpha)^2$$
 : $(\alpha \Box 1)$
ks =4.00 + 5.34 × $(1/\alpha)^2$: $(\alpha \Box 1)$

(4) 鋼桁架設時の照査

上述の照査はあくまで連続合成桁としての完成系に対して行うものであり、 鋼桁のみの施工時については、別途詳細に検討する必要がある。 鋼桁架設時や施工時などにおいては、一時的に腹板が不安定になることも考えられるので、実施設計に際しては、道示 II 10.4.2 に示されている.

$$\left(\begin{array}{c} t \\ \hline b \end{array}\right)^2 = \frac{v_{\rm B}\sigma c}{\left(425{\rm Rb}\right)^2} \left\{ \frac{1+\psi}{4k\sigma} + \sqrt{\left(\frac{3-\psi}{4k\sigma}\right)^2 + \left(\frac{\eta}{k\tau}\right)^2} \right\}$$

ここに,

 ν B: 曲げとせん断の組合せ作用時の座屈安全率 ν B = 1.25 + (0.30 + 0.15 ψ) e-4.3 η \square 1.25

 σc : 腹板の大きい方の縁圧縮応力度(N/mm²), ϕ : 腹板の上下縁の応力比, 応力勾配 $\sigma 1/\sigma$

 η :腹板に作用するせん断応力度と σ c との比, τ/σ c , Rb: 0.90 - 0.10 ψ

kσ: 垂直応力度に対する座屈係数 (DIN4114) , kτ: せん断応力度に対する座屈係数 (DIN4114)

3.2.2 波形鋼板ウェブを使用した合成桁の断面検討

3.2.2.1 検討方針

「連続合成析 2 主桁橋の設計例と解説」(日本橋梁建設協会 平成 17 年 8 月) に設計例として示される 3 径間連続 2 主桁橋をモデル橋梁とし、腹板を波形鋼板ウェブに置き換えた場合の断面検討を行う.

3.2.2.2 断面決定方法

1. 上下フランジ

道路橋示方書・同解説 Ⅱ 鋼橋編によるものとする. (断面諸元に腹板を考慮しないこととする.)

2. 腹板の設計

「新しい PC 橋の設計 (山海堂)」(「新しい PC 橋の設計」編集委員会 2003 年 5 月)の設計例を参考に、波形鋼板ウェブの設計を行う.

(1) 設計荷重作用時の検討

設計荷重作用時の平均せん断応力度の算出は、次式により行う.

$$\tau_{ws} \quad = \frac{S_w}{A_w} = \frac{S\text{-}S_p}{A_w}$$

ここに,

τws : 波形鋼板ウェブに作用する平均せん断応力度

Sw:波形鋼板ウェブに作用する設計せん断力

S : 設計せん断力

Sp:プレストレスの鉛直分力

Aw:波形鋼板ウェブの断面積(波形鋼板の板厚×有効高)

(2) 終局荷重作用時の検討

1) 設計せん断力の算出

終局荷重作用時の設計せん断力は,以下の組合せとする.

- ① 1.3D+2.5L+F
- ② 1.0D+2.5L+F
- ③ 1.7(D+L)+F (下線部は,本検討の組合せ)

ここに, D:自重+橋面荷重

L :活荷重+衝撃

F: 有効プレストレス2次力,クリープ,乾燥収縮

2) 終局荷重作用時の平均せん断応力度

終局荷重作用時の平均せん断応力度は、次式により求める.

$$\tau_{ws} = \frac{S_w}{A_w} = \frac{S_h - S_p}{A_w}$$

ここに, Tws:波形鋼板ウェブに作用する平均せん断応力度

Sw:波形鋼板ウェブに作用する設計せん断力

Sh: 部材の有効高の変化の影響を考慮したせん断力

$$S_h = S_u - \frac{M}{d} \tan \beta$$

β:部材圧縮縁が部材となす角度

Su : 荷重による終局荷重時せん断力

M: 荷重による終局荷重時曲げモーメント

d : 有効高

Sp:プレストレスの鉛直分力

Aw:波形鋼板ウェブの断面積(波形鋼板の板厚×有効高)

(3) 座屈に対する検討

1) 局部座屈に対する照査

局部せん断座屈は、波形鋼板ウェブの折り目と折り目の間で発生する座屈現象である.

その弾性座屈強度 $\tau^{e}_{cr,L}$ は,等せん断応力下で2つの折り目間で単純支持された鋼帯板として,次式により計算できる.

$$\tau^{e}_{cr,L} = k \cdot \frac{\pi^{2}E}{12(1-\mu^{2})} \cdot \eta^{2}$$

ここに, k: せん断座屈係数 $k=4.00+5.34/\alpha^2$

α : 縦横比 α=a/h

a :波形鋼板ウェブのパネル幅

h :波形鋼板ウェブの高さ

E:波形鋼板のヤング係数

μ:ポアソン比

η : 幅厚比 η=t/h

t :波形鋼板の厚さ

次に、非弾性域を考慮した座屈強度 τ_{cr} を弾性座屈強度 τ_{cr}^{c} に対するパラメータ λ_{s} を用い、ひずみ硬化を無視した式で表すと、次式に示す座屈曲線が与えられる.

 $\tau_{cr}/\tau_y=1$: $\lambda_s \leq 0.6$

 $\tau_{cr}/\tau_y{=}1\text{-}0.614(\lambda_s{-}0.6) \hspace{1.5cm} : \hspace{.05cm} 0.6{<}\hspace{.05cm}\lambda_s{\,\leqq\,}\hspace{-.05cm}\sqrt{2}$

 $\tau_{cr}/\tau_{v}=1/\lambda^{2}_{s}$: $\sqrt{2}<\lambda_{s}$

2) 全体座屈に対する照査

全体せん断座屈は、上下スラブ間の波形鋼板ウェブ全体が座屈する現象で、その弾性座屈強度 $\tau^c_{cr,G}$ は Easley による式で求められる.

$$\tau^{e}_{cr,G}=36\beta \cdot \{(E \cdot I_{y})^{1/4}(E \cdot I_{x})^{3/4}\}/(h^{2} \cdot t)$$

ここに, β : 材端の固定度を示す係数 (単純支持の場合:1.0,固定支持の場合:1.9) 本検討では,安全側をとりβ=1.0とする.

 I_x : 波形鋼板ウェブの橋軸方向中立軸に関する単位長さ当たりの断面 2 次モーメント $I_x=t^3 \cdot (\delta^2+1)/(6n)$

δ : 波高板厚比 δ=d/t

η :長さ減少率 (波形鋼板の橋軸に沿った長さと波形に沿った長さの比)

 I_y : 波形鋼板ウェブの高さ方向中立軸に関する単位長さ当たりの断面 2 次モーメント $I_y=1^3/\{12(1-u^2)\}$

次に、局部座屈の場合と同様に全体座屈がせん断降伏応力度以下で生じない条件は、以下に示すとおりとなる.

 $\lambda_s \leq 0.6$

 $\gtrsim \lesssim 1$, $\lambda_s = (\tau_y/\tau_{cr,G}^e)^{1/2}$

3) 連成座屈に対する照査

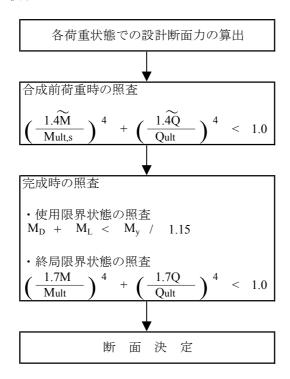
連成座屈は、局部座屈と全体座屈が複合して生じる座屈現象であり、そのせん断座屈強度算定式は局部座 屈強度と全体座屈強度の累乗和相関式が用いられる.

$$\left(\frac{\tau_{cr}}{\tau_{cr'L}}\right)^{m} + \left(\frac{\tau_{cr'G}}{\tau_{cr'G}}\right)^{n} = 1$$

ここに, ter : 連成を考慮したせん断座屈強度

TerL : 非弾性を考慮した局部座屈強度 Ter'G : 非弾性を考慮した全体座屈強度

m,n : 局部座屈モードと全体座屈モードの相関を表す乗数


m=n=4として上式を変換すると、連成を考慮したせん断座屈強度terは下式で求めることができる.

$$\tau_{\rm cr} = \tau_{\rm cr,L} \cdot \left\{ \frac{1}{1 + (\tau_{\rm cr,L}/\tau_{\rm cr,G})^4} \right\}^{1/4}$$

3.2.3 限界状態設計法による合成桁の断面検討

鋼桁の限界状態設計法に関しては、現段階では国内に明確な基準がないため、以下の仮定のもとに検討を行う.

3.2.3.1 設計の流れ

3.2.3.2 合成前荷重時の照査

1. 照查式

合成前荷重時においては以下の式を満足することを確認する.

$$\left(\frac{1.4\widetilde{M}}{Mult,s}\right)^4 + \left(\frac{1.4\widetilde{Q}}{Qult}\right)^4 < 1.0$$

ここに、

 $\stackrel{\mathbf{\sim}}{\mathbf{M}}$:合成前荷重時における曲げモーメント

 $\widetilde{\mathbf{Q}}$:合成前荷重時におけるせん断力

Mult.s: 2.により算出される鋼桁断面の終局曲げモーメント

Oult: :5.により算出される終局せん断力

2. Mult,sの算出

三上の式によるものとし σ ult,fと σ ult,wの関係から以下のa) またはb) より算出する.

a) σult,f≦σult,w (圧縮フランジ強度≦ウェブ強度) のとき

$$\frac{Mult,s}{My} = \frac{\sigma ult,f}{\sigma yf} \qquad \cdots \qquad (1)$$

ここに、

: 鋼桁断面の終局曲げモーメント Mult,s : 鋼桁断面の降伏曲げモーメント

: iii) により算出される鋼桁フランジの終局応力度

: 鋼桁フランジの降伏応力度

b) σ ult,f> σ ult,w (圧縮フランジ強度>ウェブ強度) のとき

$$\frac{Mult}{My} = \frac{\sigma ult,w}{\sigma yf} \left\{ 1 + \frac{(1-\psi) \left(\frac{\sigma ult,f}{\sigma ult,w} - 1\right)}{1+\psi^2 \frac{Aft}{Afc} + (1+\psi+\psi^2) \frac{Aw}{3Afc}} \right\} \qquad \cdots \qquad (2)$$

ここに、

: 鋼桁断面の終局曲げモーメント Mult,s

Mv : 鋼桁断面の降伏曲げモーメント

: iii) により算出される鋼桁フランジの終局応力度 : iv) により算出される鋼桁ウェブの終局応力度

: 鋼桁フランジの降伏応力度 Aft : 引張フランジの断面積 Afc : 圧縮フランジの断面積

Aw :ウェブの断面積 Ψ : 応力勾配 $\Psi = - (\sigma l / \sigma u)$

3. oult.fの算出

以下のa),b)のうち小さい方の値とする.

a) 横座屈により決定するフランジの終局応力度

$$\sigma_{\text{crf},1} = \frac{\pi^2 E}{12} \left(\frac{bf}{L} \right)^2 \cdots (3) \qquad L: 固定点間距離$$

$$\lambda = \sqrt{(\sigma y f / \sigma c r f, 1)}^e \cdots (4)$$

ここに、

σcrf,1 : 横座屈によるフランジの座屈応力度 E : 鋼のヤング係数

bf :圧縮フランジの幅

L :圧縮フランジの固定点間距離 λ:圧縮フランジの幅厚比パラメータ

b) ねじれ座屈(板の局部座屈) により決定するフランジの終局応力度

$$\sigma_{crf,2} \ = \ kc \ \frac{\pi^2 E}{12(1-v^2)} \left(\frac{tf}{bf/2}\right)^2 \ \cdots \ (6)$$

$$kc = 0.425 \qquad \cdots \qquad (7)$$

$$\lambda = \sqrt{(\sigma_{yf}/\sigma_{crf,2})}^{e} \cdots (8)$$

ここに、

 $\frac{e}{\sigma crf,2}$: ねじれ座屈によるフランジの座屈応力度

E : 鋼のヤング係数v : 鋼のポアソン比tf : 圧縮フランジの板厚bf : 圧縮フランジの幅

kc : 座屈係数 (3辺単純支持、1辺自由) λ : 圧縮フランジの幅厚比パラメータ

4. σult,wの算出

応力勾配 ψ により以下のa) \sim d)により算出する.

a) ψ=-1 (曲げ) のとき

$$\sigma cr^{e} = k1 \frac{\pi^{2}E}{12(1-\nu^{2})} \left(\frac{tw}{hw}\right)^{2}$$

$$^{*}k_{1} = 23.9$$

$$\lambda = \sqrt{(\sigma yw/\sigma cr)}^{e}$$

$$\sigma ult,b/\sigma yw = 1.0$$

$$= (1.0/\lambda)^{0.72}$$

$$1.0 < \lambda$$

ここに、

σcr ^e : ウェブの座屈応力度 k1 : ウェブの座屈係数(ψ=-1)

E:鋼のヤング係数 v:鋼のポアソン比 tw:ウェブの板厚 hw:ウェブの高さ

λ : ウェブの幅厚比パラメータσvw : ウェブの降伏応力度

b)-7≦ψ≦-1 (曲げ、引張り) のとき

$$\sigma_{cr}^{e} = k_{1} \frac{\pi^{2}E}{12(1-v^{2})} \left(\frac{t_{W}}{h_{W}}\right)^{2}$$

$$^{*}k_{1} = 2_{3.9} \left(\frac{1-\psi}{2}\right)^{2}$$

$$\lambda = \sqrt{(\sigma_{yw}/\sigma_{cr})}^{e}$$

$$\sigma_{ult./\sigma_{yw}} = 1.0 \qquad \lambda < 1.0$$

$$= (1.0/\lambda)^{0.72} \qquad 1.0 < \lambda$$

$$(西村式)$$

ここに, σcr ^e : ウェブの座屈応力度 k1 : ウェブの座屈係数 (ψ=-1)

E :鋼のヤング係数 v : 鋼のポアソン比 tw : ウェブの板厚 hw:ウェブの高さ

λ : ウェブの幅厚比パラメータ σyw : ウェブの降伏応力度

ψ : 応力勾配

c) ψ=1 (圧縮) のとき

$$\sigma_{cr} \stackrel{e}{=} k_1 \frac{\pi^2 E}{12(1-v^2)} \left(\frac{t_w}{h_w}\right)^2$$

$$^*k_1 = 4.0$$

$$\lambda = \sqrt{(\sigma_{yw}/\sigma_{cr})} \stackrel{e}{}$$

$$\sigma_{ult,c}/\sigma_{yw} = 1.0$$

$$= (0.7/\lambda)^{0.86}$$

$$0.7 < \lambda$$

$$(西村式)$$

ここに,

gcr e : ウェブの座屈応力度 k1 : ウェブの座屈係数 (ψ=1)

E :鋼のヤング係数 ν :鋼のポアソン比 tw :ウェブの板厚 hw:ウェブの高さ

λ:ウェブの幅厚比パラメータ σvw :ウェブの降伏応力度

d)-1≦ψ<1 (曲げ、圧縮) のとき

$$\sigma ult = \frac{1}{\frac{1+\psi}{2\sigma ult,c} + \frac{1-\psi}{2\sigma ult,b}}$$

ここに,

ψ : 応力勾配

: iii) により算出されるウェブの終局応力度 : i) により算出されるウェブの終局応力度 σult,b

5. Qultの算出

Baslerの式によるものとし下式により算出する.

$$\frac{Qult}{Qp} = \frac{\tau cr}{\tau y} + \frac{\sqrt{3}}{2} \cdot \frac{1 - \frac{\tau cr}{\tau y}}{\sqrt{(1+\alpha^2)}}$$

ただし,

ここに,

 Q_p : 全塑性せん断力, Q_p = $\tau_y \times b \times t_w$ τ_y : 降伏せん断力(N/mm²), $\tau_y = \sigma_y / \sqrt{3}$ τ_{cr} e: せん断弾性座屈強度(N/mm²) τ_{cr} e = $ks \frac{\pi^2 E}{12(1-\mu^2)} \left(\frac{t_w}{b}\right)^2$

また,

b : 腹板高さ, t_{w} : 腹板厚 E : ヤング係数, μ : ポアソン比

α : アスペクト比, α=a/b

ks: せん断応力度に対する座屈係数

$$k_{s} = 5.34 + 4.00 (1/\alpha)^{2}$$
 : $(\alpha \ge 1)$
 $k_{s} = 4.00 + 5.34 (1/\alpha)^{2}$: $(\alpha \le 1)$

3.2.3.3 完成時の照査

1. 照查式

完成時においては以下の式を満足することを確認する。

・使用限界状態 $M_D + M_L < M_y / 1.15$

ここに,

 \mathbf{M}_{D} : 死荷重による曲げモーメント \mathbf{M}_{L} : 活荷重による曲げモーメント

 M_y : 正曲げの場合 合成断面の降伏曲げモーメント 負曲げの場合 鋼桁+鉄筋断面の降伏曲げモーメント

•終局限界状態

$$\left(\frac{1.7M}{Mult}\right)^4 + \left(\frac{1.7Q}{Qult}\right)^4 < 1.0$$

ここに,

M:完成時における曲げモーメント

Q:完成時におけるせん断力

Mult : 正曲げの場合 2.により算出される合成断面の終局曲げモーメント

負曲げの場合 3.2.3.22.により算出される鋼桁+鉄筋断面の終局曲げモーメント

Oult: 3.2.3.2 5. により算出される終局せん断力

2. Multの算出

AASHTOの終局曲げモーメント算出式に従う.

3.4 断面計算結果

各設計法での断面計算結果を次頁以降に示す.

3.4.1 JH少補剛薄板設計での断面計算結果

								第1径間		第2径間
							断面1	断面 2	断面3	断面7
							1-R	2-M	3-L	7-R
			材質				SM400	SM490Y	SM490Y	SM490Y
		U.Flg	幅		bu	mm	750	750	750	750
			厚 材質		tu	mm	24 SM490Y	26 SM490Y	25 SM490Y	23 SM490Y
	断面構成	Web	幅		hw	mm	2926	2924	2925	292
	EVI III. HEFFIX	Web	厚		tw	mm	21	21	21	2)2
			材質				SM400	SM490Y	SM490Y	SM490Y
		L.Flg	幅		bl	mm	750	750	750	750
			厚		tl	mm	24	38	35	23
		合成前死		1	Ss	KN	490.5	-97.2	-151.3	45.3
4	設計断面力	合成後死		2	Svd	KN				
応力	(せん断力)	活荷重		3	Svl	KN	1225.2	500.5	674.0	565
勾		合計	\ \+≥÷	1)+2+3	S	KN 2	1235.2	-590.7	-674.8	565.9
配		U.FLG	合成前		σus	N/mm ²	-118.3	-128.7	-131.5	-48.5
0			前+後+活		σu	N/mm ²	-127.1	-140.3	-143.0	-57.1
判			前死	1	σls	N/mm ²	116.6	111.0	115.0	48.5
定			後死	2	σlvd	N/mm ²	77.9	79.6	83.1	76.7
			活荷重	3	σlvi	N/mm ²	11.9	79.0	03.1	70.7
	応力度	L.Flg コロシ 並	クリープ	4	σlcp	N/mm ²	1.0	0.9	0.9	0.4
		孔引き前	乾燥収縮	5	σlsh	N/mm ²	8.7	7.0	7.4	8.9
			温度差	6	σlt	N/mm ²	6.3	5.2	5.4	6.5
			前+後+活	1)+2+3	σl	N/mm ²	194.5	190.6	198.1	125.2
		Web	架設時	τ·Ss/S	τs	N/mm ²	11.2	1.8	3.0	0.8
	the L. C. The		最大値		τmax	N/mm ²	28.1	11.2	13.4	10.0
	応力勾配	\		σl/σu	φ		-1.53	-1.36	-1.39	-2.19
	適用判定(ψ≦-1.2)	補剛材間隔				0	0	0 (250	0
			板幅		a b	mm mm	6250 364.5	6250 364.5	6250 364.5	6250 364.5
	座屈係数	U.Flg	アスへ。か比(a	/h)	α	111111	17.147	17.147	17.147	17.147
	土畑が鉄		座屈係数	, 6)	kf		2.31	2.31	2.31	2.31
		Web	座屈係数		kw		23.9	23.9	23.9	23.9
		U.Flg			σyf	N/mm ²	355	355	355	355
	公称降伏点	Web			σyw	N/mm²	355	355	355	355
		U.Flg			Rf	10/11111	0.44	0.41	0.43	0.46
	幅厚比パラメータ	Web			Rw		1.23	1.27	1.22	1.21
	少補剛薄板化した	腹板の幅厚比			h/tw		164	142	164	164
	h/twから算出した最	- 表小腹板厚			tw0	mm	18	21	18	18
安	組合せ最大応力度				σl max	N/mm ²	204.2	197.5	206.4	134.9
定性	設計モルトと終局状	態との比(σ	l·max/σyw)		M/My		0.575	0.556	0.581	0.380
の	最大せん断応力度				τmax	N/mm ²	28.1	11.2	13.4	10.0
照	降伏せん断応力度				τу	N/mm ²	205	205	205	205
查	腹板高				hw	mm	2926	2924	2925	2927
	腹板厚				tw	mm	21	21	21	21
	全塑性せん断力(1	y · hw · tw)			Qp	KN	12596	12588	12592	12601
	補剛材間隔				a	mm	6250	6250	6250	6250
	アスヘ°クト比 (a/h)				Ια					
		か見ば坐					2.136	2.137	2.137	
	せん断力に対する」				Ks	27/ 2	6.217	6.216	6.216	6.218
	せん断弾性座屈係	数			Ks τcre	N/mm ²	6.217 57.89	6.216 57.96	6.216 57.92	6.218 57.86
	せん断弾性座屈係 Baslerのせん断強	数 度	. (11)		Ks τcre Qu	KN	6.217 57.89 6876	6.216 57.96 6873	6.216 57.92 6874	6.218 57.86 6879
	せん断弾性座屈係 Baslerのせん断強 腹板の設計せん断	数 度	·tw)		Ks τcre Qu Q		6.217 57.89 6876 1727	6.216 57.96 6873 688	6.216 57.92 6874 823	2.135 6.218 57.86 6879 615
	せん断弾性座屈係 Baslerのせん断強 腹板の設計せん断 せん断力比	数 度 力(τmax·hw·			Ks τcre Qu	KN	6.217 57.89 6876 1727 0.251	6.216 57.96 6873 688 0.100	6.216 57.92 6874 823 0.120	6.218 57.86 6879 615 0.089
	せん断弾性座屈係 Baslerのせん断強 腹板の設計せん断 せん断力比 照査式 : (1.7M/N	数 度 力(τmax·hw·	Q/Qu) ^4		Ks τcre Qu Q	KN	6.217 57.89 6876 1727 0.251 0.946	6.216 57.96 6873 688 0.100 0.799	6.216 57.92 6874 823 0.120 0.953	6.218 57.86 6879 615 0.089
	せん断弾性座屈係 Baslerのせん断強 腹板の設計せん断 せん断力比 照査式 : (1.7M/M 判定 (1.7M/My)	数 度 力(τmax·hw· fy)^4+(1.70	Q/Qu) ^4		Ks τcre Qu Q	KN KN	6.217 57.89 6876 1727 0.251	6.216 57.96 6873 688 0.100	6.216 57.92 6874 823 0.120	6.218 57.86 6879 615 0.089 0.175
	せん断弾性座屈係 Baslerのせん断強 腹板の設計せん断 せん断力比 照査式 : (1.7M/N	数 度 力(τmax·hw· fy)^4+(1.70	Q/Qu) ^4		Ks tere Qu Q Q/Qu	KN	6.217 57.89 6876 1727 0.251 0.946	6.216 57.96 6873 688 0.100 0.799	6.216 57.92 6874 823 0.120 0.953	6.218 57.86 6879 615 0.089 0.175
	せん断弾性座屈係 Baslerのせん断強 腹板の設計せん断 せん断力比 照査式 : (1.7M/M 判定 (1.7M/My) 腹板高	数 度 力(τmax·hw· fy)^4+(1.70	Q/Qu) ^4		Ks tcre Qu Q Q/Qu b	KN KN	6.217 57.89 6876 1727 0.251 0.946	6.216 57.96 6873 688 0.100 0.799	6.216 57.92 6874 823 0.120 0.953 0	6.218 57.86 6879 615 0.089 0.175 0 2927 21
	せん断弾性座屈係 Baslerのせん断強 腹板の設計せん断 せん断力比 照査式 : (1.7M/M 判定 (1.7M/My) 腹板高 腹板厚 U.Flg応力度 L.Flg応力度	数 度 力(τmax·hw· fy)^4+(1.70	Q/Qu) ^4		Ks tcre Qu Q Q/Qu b t	mm mm N/mm2 N/mm2	6.217 57.89 6876 1727 0.251 0.946 0 2926 21 118.3 -116.6	6.216 57.96 6873 688 0.100 0.799 2924 21 128.7 -111.0	6.216 57.92 6874 823 0.120 0.953 0 2925 21 131.5 -115.0	6.218 57.86 6879 615 0.089 0.175 0 2927 21 48.5
加	せん断弾性座屈係 Baslerのせん断強 腹板の設計せん断 せん断力比 照査式: (1.7M/My) 腹板高 腹板厚 U.Flg応力度 L.Flg応力度 腹板縁圧縮応力度	数 <u>度</u> 力(tmax·hw· 1y)^4+(1.7· ^4+(1.7Q/Q	Q/Qu) ^4 u) ^4≦1.0		Ks tore Qu Q Q/Qu b t ous ols oc	MM KN KN mm mm N/mm2	6.217 57.89 6876 1727 0.251 0.946 0 2926 21 118.3 -116.6 118.3	6,216 57,96 6873 688 0,100 0,799 0 2924 21 128.7 -111.0 128.7	6.216 57.92 6874 823 0.120 0.953 0 2925 21 131.5 -115.0 131.5	6.218 57.86 6879 615 0.089 0.175 0 2927 21 48.5 -48.5
架設	せん断弾性座屈係: Baslerのせん断強, 腹板の設計せん断, せん断力比 刑定 (1.7M/My) 腹板高 腹板厚 U.Flg応力度 腹板縁圧縮応力度 腹板縁圧縮応力度 腹板の設計せん断,	数 変 力 (tmax・hw・ fy) ^4+ (1.7Q/Q・ 小4+ (1.7Q/Q・ 力上下縁の応	Q/Qu) ^4 u) ^4≦1.0		Ks tore Qu Q Q/Qu b t σus σls σc	mm mm N/mm2 N/mm2 N/mm2	6.217 57.89 6876 1727 0.251 0.946 0 2926 21 118.3 -116.6 118.3	6.216 57.96 6873 688 0.100 0.799 0 2924 21 128.7 -111.0 128.7 -0.862	6.216 57.92 6874 823 0.120 0.953 0 2925 21 131.5 -115.0 131.5 -0.875	6.218 57.86 6879 615 0.089 0.175 0 2927 21 48.5 48.5 -1.000
架設時	せん断弾性座屈係 Baslerのせん断強 腹板の設計せん断 せん断力比 照査式:(1.7M/My) 腹板高 腹板厚 U.Flg応力度 腹板塚医衛 したFlg応力度 腹板線圧縮応力度 腹板の設計せん断。 架設時のせん断応	数 変 力 (tmax・hw・ fy) ^4+ (1.7) ^4+ (1.7) ク 力上下縁の応 力度	Q/Qu)^4 u)^4≦1.0 力比		Ks tore Qu Q Q/Qu b t σus σls σc ψ τs	mm mm N/mm2 N/mm2	6.217 57.89 6876 1727 0.251 0.946 0 2926 21 118.3 -116.6 118.3 -0.986 11.2	6.216 57.96 6873 688 0.100 0.799 0 2924 21 128.7 -111.0 128.7 -0.862 1.8	6.216 57.92 6874 823 0.120 0.953 0 2925 21 131.5 -115.0 131.5 -0.875 3.0	6.218 57.86 6879 612 0.089 0.172 2 21 48.5 48.5 48.5 -1.000
設時の	せん断弾性座屈係 Baslerのせん断強 腹板の設計せん断、 せん断力比 照査式: (1.7M/My) 腹板高 腹板厚に力度 L.Flg応力度 腹板縁圧縮応力度 腹板の設計せん断応 決設時の也た断応 せん断応力度と縁	数 変 力 (tmax・hw・ fy) ^4+ (1.7) ^4+ (1.7) ク 力上下縁の応 力度	Q/Qu)^4 u)^4≦1.0 力比		Ks tore Qu Q Q/Qu b t σus σls σc Ψ τs	mm mm N/mm2 N/mm2 N/mm2	6.217 57.89 6876 1727 0.251 0.946 0 2926 21 118.3 -116.6 118.3 -0.986 11.2 0.095	6.216 57.96 6873 688 0.100 0.799 2924 21 128.7 -111.0 128.7 -0.862 1.8 0.014	6.216 57.92 6874 823 0.120 0.953 0 2925 21 131.5 -115.0 131.5 -0.875 3.0 0.023	6.218 57.86 6879 615 0.086 0.175 2927 21 48.5 -48.6 -1.000 0.8
設時の照	せん断弾性座屈係 Baslerのせん断強 腹板の設計せん断 せん断力比 照査式: (1.7M/My) 腹板高 腹板厚 U.F1g応力度 L.F1g応力度 腹板縁圧縮応力度 腹板の設計せん断 架設時のせん断応 生ん断応力度と縁 座屈パラナータ	数 変 力 (tmax・hw・ fy) ^4+ (1.7) ^4+ (1.7) ^4+ (1.7) 力上下縁の応 力度 王縮応力度と	Q/Qu)^4 u)^4≦1.0 力比		Ks Tore Qu Q Q/Qu b t Gus Gls Gc Y TS η Rb	mm mm N/mm2 N/mm2 N/mm2	6.217 57.89 6876 1727 0.251 0.946 0 2926 21 118.3 -116.6 118.3 -0.986 11.2 0.095 0.999	6,216 57,96 6873 688 0,100 0,799 0 2924 21 128,7 -111.0 128,7 -0,862 1,8 0,014 0,986	6.216 57.92 6874 823 0.120 0.953 0 2925 21 131.5 -115.0 131.5 -0.875 3.0 0.023 0.987	6.218 57.86 6879 615 0.089 0.175 2927 21 48.5 -48.5 -1.000 0.8 0.016
設時の	せん断弾性座屈係 Baslerのせん断強 腹板の設計せん断 せん断力比 剛定(1.7M/My) 腹板高 腹板厚 U.Flg応力度 L.Flg応力度 腹板縁圧縮応力度 腹板縁圧縮応力度 機板の設計せん断応 架設時のせん断応 せん断応力度 座屈パラーク 垂直応力度に対す	数 変 力 (tmax・hw・ fy) ^4+ (1.7) / (1.70) / (1	Q/Qu)^4 u)^4≦1.0 力比 の比		Ks Tore Qu Q Q/Qu b t Gus Gls GC Ψ TS Rb kG	mm mm N/mm2 N/mm2 N/mm2	6.217 57.89 6876 1727 0.251 0.946 0 2926 21 118.3 -116.6 118.3 -0.986 11.2 0.095 0.999	6.216 57.96 6873 688 0.100 0.799 ———————————————————————————————————	6.216 57.92 6874 823 0.120 0.953 0 2925 21 131.5 -115.0 131.5 -0.875 3.0 0.023 0.987 20.762	6.218 57.86 6879 615 0.089 0.175 0 2927 21 48.5 -48.5 -1.000 0.8 0.016 1.000 23.900
設時の照	せん断弾性座屈係 Baslerのせん断強 腹板の設計せん断、 せん断力比 照査式: (1.7M/My) 腹板高 腹板の高計位 腹板厚 U.Flg応力度 L.Flg応力度 L.Flg応力度 といるの設計せん断、 架設時のせん断応、 せん断応力度と縁り 座風パラムラ せん断応力度に対す せん断応力度に対す せん断応力度に対す	数 変 力 (tmax・hw・ fy) ^4+ (1.7) / (1.70) / (1	Q/Qu)^4 u)^4≦1.0 力比 の比		Ks tore Qu Q Q/Qu b t ous ols osc y ts η R b kσ	mm mm N/mm2 N/mm2 N/mm2	6.217 57.89 6876 1727 0.251 0.946 0 2926 21 118.3 -116.6 118.3 -0.986 11.2 0.095 0.999 23.525 6.217	6.216 57.96 6873 688 0.100 0.799 0 2924 21 128.7 -111.0 128.7 -0.862 1.8 0.014 0.986 20.477 6.216	6.216 57.92 6874 823 0.120 0.953 0 2925 21 131.5 -115.0 131.5 -0.875 3.0 0.023 0.987 20.762 6.216	6.218 57.86 6879 615 0.089 0.175 0 2927 21 48.5 -48.5 -1.000 0.8 0.016 1.0000 23.900 6.218
設時の照	せん断弾性座屈係 Baslerのせん断強 腹板の設計せん断、 せん断力比 照査式: (1.7M/My) 腹板高 腹板厚 U.Flg応力度 腹板線圧縮応力度 腹板の設計せん断。 全級の設計せん断応 で記が成る を記がした。 を記述した を記述し を記述し を記述し を記述し を記述し を記述し を記述し を記述し	数 変 力 (tmax・hw・ fy) ^4+ (1.7) / (1.70) / (1	Q/Qu)^4 u)^4≦1.0 力比 の比		Ks τcre Qu Q Q/Qu b t σus σls σc Ψ τs η Rb kσ kτ νB	mm mm N/mm2 N/mm2 N/mm2	6.217 57.89 6876 1727 0.251 0.946 0 2926 21 118.3 -116.6 118.3 -0.986 11.2 0.095 0.999 23.525 6.217 1.351	6.216 57.96 6873 688 0.100 0.799 0 2924 21 128.7 -111.0 128.7 -0.862 1.8 0.014 0.986 20.477 6.216 1.411	6.216 57.92 6874 823 0.120 0.953 0 2925 21 131.5 -115.0 131.5 -0.875 3.0 0.023 0.987 20.762 6.216 1.403	6.218 57.86 6879 615 0.089 0.175
設時の照	せん断弾性座屈係 Baslerのせん断強 腹板の設計せん断、 せん断力比 照査式: (1.7M/My) 腹板高 腹板の高計位 腹板厚 U.Flg応力度 L.Flg応力度 L.Flg応力度 といるの設計せん断、 架設時のせん断応、 せん断応力度と縁り 座風パラムラ せん断応力度に対す せん断応力度に対す せん断応力度に対す	数 変 力 (tmax・hw・ fy) ^4+ (1.7) / (1.70) / (1	Q/Qu)^4 u)^4≦1.0 力比 の比		Ks tore Qu Q Q/Qu b t ous ols osc y ts η R b k σ k τ	mm mm N/mm2 N/mm2 N/mm2	6.217 57.89 6876 1727 0.251 0.946 0 2926 21 118.3 -116.6 118.3 -0.986 11.2 0.095 0.999 23.525 6.217	6.216 57.96 6873 688 0.100 0.799 0 2924 21 128.7 -111.0 128.7 -0.862 1.8 0.014 0.986 20.477 6.216	6.216 57.92 6874 823 0.120 0.953 0 2925 21 131.5 -115.0 131.5 -0.875 3.0 0.023 0.987 20.762 6.216	6.218 57.86 6879 615 0.089 0.175 0 2927 21 48.5 -48.5 -1.000 0.8 0.016 1.0000 23.900 6.218

<従来設計>

上フランジ材質	SM49	90Y	SM490Y	SM490Y	SM490Y	SM49	10Y	SM490Y	SM490Y
上フランジ断面	750x	x25 _	750x26	750x26	750x23	750x	29	750x23	750x23
	117	19	10937	10938	10937	1093	38	9375	9375
						<u> </u> 			
L						i A			
<u>下フランジ材質</u>	SM49	90Y _	SM490Y	SM490Y	SM490Y	SM49	10Y	SM490Y	SM490Y
下フランジ断面	750	×28	750x38	750x38	750x32	800x	50	750x36	750x23
ウェブ材質			SM4	90Y		SM49	10Y	(SM490Y
ウェブ断面			1.	5		20		_	15
対傾構間隔	6250	6250	6250 625	6250	250 6250	6250	6250	6250	6250 6250
支間長	*			50000				500	000

<JH少補剛設計>

上フランジ材質	SM490Y	SM490Y	SM490Y	SM490Y	SM490Y	SM490Y	SM490Y
上フランジ断面	750x24	750x26	750x25	750x23	750x29	750x23	750x23
	11719	10937	10938	10937	10938	9375	9375
<u>下フランジ材質</u>	SM490Y	SM490Y	SM490Y	SM490Y	SM490Y	SM490Y	SM490Y
下フランジ断面	750x24	750x38	750x35	750x32	800×50	750x36	750x23
ウェブ材質	•	SM490Y		SM490Y	SM490Y	SM490Y	SM490Y
ウェブ断面	<	21		15	20	15	21
対傾構間隔	6250 6250	6250 625	0 6250	6250 6250	6250 625	6250	6250 6250
支間長	<		50000		•	5000	00

3.4.2 波形ウェブを使用した場合の断面計算結果

	<u> </u>	C 1/11 C	10//	н и	· · · · · · ·							
						RIGHT)		M MAX) 松計版高		(LEFT) 絵計版語		(LEFT) 絵計版語
		++66			設計例	検討断面	設計例	検討断面	設計例	検討断面	設計例	検討断面
		材質	口业		SM490Y	SM490Y	SM490Y	SM490Y	SM490Y	SM490Y	SM490Y	SM490Y
	上フランシ゛		員数 おぼ		750	750	1	1 750	1	1	750	1
	上////		板幅 板厚		750 25	750	750 26	750 30	750 26	750 30	750 23	750
断面			板序 員数		1	28	26	30	26	1	1	25
諸	腹板		高さ		2925	2922	2924	2920	2924	2920	2927	2925
元	nx ux		板厚		15	9	15	2920	15	2920	15	10
			員数		13	1	13	1	13	1	13	10
	下フランシ゛		板幅		750	750	750	750	750	750	750	750
			板厚		28	40	38	50	38	50	32	35
波形鋼	板ウェブの有効高		W/T	mm	2925	2922	2924	2920	2924	2920	2927	2925
	縮縁が部材となす角度			度	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
パが幅				mm	340	340	340	340	340	340	340	340
波高				mm	220	220	220	220	220	220	220	220
	 ヤング係数			N/mm ²	200000	200000	200000	200000	200000	200000	200000	200000
ま。 アソント				_	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
	重作用時の検討											
	ル 断力		S	kN	1235	1235	-586	-586	-672	-672	-1703	-1703
	スの鉛直成分		Sp	kN	0		0	0	0	0		0
	板ウェブに作用する設計せん	 ん断力	Sw	kN	1235	1235	-586	-586	-672	-672	-1703	-1703
	板ウェブの断面積		Aw	mm ²	43875	26298	43860	26280	43860	26280	43905	29250
	板ウェブに作用する平均せノ	ん断応力度	τws	N/mm ²	28.2	47.0	-13.4	-22.3	-15.3	-25.6	-38.8	-58.2
許容値					120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0
判定					OK	OK	OK	OK	OK	OK	OK	OK
終局荷	重作用時の検討											
終局荷	重時断面力											
荷重に	よる終局荷重時曲げモーメント	`	M	kN·m	32910.6	32910.6	40549.1	40549.1	40319.2	40319.2	25928.7	25928.7
荷重に	よる終局荷重時せん断力		Su	kN	2100.2	2100.2	-996.9	-996.9	-1142.1	-1142.1	-2895.4	-2895.4
有効高			d	m	2.925	2.922	2.924	2.920	2.924	2.920	2.927	2.925
部材圧	縮縁が部材となす角度		β	度	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
部材の	有効高の変化の影響を考慮	蔵したせん断力	Sh	kN	2100.2	2100.2	-996.9	-996.9	-1142.1	-1142.1	-2895.4	-2895.4
プレストレ	スの鉛直分力		Sp	kN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
波形鋼	板ウェブに作用する設計せん	心断力	Sw	kN	2100.2	2100.2	-996.9	-996.9	-1142.1	-1142.1	-2895.4	-2895.4
波形鋼	板ウェブの断面積		Aw	mm ²	43875	26298	43860	26280	43860	26280	43905	29250
波形鋼	板ウェブに作用する平均せノ	ん断応力度	τws	N/mm ²	47.9	79.9	22.7	37.9	26.0	43.5	65.9	99.0
許容値	:				205.0	205.0	205.0	205.0	205.0	205.0	205.0	205.0
判定					OK	OK	OK	OK	OK	OK	OK	OK
座屈に	対する検討											
1. 局	部座屈強度				_			-				_
鋼板高	*		h	mm	2925	2922	2924	2920	2924	2920	2927	2925
鋼板厚	<i>.</i>		t	mm	15	9	15	9	15	9	15	10
幅厚比			γ	_	0.00513	0.00308	0.00513	0.00308	0.00513	0.00308	0.00512	0.00342
縦横比			α	_	0.116	0.116	0.116	0.116	0.116	0.116	0.116	0.116
パが幅			a	mm	340		340	340	340	340		340
座屈係			k		399.2	398.4	398.9	397.9	398.9	397.9	399.8	399.2
座屈強			τ ^e cr,L	N/mm ²	1897.8	683.2	1897.8	683.2	1897.8	683.2	1897.8	843.5
	降伏応力度		τy	N/mm ²	205.0	205.0	205.0	205.0	205.0	205.0	205.0	205.0
	座屈パラメーター		λs	≦0.6	0.33	0.55	0.33	0.55	0.33	0.55	0.33	0.49
座屈強			τcr,L	N/mm ²	205.0	205.0	205.0	205.0	205.0	205.0	205.0	205.0
	体座屈強度											
鋼板高			h	m	2925	2922	2924	2920	2924	2920	2927	2925
鋼板厚		er, and	t	mm 4	15	9	15	9	15	9	15	10
	板ウェブ橋軸方向の断面2次	イベギーフ	Ix	mm ⁴	133585	79914	133585	79914	133585	79914	133585	88828
波高	EU.		d	mm	220	220	220	220	220	220	220	220
波高板			δ	_	14.67	24.44	14.67	24.44	14.67	24.44	14.67	22.00
長さ減		· 1	η		0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
	板ウェブ高さ方向の断面2次	、こつメント	Iy	mm ⁴	309	67	309	67	309	67	309	92
	固定度を示す係数		β C	N7/ 2	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
座屈強			τ ^e cr,G	N/mm ²	1644	1273	1645	1275	1645	1275	1641	1339
せん断			τy	N/mm²	205.0	205.0	205.0	205.0	205.0	205.0	205.0	205.0
	座屈パラメーター		λs	≦0.6	0.35	0.40	0.35	0.40	0.35	0.40	0.35	0.39
座屈強			τcr,G	N/mm ²	205.0	205.0	205.0	205.0	205.0	205.0	205.0	205.0
	成座屈に対する照査 L.[1/(1 + (rest 1/rest C) ⁴)] ^{1/}	1		NI/ 2	170 :	170	170 1	170	170	170	170	100
	L·[1/{1+(τcr,L/τcr,G) ⁴ }] ^{1/4}			N/mm ²	172.4	172.4	172.4	172.4	172.4	172.4	172.4	172.4
	重時のせん断応力度		τws	N/mm ²	47.9	79.9	22.7	37.9	26.0	43.5	65.9	99.0
判定					OK	OK	OK	OK	OK	OK	OK	OK

					SECT-4(RIGHT)	SECT-5	(M SUP)	SECT-6	(LEFT)	SECT-6	(RIGHT)
L					設計例	検討断面	設計例	検討断面	設計例	検討断面	設計例	検討断面
		材質			SM490Y	SM490Y	SM490Y	SM490Y	SM490Y	SM490Y	SM490Y	SM490Y
			員数		1	1	1	1	1	1	1	1
	上フランシ゛		板幅		750	750	750	750	750	750	750	750
断			板厚		23	25	29	41	23	23	23	23
面			員数		1	1	1	1	1	1	1	1
諸元	腹板		高さ		2927	2925	2921	2909	2927	2927	2927	2927
,,,			板厚		15	10	20	12	15	9	15	9
			員数		1	1	1	1	1	1	1	1
	下フランシ゛		板幅		750	750	800	800	750	750	750	750
			板厚		32	35	50	59	36	42	36	42
波形鋼	板ウェブの有効高			mm	2927	2925	2921	2909	2927	2927	2927	2927
部材圧	縮縁が部材となす角度			度	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
小。小幅				mm	340	340	340	340	340	340	340	340
波高				mm	220	220	220	220	220	220	220	220
	ヤング・係数			N/mm ²	200000	200000	200000	200000	200000	200000	200000	200000
ま。アソント					0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
	重作用時の検討			I	1			1				
	ん断力		S	kN	-2752	-2752	-3275	-3275	2367	2367	1452	1452
	スの鉛直成分	v ster t	Sp	kN	0	0	0	0	0	0	0	0
	板ウュブに作用する設計せノ	ん断力	Sw	kN	-2752	-2752	-3275	-3275	2367	2367	1452	1452
	板ウュブの断面積	ملت الملتي جوال	Aw	mm ²	43905	29250	58420	34908	43905	26343	43905	26343
	板ウュブに作用する平均せノ	ん断応力度	τws	N/mm ²	-62.7	-94.1	-56.1	-93.8	53.9	89.9	33.1	55.1
許容値					120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0
判定					OK	OK	OK	OK	OK	OK	OK	OK
	重作用時の検討											
	重時断面力			137	10040.2	10040.2	20204.6	20204.6	24140.5	24140.5	12725 4	12725.4
	よる終局荷重時曲げモーメント	<u> </u>	M	kN·m	-19848.2	-19848.2	-39384.6	-39384.6	-24148.5	-24148.5	12725.4	12725.4
	よる終局荷重時せん断力		Su	kN	-4678.2	-4678.2 2.925	-5567.5 2.921	-5567.5 2.909	4024.4 2.927	4024.4 2.927	2468.1 2.927	2468.1 2.927
有効高	縮縁が部材となす角度		β	m 度	2.927 0.0	0.0	0.0	2.909	0.0	0.0	0.0	0.0
	有効高の変化の影響を考	着したせん断力	Sh	ළ kN	-4678.2	-4678.2	-5567.5	-5567.5	4024.4	4024.4	2468.1	2468.1
	スの鉛直分力	E 0/2 E/06/77	Sp	kN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	板ウュブに作用する設計せ/	人)新力	Sw	kN	-4678.2	-4678.2	-5567.5	-5567.5	4024.4	4024.4	2468.1	2468.1
	板ウュブの断面積	019173	Aw	mm ²	43905	29250	58420	34908	43905	26343	43905	26343
	板ウュブに作用する平均せノ		τws	N/mm ²	106.6	159.9	95.3	159.5	91.7	152.8	56.2	93.7
許容値		-1,110,770,00	****	1 1/11111	205.0	205.0	205.0	205.0	205.0	205.0	205.0	205.0
判定	•				OK	OK	OK	OK	OK	OK	OK	OK
	対する検討											
	·部座屈強度											
鋼板高	iż		h	mm	2927	2925	2921	2909	2927	2927	2927	2927
鋼板厚			t	mm	15	10	20	12	15	9	15	9
幅厚比			γ	_	0.00512	0.00342	0.00685	0.00413	0.00512	0.00307	0.00512	0.00307
縦横比			α	_	0.116	0.116	0.116	0.117	0.116	0.116	0.116	0.116
パネル幅			a	mm	340	340	340	340	340	340	340	340
座屈係			k		399.8	399.2	398.1	394.9	399.8	399.8	399.8	399.8
座屈強	度		τ ^e cr,L	N/mm ²	1897.8	843.5	3373.9	1214.7	1897.8	683.2	1897.8	683.2
せん断	降伏応力度		τу	N/mm ²	205.0	205.0	205.0	205.0	205.0	205.0	205.0	205.0
せん断	座屈パラメーター		λs	≦0.6	0.33	0.49	0.25	0.41	0.33	0.55	0.33	0.55
座屈強	度		τcr,L	N/mm ²	205.0	205.0	205.0	205.0	205.0	205.0	205.0	205.0
2. 全	:体座屈強度											
鋼板高			h	m	2927	2925	2921	2909	2927	2927	2927	2927
鋼板厚			t	mm	15	10	20	12	15	9	15	9
波形鋼	板ウェブ橋軸方向の断面2次	モーメント	Ix	mm ⁴	133585	88828	178755	106690	133585	79914	133585	79914
波高			d	mm	220	220	220	220	220	220	220	220
波高板			δ		14.67	22.00	11.00	18.33	14.67	24.44	14.67	24.44
長さ減			η	-	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
	板ウェブ高さ方向の断面2次	モーメント	Iy	mm ⁴	309	92	733	158	309	67	309	67
	固定度を示す係数		β		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
座屈強			τ ^e cr,G	N/mm ²	1641	1339	1908	1485	1641	1269	1641	1269
せん断			τу	N/mm ²	205.0	205.0	205.0	205.0	205.0	205.0	205.0	205.0
	座屈パラメーター		λs	≦0.6	0.35	0.39	0.33	0.37	0.35	0.40	0.35	0.40
座屈強			τcr,G	N/mm ²	205.0	205.0	205.0	205.0	205.0	205.0	205.0	205.0
	成座屈に対する照査	1										
	$(L \cdot [1/\{1 + (\tau cr, L/\tau cr, G)^4\}]^{1/4})$	-		N/mm ²	172.4	172.4	172.4	172.4	172.4	172.4	172.4	172.4
	重時のせん断応力度		τws	N/mm ²	106.6	159.9	95.3	159.5	91.7	152.8	56.2	93.7
判定					OK	OK	OK	OK	OK	OK	OK	OK

					SECT-7(RIGHT)	SECT-8(1	M MAX)	備考
			_		設計例	検討断面	設計例	検討断面	
		材質			SM490Y	SM490Y	SM490Y	SM490Y	
			員数		1	1	1	1	SECT-1の検討結果
	上フランジ		板幅		750	750	750		上フランシ'の板厚:25mm ⇒ 28mm(板厚3mm UP)
断			板厚		23	23	23		腹 板の板厚:15mm ⇒ 9mm(板厚6mm DOWN)
面諸	腹板		員数		1 2027	2027	2027		下フランシ'の板厚:28mm → 40mm(板厚12mm UP)
元	版似		高さ 板厚		2927 15	2927 9	2927 15	2927	
					15	1	15		SECT-2の検討結果 上フランシ'の板厚:26mm ⇒ 30mm(板厚4mm UP)
	下フランシ		板幅		750	750	750		腹 板の板厚:15mm ⇒ 9mm(板厚6mm DOWN)
			板厚		23	27	23		下フランシ の板厚:38mm ⇒ 50mm(板厚12mm UP)
波形鋼	 板ウェブの有効高			mm	2927	2927	2927	2927	
部材圧	E縮縁が部材となす角度			度	0.0	0.0	0.0	0.0	SECT-3の検討結果
パが幅	i i			mm	340	340	340	340	上フランシ'の板厚:26mm ⇒ 30mm(板厚4mm UP)
波高				mm	220	220	220	220	腹 板の板厚:15mm ⇒9mm(板厚6mm DOWN)
鋼板の)ヤング 係数			N/mm ²	200000	200000	200000	200000	下フランシ'の板厚:38mm ⇒ 50mm(板厚12mm UP)
ま [°] アソント	比			<u> </u>	0.3	0.3	0.3	0.3	
	計重作用時の検討			T					SECT-4の検討結果
	ためあり		S	kN	566	566	-493		上フランシ'の板厚:23mm ⇒ 25mm(板厚2mm UP)
	/スの鉛直成分	NC-+	Sp	kN	0	0	0		腹 板の板厚:15mm ⇒ 10mm(板厚5mm DOWN)
	板ウュブに作用する設計せん 板ウュブの断面積	MIN	Sw	kN mm²	566 43905	566 26343	-493 43905		下フランシ'の板厚:32mm ⇒ 35mm(板厚3mm UP)
	¶板ウェブの断面積 ¶板ウェブに作用する平均せん	断広力度	Aw	mm ² N/mm ²	43905 12.9	26343 21.5	43905 -11.2	26343	SECT-5の検討結果
放形鋼 許容値		PJIN/J/文	τWS	18/11111	120.0	120.0	120.0		上フランジの板厚:29mm ⇒ 41mm(板厚12mm UP)
判定	2				0K	0K	0K		腹 板の板厚:20mm ⇒ 12mm(板厚8mm DOWN)
	 重作用時の検討						Ç.K	J.A.	下フランシ の板厚:50mm ⇒ 59mm (板厚9mm UP)
	宣時断 面力								, , , , , , , , , , , , , , , , , , , ,
荷重に	よる終局荷重時曲げモーメント		M	kN∙m	21999.9	21999.9	22056.3	22056.3	SECT-6の検討結果
荷重に	よる終局荷重時せん断力		Su	kN	961.9	961.9	838.1	838.1	上フランシ'の板厚:23mm ⇒ 23mm(板厚0mm UP)
有効高	í .		d	m	2.927	2.927	2.927	2.927	腹 板の板厚:15mm ⇒9mm(板厚6mm DOWN)
	E縮縁が部材となす角度		β	度	0.0	0.0	0.0		下フランシ'の板厚:36mm ⇒ 42mm(板厚6mm UP)
)有効高の変化の影響を考慮	したせん断力	Sh	kN	961.9	961.9	838.1	838.1	
	/スの鉛直分力	ster 1	Sp	kN	0.0	0.0	0.0		SECT-7の検討結果
	板ウュブに作用する設計せん 	断力	Sw	kN 2	961.9	961.9	838.1		上フランシ の板厚:23mm ⇒ 23mm (板厚0mm UP)
	剛板ウェブの断面積 剛板ウェブに作用する平均せん	紙内力度	Aw tws	mm ² N/mm ²	43905 21.9	26343 36.5	43905 19.1		腹 板の板厚:15mm ⇒ 9mm(板厚6mm DOWN) 下プランシ・の板厚:23mm ⇒ 27mm(板厚4mm UP)
許容値		別心刀及	tws	IN/IIIIII	205.0	205.0	205.0	205.0	1
判定	1				OK	OK	OK		 SECT-8の検討結果
座屈に	 二対する検討				<u> </u>				上フランシ の板厚:23mm ⇒ 23mm(板厚0mm UP)
1. 局	計部座屈強度								腹 板の板厚:15mm ⇒9mm(板厚6mm DOWN)
				mm		2027	2927	2927	T-15 1 0 10 10 10 10 10 10 10 10 10 10 10 10
鋼板高			h		2927	2927			下フランシ の板厚:23mm ⇒ 27mm(板厚4mm UP)
	iż		h t	mm	2927 15	9	15	9	トプランシ の板厚:23mm → 2/mm(板厚4mm UP)
鋼板高	i						15 0.00512	9 0.00307	下プランシ の 板厚: 2.3mm → 2/mm (板厚4mm UP) 波形鋼板の断面
鋼板高 鋼板厚 幅厚比 縦横比	55 15		t γ α	mm 	0.00512 0.116	9 0.00307 0.116	0.00512 0.116	0.116	波形鋼板の断面
鋼板高 鋼板厚 幅厚比 縦横比 パ ネ ネ ホ 幅	5さ 1さ ご ご 1		t γ α a	mm —	0.00512 0.116 340	9 0.00307 0.116 340	0.00512 0.116 340	0.116 340	波形鋼板の断面 1200 (1波長)
鋼板高 鋼板厚 幅厚比 縦横比 パ 沙帽 座屈係	i さ ご ご i i 数		t γ α a k	mm — mm — mm —	0.00512 0.116 340 399.8	9 0.00307 0.116 340 399.8	0.00512 0.116 340 399.8	0.116 340 399.8	波形鋼板の断面 1200 (1波長) 340 260 340 260
鋼板高 鋼板厚 幅厚比 縦横比 パーが幅 座屈係	i さ ご ご I I 数 U度		t γ α a k τ ^c cr,L	mm mm N/mm²	15 0.00512 0.116 340 399.8 1897.8	9 0.00307 0.116 340 399.8 683.2	0.00512 0.116 340 399.8 1897.8	0.116 340 399.8 683.2	波形鋼板の断面 1200 (1波長) 340 260 340 260
鋼板高 鋼板厚 幅厚比 縦横比 座屈係 座屈強 せん断	i さ ご ご i i i 数 i j度 f降伏応力度		t γ α a k $\tau^c cr, L$ τy	mm mm N/mm² N/mm²	15 0.00512 0.116 340 399.8 1897.8 205.0	9 0.00307 0.116 340 399.8 683.2 205.0	0.00512 0.116 340 399.8 1897.8 205.0	0.116 340 399.8 683.2 205.0	波形鋼板の断面 1200 (1波長) 340 260 340 260
鋼板高 鋼板厚 幅厚比 機横は 座屈 座 を を を を と し と し が が を を し と し し し し し し し し し し し し し し し し	5さ ご ご 記 数 1度 F降伏応力度 F座屈バラメーケー		t γ α a k τ ecr,L τ y λs	mm — mm — N/mm² N/mm² ≤0.6	15 0.00512 0.116 340 399.8 1897.8 205.0 0.33	9 0.00307 0.116 340 399.8 683.2 205.0 0.55	0.00512 0.116 340 399.8 1897.8 205.0 0.33	0.116 340 399.8 683.2 205.0 0.55	波形鋼板の断面 1200 (1波長) 340 260 340 260
鋼板高原 幅 横 幅 標 様 が 座 屈 屋 せんん 断 座 屈 強 断 変 屈 強 断 変 屈 強 断 変 屈 強 か 断 変 屈 強 か 断 変 屈 強 か が 変 屈 強 か が か が か か か か か か か か か か か か か か か	i さ ご ご i i i i j g f f k 伏 応 力 度 f f 座 f f を 大 の ち り り り り り り り り り り り り り り り り り り		t γ α a k $\tau^c cr, L$ τy	mm mm N/mm² N/mm²	15 0.00512 0.116 340 399.8 1897.8 205.0	9 0.00307 0.116 340 399.8 683.2 205.0	0.00512 0.116 340 399.8 1897.8 205.0	0.116 340 399.8 683.2 205.0	波形鋼板の断面 1200 (1波長) 340 260 340 260
鋼板高原 幅 横 幅 標 様 が 座 屈 屋 せんん 断 座 屈 強 断 変 屈 強 断 変 屈 強 断 変 屈 強 か 断 変 屈 強 か 断 変 屈 強 か が 変 屈 強 か が か が か か か か か か か か か か か か か か か	5さ 2 3 5 5 5 5 5 6 6 7 8 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8		t γ α a k τ ecr,L τ y λs	mm — mm — N/mm² N/mm² ≤0.6	15 0.00512 0.116 340 399.8 1897.8 205.0 0.33	9 0.00307 0.116 340 399.8 683.2 205.0 0.55	0.00512 0.116 340 399.8 1897.8 205.0 0.33	0.116 340 399.8 683.2 205.0 0.55	波形鋼板の断面 1200 (1波長) 340 260 340 260
鋼板高厚 掘機 堀 瀬 堀 厚 地 堀 堀 堀 堀 堀 堀 堀 田 畑 田 田 田 田 田 田 田 田 田 田 田	5さ で で で で で で で で で で で の で の で の で の で の で の で の で の で の で の で の で の で の で の で の の の の の の の の の の の の の		t γ α a k τ ecr,L τ y λs τ cr,L	mm	15 0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0	9 0.00307 0.116 340 399.8 683.2 205.0 0.55 205.0	0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0	0.116 340 399.8 683.2 205.0 0.55 205.0	波形鋼板の断面 1200 (1波長) 340 260 340 260
鋼板原厚比比幅 座座 せせ 座座 と の の の の の の の の の の の の の の の の の	5さ で で で で で で で で で で で で で	- <i>t</i> /\	t γ α α k τ cr,L τ y λs τ cr,L	mm	15 0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0	9 0.00307 0.116 340 399.8 683.2 205.0 0.55 205.0	0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0	0.116 340 399.8 683.2 205.0 0.55 205.0	波形鋼板の断面 1200 (1波長) 340 260 340 260
鋼鋼幅縱、座座せせ座 2 鋼鋼波波區區人人區 全高厚比比幅係強衡断強全高厚鋼	5さ 1さ 15 16 18 18 18 18 18 18 18 18 18 18	− <i>X</i> V }	t γ α a k τ°cr,L τy λs τcr,L h t Ix d	mm — mm — N/mm² N/mm² ≤0.6 N/mm²	15 0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0	9 0.00307 0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220	0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15	0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220	波形鋼板の斯面 1200 (1波長) 340 260 340 260
鋼鋼幅縱、座座せせ座 2 鋼鋼波波波 被原厚比比幅係強断断強全高厚鋼	5さ 2 3 5 5 5 5 6 6 6 7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	<i>−,</i> ₽2}	$\begin{array}{c} t\\ \gamma\\ \alpha\\ a\\ k\\ \tau^c cr, L\\ ty\\ \lambda s\\ \tau cr, L\\ \end{array}$	mm — mm — N/mm² ≤0.6 N/mm² m mm mm mm mm mm	15 0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67	9 0.00307 0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44	0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67	0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44	波形鋼板の斯面 1200 (1波長) 340 260 340 260
鋼頻幅縦、座座せせ座 2 鋼鋼波波波長電車 1 を変換した 1 を変換した 1 を変換した 1 を変換した 2 を変換します。 では 2 できます。 1 を変換します。 2 を変換します。	5さ 2 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5		t γ α a k τ°cr,L τy λs τcr,L h t Ix d δ η	mm — mm — N/mm² N/mm² ≤0.6 N/mm² mm mm mm mm mm mm mm	15 0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91	9 0.00307 0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91	0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91	0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44	波形鋼板の斯面 1200 (1波長) 340 260 340 260
鋼鋼幅縦於 座座也也座 2. 鋼鋼波波波長波形面 医性比幅保強斯斯强全 全额 医形形高 高坡網	信さ ②		t γ α a k τ°cr,L τy λs τcr,L h t Ix d δ η Iy	mm — mm — N/mm² ≤0.6 N/mm² m mm mm mm mm mm	15 0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91	9 0.00307 0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91	0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91 309	0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91	波形鋼板の斯面 1200 (1波長) 340 260 340 260
鋼鋼幅縦が、座座せせ座2.鋼鋼波波波長波材端原型機が屈屈んん屈強を表している。 全面 をおります かいりょう かいりん かいりょう かいり かいりょう かいり かいりょう かいり かいりょう かいり	5さ 5 5 5 6 6 8 数 度度 「降伏応力度 「降成かった。」 「降成かった。」 「中でのでは、 「では、 、 「では、 「では、 「では、 「では、 、 「では、 「では、 、 「では、 、 「では、 、 、 では、 では、 では、 では、 では、 では、		$\begin{array}{c} t\\ \gamma\\ \alpha\\ a\\ k\\ \tau^e cr, L\\ \tau y\\ \lambda s\\ \tau cr, L\\ \end{array}$	mm — mm — N/mm² ≥0.6 N/mm² mm mm mm mm mm mm — — — — — —	15 0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91 309	9 0.00307 0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91 67	0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91 309 1.0	0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91 67	波形鋼板の斯面 1200 (1波長) 340 260 340 260
鋼鋼蝠縫、、座座也也座。 到鋼波波波長波材座 也世座 2. 鋼鋼波波波長波材座 地區區強斯斯高高技術網 強縮 網 全面 医电子 医甲二甲甲二甲甲甲二甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲甲	信さ (まさ (よ) (よ) (よ) (本) (本) (本) (本) (本) (本) (本) (本		$\begin{array}{c} t\\ \gamma\\ \alpha\\ a\\ k\\ \tau^c cr, L\\ \tau y\\ \lambda s\\ \tau cr, L\\ \end{array}$	mm — mm — N/mm² ≥0.6 N/mm² mm mm mm mm mm mm mm mm mm	15 0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91 309 1.0 1641	9 0.00307 0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91 67 1.0	0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91 309 1.0	0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91 1.0	波形鋼板の斯面 1200 (1波長) 340 260 340 260
鋼鋼幅縱、座座也也座。 到鋼波波波長波材座也也座。厚地比峭極原地的扇金。 电极波波波长波材座也是,板板形高高坡尖尖端端层的	信さ (まさ (注) (注) () () () () () () () ($\begin{array}{c} t\\ \gamma\\ \alpha\\ a\\ k\\ \tau^c cr, L\\ \tau y\\ \lambda s\\ \tau cr, L\\ \end{array}$	mm — mm — N/mm² Sl.6 N/mm² mm mm mm mm mm mm mm mm m	15 0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91 309 1.0	9 0.00307 0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91 67 1.0	0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91 309 1.0 1641 205.0	0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91 1.0 1269 205.0	波形鋼板の断面 1200 (1波長) 340 260 340 260
鋼鋼幅縦 ベ座座 せせ座 2. 個鋼波波波長波 材座せせ と 座 2. 鋼鋼波波波長波 材座せせ せ 座 2. 個鋼波波波長波 材座せせ せ 座 2. 極 原 算鋼 変 変 表 変 積 原 強 屈 魚 断 断 強 屋 の 乗 断 歯 屋 物 断 強 を か き か き か き か き か き か き か き か き か き か	信さ (本) (本) (本) (本) (本) (本) (本) (本) (本) (本)		$\begin{array}{c} t\\ \gamma\\ \alpha\\ a\\ k\\ \tau^e cr, L\\ \tau y\\ \lambda s\\ \tau cr, L\\ \end{array}$	mm — mm — N/mm² ≥0.6 N/mm² mm mm mm — N/mm²	15 0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91 309 1.0 1641 205.0 0.35	9 0.00307 0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91 67 1.0 1269 205.0 0.40	0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91 309 1.0 1641 205.0 0.35	0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91 1.0 1269 205.0 0.40	波形鋼板の断面 1200 (1波長) 340 260 340 260
鋼鋼幅縦< 《座座せせ座 2. 掘掘線 掘掘線 掘掘線 掘掘 	信さ (まさ (よ) (ま) (ま) (ま) (ま) (お) (お) (お) (お) (お) (お) (お) (お		$\begin{array}{c} t\\ \gamma\\ \alpha\\ a\\ k\\ \tau^c cr, L\\ \tau y\\ \lambda s\\ \tau cr, L\\ \end{array}$	mm — mm — N/mm² Sl.6 N/mm² mm mm mm mm mm mm mm mm m	15 0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91 309 1.0	9 0.00307 0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91 67 1.0	0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91 309 1.0 1641 205.0	0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91 1.0 1269 205.0	波形鋼板の断面 1200 (1波長) 340 260 340 260
鋼鋼幅縦、、座座也せ座 2.鋼鋼波波波長波材座也せ座 2.鋼鋼波高厚比比幅分級屈屈的加加爾金高高达影腦屈納的加爾金高原鋼 核碳鋼 的加加斯迪	活さ 記さ 記数 腹度 下降伏応力度 下座屈パラメーター 度度 全体座屈強度 活さ 退さ 関板ウェブ 橋軸方向の断面2次モ 原厚比 域少率 関板ウェブ 高さ方向の断面2次モ の関立度を示す係数 速度 下降伏 下座屈パラメーター 速度 にを にを にを にを には には には には には には には には には には		$\begin{array}{c} t\\ \gamma\\ \alpha\\ a\\ k\\ \tau^e cr, L\\ \tau y\\ \lambda s\\ \tau cr, L\\ \end{array}$	mm — mm — N/mm² ≥0.6 N/mm² mm mm mm — N/mm²	15 0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91 309 1.0 1641 205.0 0.35	9 0.00307 0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91 67 1.0 1269 205.0	0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91 309 1.0 1641 205.0 0.35	0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 22.0 24.44 0.91 67 1.0 1269 205.0 0.40 205.0	波形鋼板の断面 1200 (1波長) 340 260 340 260
鋼鋼幅縱、座座也也座 2. 極獨獨波 沒波 長波 材座 也也座 3. 電話 一位 地區 3. 电位 地區 3. 电位 型 图 3. 电位 图 3. 电极	信さ (まさ (よ) (ま) (ま) (ま) (ま) (お) (お) (お) (お) (お) (お) (お) (お		$\begin{array}{c} t\\ \gamma\\ \alpha\\ a\\ k\\ \tau^e cr, L\\ \tau y\\ \lambda s\\ \tau cr, L\\ \end{array}$	mm — mm — N/mm² ≤0.6 N/mm² mm mm mm mm mm - N/mm² ≤0.6 N/mm²	15 0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91 309 1.0 1641 205.0 0.35	9 0.00307 0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91 67 1.0 1269 205.0 0.40	0.00512 0.116 340 399.8 1897.8 205.0 0.33 205.0 2927 15 133585 220 14.67 0.91 309 1.0 1641 205.0 0.35	0.116 340 399.8 683.2 205.0 0.55 205.0 2927 9 79914 220 24.44 0.91 1.0 1269 205.0 0.40	波形鋼板の断面 1200 (1波長) 340 260 340 260

3.4.3 限界状態設計法による断面計算結果

3.4.3.1 合成前荷重時の照査

合成前断面検討 (SECT-1-L)

		加州			OK																	_	/		
		照漸片			0.02													/	/	/	/				
照牵	oult.		(KN)		16,364 4,366										/	/	/								
出	Mult,s		(kN·m)								,	/	/	/											
	?	0	m) (kN)		0.0 1,178			,	/	/	/														
	?	Σ	(kN·m)			7	<i>/</i>	_	7	5	∞	8		4	2	3	3				_				
	国定	点間距離	(mm)	ILIF	6250	I=1230188 mm2	2,366		0.387	355	328	398		0.944	355	293	293		/	/	_				
下7539	降伏応力度		(N/mm2)	aylf	355	AY^2=41146050063mm2	scrf*,1	(N/mm2)	γ	a本 σult,1 (λ<0.2)	式 oult,1 (0.2<\<\2)	serf°,2	(N/mm2)	γ	(採用値293N/mm2) 西村 oult,2 (λ<0.7)	式 oult,2 (0.7<2.)	MIN (σult,1 OR σult,2)	19,404	18,345		18,345				
۲	下75沙。厚		(mm)	tlf	27	AY=29899125mm2	横座屈			(採用值328N/mm2) 福本 eult,1 (3<0.2)	IR	ねじれ			(採用值293N/mm2)	Ĭ.	MIN (σult,1	oult,f < oult,w	oult,f>oult,w		採用値				
	下75½。幅		(mm)	BIf	750	A=20250mm2	33 oult,f	39 (N/mm2)										Mult,s	(KN·m)	資曲げの					
	降伏せん断	応力度	(N/mm2)	τy	205		33 0	39	164	39	80	39								1,539 (Yuw 1,515mm) 負曲げの	(Ylw 1,411mm) 場合採用	_	/	7	
	735. 外比			ъ	0.534		(0>1)	(a<1)		tcre<0.8ty	tcr 50.8 ty	採用値	64,584	3,349,125	52	18,790,253,270	83,307,308,063	174,635,136	101,922,926,196	1,539	1,438	23,510	868'5	4,366	
	正曲げ		負曲げ		正曲げ			N/mm2)					m2)	nm3)	(e	m4)	(mm4)	(mm4)	∑ln(mm4)	(iii	(mu	N·m)	KN)	KN)	
	成力	勿配	9	-(at/ac)	-0.931		rcr°	(採用值39N/mm2)	0.8 · ty	TCL			ZA(mm2)	ΣA·Y(mm3)	e(mm)	ZI(m	∑A·Y^2(mm4)	ΣA·e^2(mm4)	Zln(rr	Yu (Y1 (mm)	MY(KN·m)	(KN)	Qult (KN)	
hr7,	固定	点間距離	(mm)	Lw	6250		41		2.943	355	163	38		3.056	355	159	7		7.121	355	48	151		151	
	降伏応力度		(N/mm2)	αλω	355	I=18788159082mm2	acr	(N/mm2)	γ	西村 oult,b (λ<1.0)	式 oult,b (1.0<2,)	acr	(N/mm2)	γ	西村 oult. (\(\lambda < 1.0\)	式 oult. (1.0<2.)	ger	(N/mm2)	γ	西村 oult,c (λ<0.7)		oult	(N/mm2)	採用値	
	ウェブ厚		(mm)	tw	6	A=26334mm2	雑曲げ	φ=-1		(採用值163N/mm2) 西村		曲げ,引張り	-7<φ<-1		(採用値159N/mm2) 西村		純圧縮	$\phi = 1$		(柴用值48N/mm2) 西村		曲げ,圧縮	-1 <p<!< th=""><th></th><th></th></p<!<>		
	ウェブ高		(mm)	hw	2926		sult,w	(N/mm2@=-1																	
	-	点間距離	(mm)	Luf	6250	I=864000mm2	2,366 gult,w		0.387	355	328	314		1.063	355	272	272	/	_	/	/			7	
E7771/	降伏応力度		(N/mm2)	gynt	355	AY"2=3916125000mm2 T=864000mm2	gerf*,1	(N/mm2)	γ	(採用值328N/mm2) 福本 cult,1 (3<02)	式 oult,1 (0.2<2<√2)	ocrf°,2	(N/mm2)	γ	(採用值272N/mm2) 西村 oult,2 (3<0.7)	式 oult,2 (0.7<2.)	MIN (oult,1 OR oult,2)	18,013	16,364		16,364				
14	上7525。厚		(mm)	tuf	24	-AY=2655000mm2	横座屈			(採用催328N/mm2)		ねじれ	極四		(採用值272N/mm2)		MIN (oult,)	oult,f <oult,w< td=""><td>oult,f>σult,w</td><td></td><td>採用値</td><td></td><td></td><td></td><td>(a t TOTS)</td></oult,w<>	oult,f>σult,w		採用値				(a t TOTS)
	上75ンジ 幅	_	(mm)	Buf	750	A=18000mm2	gult,f	(N/mm2)		_	_	_	_		_		_	Mult,s	(KN·m)	圧曲げの					神経を指する

П		判定			¥																		_	7
					191 OK															/	/	/		
	Ħ	照衝式	(kN)		491 16,364 4,366 0.491												/	/	/					
照產	Mult,s Qult				364 4,3									/	/	/								
	Mul	_	(kN) (kN·m)		.91 16						/	/	/											
	?	_			9,778.9			/	/	/														
	?	Σ	(kN·m)			2	<u>/</u>	_	7	2	- -	00		4	2	3	33							
	国	点間距離	(mm)	ITI	6250	I=1230188mm2	2,366		0.387	355	328	398		0.944	355	293	293	/	/	/				
下7533	降伏応力度		(N/mm2)	aylf	355	AY^2=4114608063mm2	ocrf*,1	(N/mm2)	γ	富本 oult,1 (λ<0.2)	± σult,1 (0.2<λ<√2)	ocrf°,2	(N/mm2)	γ	(採用値293N/mm2) 西村 Gult,2 (λ<0.7)	式 oult,2 (0.7<2.)	MIN (sult, 1 OR sult, 2)	19,404	18,345		18,345			
۲	下疗沙草		(mm)	tlf	27	AY=29899125mm2	横座屈			(採用值328N/mm2) 福本 oult,1 (3<0.2)	IR	ねじれ	座屈		(採用值293N/mm2)	In .	MIN (σult,1	oult,f <oult,w< th=""><th>oult,f>oult,w</th><th></th><th>採用値</th><th></th><th></th><th></th></oult,w<>	oult,f>oult,w		採用値			
	下77½′幅		(mm)	BIf	750	A=20250mm2	33 oult,f	39 (N/mm2)										Mult,s	(KN·m)	負曲げの	場合採用			
	降伏せん断	応力度	(N/mm2)	τy	205		33	39	164	39	80	39								(Yuw 1,515mm)	(Ylw 1,411mm)	_	/	7
	7スペクト比			σ	0.534		(α>1)	(a<1)		tcre<0.8ty	tcr >0.8ty	採用値	64,584	3,349,125	52	18,790,253,270	83,307,308,063	174,635,136	101,922,926,196	1,539	1,438 (Ylw 1,411mm) 場合採用	23,510	2,398	4,366
	正曲げ		負曲げ		正曲げ		اد	(採用值39N/mm2)	y	1			ZA(mm2)	ZA·Y(mm3)	e(mm)	∑l(mm4)	ZA·Y^2(mm4)	ΣA·e^2(mm4)			Y1 (mm)	MY(KN·m)	Qp (KN)	Qult (KN)
	成力	勿配	9	-(at/ac)	-0.931		TCL	(採用値	$0.8 \cdot \tau_{\rm y}$	TCL			ΣA(ΣΑ·,)e)IZ(ZA·Y	ΣA·e′) H	Ϋ́	ΥI	MY(Qp	Qult
hr),	国	点間距離	(mm)	Lw	6250		41		2.943	355	163	38		3.056	355	159	7		7.121	355	48	151		151
	降伏応力度		(N/mm2)	σλw	355	I=18788159082mm2	ocre	(N/mm2)	γ	f村 oult,b (2<1.0)	式 oult,b (1.0<2.)	ocre	(N/mm2)	y	百村 oult. (λ <1.0)	式 oult. (1.0<2.)	ocre	(N/mm2)	٧	百村 σult,c (λ<0.7)	式 oult,c (0.7<2.)	oult	(N/mm2)	採用値
	ウェブ厚		(mm)	tw	6	A=26334mm2	雑曲げ	φ=-1		(採用値163N/mm2) 西村	IH	曲げ,引張り	-7<φ<-1		(採用值159N/mm2) 西村	IH	純圧縮	$\phi = 1$		(採用值48N/mm2) 西村	IH	曲げ、圧縮	-1<0<1	
	ウェブ南		(mm)	hw	2926		rult,w	(N/mm2p=-1																
	国定	点間距離	(mm)	Luf	6250	I=864000mm2	2,366 oult,w		0.387	355	328	314		1.063	355	272	272	/	_	/	/			
L7555	降伏応力度		(N/mm2)	oyuf	355	AY"2=3916125000mm2	ocrf*,1	(N/mm2)	γ	(採用值328N/mm2) 福本 oult,1 (λ<0.2)	式 oult,1 (0.2<2<√2)	ocrf°,2	(N/mm2)	γ	採用值272N/mm2) 西村 oult,2 (3<0.7)	式 oult,2 (0.7<2.)	MIN (σult,1 OR σult,2)	18,013	16,364		16,364			
႕	上77257.厚		(mm)	fuf	24	-AY=26550000mm2	横座屈			(採用值328N/mm2)		ねじれ	座屈		(採用值272N/mm2)		MIN (oult,)	oult,f <oult,w< th=""><th>oult,f>oult,w</th><th></th><th>採用値</th><th></th><th></th><th></th></oult,w<>	oult,f>oult,w		採用値			
	上75ッジ 幅		(mm)	Buf	750	A=1800mm2	oult,f	(N/mm2)										Mult,s		圧曲げの	場合採用			

合成前断面検討 (SECT-2-L)

		当所			4 OK																_	_	/						が一世	-
		照香式	2		16,736 2,443 0.454												/	/	/	/								=	照査式	4.00
照牵	Mult,s Qult		N·m) (kN)		,736 2,4								,	/	/	/											照產	Mult,s Qult		
	~ Wr	0	(kN) (kN·m)		491 16					,	/	/	_															~ Wu	0	
	~	×	(kN·m)		6,877,6		/	/	/																			2		
	固定	点間距離	(mm)	LIf	6250	I=2679688 mm2	2,366		0.387	355	328	699		0.728	355	346	328	/	/	/								固定	点間距離	
下7555	降伏応力度		(N/mm2)	aylf	355	AY^2=57536856563mm2	σcrf*,1	(N/mm2)	γ	本 σult,1 (λ<0.2)	σult,1 (0.2<λ<√2)	ocrf*,2	(N/mm2)	γ	村 oult,2 (2<0.7)	oult,2 (0.7<3.)	OR oult,2)	22,891	23,274		23,274						F7555	降伏応力度		
下7	下75%。厚		(mm)	JI)	35	AY=38863125nm2	横座屈		<u> </u>	(採用值328N/mm2) 福本 cult,1 (3<0.2)	K	ねじれ	睡		(採用值346N/mm2) 西村 oult,2 (A<0.7)	私	MIN (oult,1 OR oult,2)	oult,f <oult,w< td=""><td>oult,f>oult,w</td><td></td><td>採用値</td><td></td><td></td><td></td><td></td><td></td><td>下7</td><td>下7525"厚</td><td></td><td></td></oult,w<>	oult,f>oult,w		採用値						下7	下7525"厚		
	トフランジ 幅		(mm)	BIf	750	A=26250mm2	ılt,f	(N/mm2)										Mult,s σ		曲げの								トファッジ 幅		
	降伏せん断	応力度	(N/mm2)	τy	205		13 oult,f	11	164	13	46	13						Σ	Ŧ.	(Yuw 1,631mm) 負曲げの	(Ylw 1,295mm) 場合採用	/	/	7				降伏せん断	応力度	
	77% 外比			ъ	2.136		(i	0		tcr°<0.8ty	rcr ^c >0.8ty	値	73,510	12,313,125	168	20,879,276,001	96,698,106,563	2,074,746,240			1,330	5775	5,998	2,443				77% 小比		
	正曲げ		負曲げ		£		(a>1)	(a<1)		> rcre	Crc.	採用値				l		L	_	H		Н						正曲げ		
	応力 正舗	勾配	申	(at/ac)	-0.794 正曲け		tcre	(採用值13N/mm2)	0.8 · try	tor			ΣA(mm2)	ZA·Y(mm3)	e(mm)	M(mm4)	A·Y^2(mm	ΣA·e^2(mm4)	∑In(mm4)	Yu (mm)	Y1 (mm)	MY(KN·m)	Qp (KN)	Qult (KN)				応力 正舗	勾配	
ý±7°	固定 加	点間距離 4	(mm)	Γw	6250		90	<u>#</u>	2.665 0.	355	175	41		2.943	355	163	8	~	199'9	355	51	140		140			\$z7°	固定原	点間距離 4	
		100		W	355	I=20875732313mm2		(N/mm2)		(0.1>	.0<2.		(N/mm2)		(3<1.0)	(7)		(N/mm2)		(20.7)	(7<7)		(N/mm2)					_	_	
	降伏応力度		(N/mm2)	αλω		1=208757	σcr	N/r	~	i村 oult,b (A	式 oult,b (1.0<7.	σcr ^e	N.	γ		天 oult. (1.0<2)	σcre	Ŋ	γ,	i村 oult,c ().	式 oult,c (0.7<).	oult	(N/r	採用値				降伏応力度		
	ウェブ厚		(mm)	τw	10	A=29260mm2	24		<u> </u>	(採用值175N/mm2) 西村 oult,b (A<1.0)	TA	曲げ,引張り	7		(採用値163N/mm2) 西村 oult.	TA	180			(採用値51N/mm2) 西村 oult,c (λ<0.7)	TA	工総	_					ウェブ厚		
			(1		2926		常田子	(N/mm2@=-1		(株用		田子,	-7<0<-1		(株)		純圧縮	$\phi = 1$		(報		曲げ,圧縮	-1<0<							
	定 ウェブ南	温器	m) (mm)	ıf hw	6250 2	70mm2	2,366 gult,w	N.Y.	0.387	355	328	314		1.063	355	272	272			_	/			1			L	定 ウェブ南	羅出	
	固定	点間距離	(mm)	Luf	355	I=864(.4				(2)							33	<u>/</u>	/ _	36							固定	点間距離	
L77vv*	降伏応力度		(N/mm2)	ayuf	3	AY"2=39161250000mm2	ocrf*,1	(N/mm2)	٧	事本 oult,1 (A<0.2)	式 oult,1 (0.2<3<√2)	ocrf°,2	(N/mm2)	٧	4 σult, 2 (λ<0.7)	式 oult,2 (0.7<2).)	MIN (oult,1 OR oult,2)	18,983	16,736		16,736						L7755	降伏応力度		
T	上7525。厚		(mm)	fuf	24	-AY=2655000mm2	横座屈		<u> </u>	(採用值328N/mm2) 福本 eult,1 (3<02)	TÁ.	ねじれ	座囮		(採用値272N/mm2) 西村 oult,2 (3<0.7	Ħ	MIN (oult,1	σult,f<σult,w	oult,f>oult,w		採用値				(SFCT-2-C)	(25125)	F	上77/1/草		
	上フランジ幅		(mm)	Buf	750	A=18000mm2	oult,f	(N/mm2)										Mult,s σu		正曲げの	場合採用 探				本 報 旧 崇 温 名	THE THINK IN THE		上75% 幅		

合成前

		_				Г																		_
		地所			ÖK																/	/	/	_
		照権式			0.933													/	/	/				
極	Qult		(KN)		16,736 2,443										/	/	/	•						
照査	Mult,s		(kN·m)		16,736							/	/	/										
	?	0	(<u>K</u>		-97				,	/	/													
	?	M	(kN·m)		11,748.9		/	/	_						_									
	固定	点間距離	(mm)	LIf	6250	I=2679688 num2	2,366		0.387	355	328	699		0.728	355	346	328	/	/	/	/			
F757V"	降伏応力度		(N/mm2)	aylf	355	AY^2=57536856563mm2	ocrf*,1	(N/mm2)	γ	採用値328N/mm2) 福本 oult,1 (λ<0.2)	式 oult,1 (0.2<3<√2)	ocrf°,2	(N/mm2)	У	(採用値346N/mm2) 西村 oult,2 (2<0.7)	式 oult,2 (0.7<2,)	MIN (sult,1 OR sult,2)	22,891	23,274		23,274			
	下77%厚		(mm)	II.	35	AY=38863125nm2	横座屈			(採用值328N/mm2)		ねじれ	座屈		(採用值346N/mm2)		MIN (oult,	oult,f < oult,w	σult,f>σult,w		採用値			
	下乃沙,幅		(mm)	BIf	750	A=26250nm2	13 oult,f	(N/mm2)										Mult,s	(KN·m)	負曲げの	場合採用	/		
	降伏せん断	応力度	(N/mm2)	τy	205		13	11	164	13	46	13								,655 (Yuw 1,631mm) 負曲げの	(Ylw 1,295mm) 場合採用	/	/	/
	7スペクト比			σ	2.136		(1<∞)	(α<1)		tcr°<0.8ty	tcr ^c >0.8ty	採用値	73,510	12,313,125	168	20,879,276,001	96,698,106,563	2,074,746,240	115,502,636,323	1,655	1,330	24,775	866'5	0.440
	正曲げ		負曲げ		正曲げ		9.	(採用值13N/mm2)	Å	4			∑A(mm2)	ZA·Y(mm3)	e(mm)	∑l(mm4)	∑A·Y^2(mm4)	ΣA·e^2(mm4)	mm4)	(mm)	Y1 (mm)	MY(KN·m)	Qp (KN)	O. It (VAD
	成力	勿配	9	-(at/ac)	-0.794		TCI	(採用値	0.8 · ty	τcr)VZ					ΣA·e′	-		Y1		Qp	l
\$z7°	国定	点間距離	(mm)	Lw	6250		50		2.665	355	175	41		2.943	355	163	8		199'9	355	51	140		1.40
	降伏応力度		(N/mm2)	αλω	355	I=20875732313mm2	σcr°	(N/mm2)	γ	西村 oult,b (λ<1.0)	式 oult,b (1.0<2,)	ocr	(N/mm2)	γ	(採用値163N/mm2) 西村 oult. (3<1.0)	式 oult. (1.0<元)	ocr	(N/mm2)	λ	西村 oult,c (λ<0.7)	式 oult,c (0.7<2.)	oult	(N/mm2)	が田は
	ウェブ厚		(mm)	tw	10	A=29260mm2	雑曲げ	φ=-1		(採用艦175N/mm2) 西村		曲げ、引張り	-7 <p<-1< th=""><th></th><th>(採用值163N/mm2)</th><th></th><th>純圧縮</th><th>$\phi = 1$</th><th></th><th>(採用值51N/mm2) 西村</th><th></th><th>曲げ,圧縮</th><th>-1<p<1< th=""><th></th></p<1<></th></p<-1<>		(採用值163N/mm2)		純圧縮	$\phi = 1$		(採用值51N/mm2) 西村		曲げ,圧縮	-1 <p<1< th=""><th></th></p<1<>	
	ウェブ高		(mm)	hw	2926		2,366 gult,w	(N/mm2p=-																
	固定	点間距離	(mm)	Luf	6250	I=864000mm2	2,366		0.387	355	328	314		1.063	355	272	272		/	/	/			
E77vv*	降伏応力度		(N/mm2)	oyuf	355	AY"2=39161250000mm2	ocrf*,1	(N/mm2)	γ	(採用值328N/mm2) 福本 oult,1 (3<02)	式 coult,1 (0.2<3<√2)	ocrf*,2	(N/mm2)	γ	(採用値272N/mm2) 西村 oult,2 (3<0.7)	式 oult,2 (0.7<2.)	MIN (sult,1 OR sult,2)	18,983	16,736		16,736			
14	上73257章		(mm)	fuf	24	2 -AY=2655000mm2	横座屈			(採用催328N/mm2)		ねじれ	西田		(採用值272N/mm2)		MIN (σult,)	oult,f < oult,w	oult,f>oult,w		採用値			
	上75沙,幅		(mm)	Buf	750	A=18000mm2	oult,f	(N/mm2)										Mult,s	(KN·m)	正曲げの	場合採用			

合成前断面検討 (SECT-3-L)

П		Jul																					_	7
		14年			21 OK															,	/	/		
	_	照衝式	2		5 0.721												,	/	/	_				
照査	s Qult		m) (kN)		3,06									,	/	/	_							
ď.	Mult,s		(kŅ		17,6						,	/	/											
	?	0	(kN·m) (kN) (kN·m)		1,634.2 -151 17,673 3,065				/	/	/													
	~	Σ	(kN·r		Ξ		/	_																
	国定	点間距離	(mm)	LIf	6250	I=2246063 nun2	2,366		0.387	355	328	594		0.773	355	333	328	/	/	/				
下75½	降伏応力度		(N/mm2)	aylf	355	AY^2=54175776188mm2	gerf*,1	(N/mm2)	У	(採用值328N/mm2) 福本 oult,1 (3<0.2)	式 oult,1 (0.2<1/> 2)</th <th>ocrf*,2</th> <th>(N/mm2)</th> <th>γ</th> <th>(採用値333N/mm2) 西村 oult,2 (λ<0.7)</th> <th>式 oult,2 (0.7<2,)</th> <th>MIN (σult,1 OR σult,2)</th> <th>23,767</th> <th>23,278</th> <th></th> <th>23,278</th> <th></th> <th></th> <th></th>	ocrf*,2	(N/mm2)	γ	(採用値333N/mm2) 西村 oult,2 (λ<0.7)	式 oult,2 (0.7<2,)	MIN (σult,1 OR σult,2)	23,767	23,278		23,278			
Υ.	下77½厚		(mm)	tlf	33	AY=36617625mm2	横座屈			(採用值328N/mm2)		ねじれ	座阻		(採用值333N/mm2)		MIN (oult, l	oult,f <oult,w< th=""><th>oult,f>oult,w</th><th></th><th>採用値</th><th></th><th></th><th></th></oult,w<>	oult,f>oult,w		採用値			
	下75½。幅		(mm)	Blf	750	A=24750nm2	19 oult,f	(N/mm2)										Mult,s	(KN·m)	当曲げの		/		
	降伏せん断	応力度	(N/mm2)	τy	205		19	16	164	19	99	19						_		1,616 (Yuw 1,592mm) 負曲げの	(Ylw 1,334mm) 場合採用	/	/	7
	アスパクト比			σ	2.136		(α>1)	(a<1)		rcr°<0.87y	tcr >0.8ty	採用値	77,862	10,067,625	129	25,053,988,839	93,337,026,188	1,295,701,542	117,095,313,484	1,616	1,367	25,723	7,198	3,065
	正曲げ		負曲げ		正曲げ			(採用值19N/mm2)			L)	447	.m2)	ZA·Y(mm3)		m4)	∑A·Y^2(mm4)	(mm4)	∑ln(mm4)	mm)			KN)	(KN)
	成力	勿配	9	-(at/ac)	-0.838		TCL	(採用値)	0.8 · ty	τcr			ΣA(mm2)			\(\times\)		ΣΑ·e^2			Y1 (mm)	MY(KN·m)	Qp (KN)	Qult (KN)
ή±7°	国定	点間距離	(mm)	Lw	6250		73		2.205	355	201	19		2.412	355	188	12		5.439	355	19	169		691
	降伏応力度		(N/mm2)	αλω	355	I=25050878776mm2	ger	(N/mm2)	У	(採用催201N/mm2) 西村 σult,b (λ<1.0)	式 oult,b (1.0<元)	ocr	(N/mm2)	γ	(採用催188N/mm2) 西村 oult. (A<1.0)	式 oult. (1.0<2.)	ocr	(N/mm2)	У	(採用値61N/mm2) 西村 oult,c (3<0.7)	式 oult,c (0.7<\))	oult	(N/mm2)	採用値
	ウェブ厚		(mm)	tw	12	A=35112mm2	純曲げ	φ=-1		(採用值201N/mm2)		曲げ,引張り	-7 <p<-1< th=""><th></th><th>(採用値188N/mm2)</th><th></th><th>紅圧縮</th><th>$\phi = 1$</th><th></th><th>(採用值61N/mm2)</th><th></th><th>曲げ、圧縮</th><th>-1<0<1</th><th></th></p<-1<>		(採用値188N/mm2)		紅圧縮	$\phi = 1$		(採用值61N/mm2)		曲げ、圧縮	-1<0<1	
	ウェブ商		(mm)	hw	2926		2,366 gult,w 純曲げ	(N/mm2p=-1	_															
	固定	点間距離	(mm)	Luf	6250	I=864000mm2	2,366		0.387	355	328	314		1.063	355	272	272		/	/	_			
E77555	降伏応力度		(N/mm2)	gnko	355	AY*2=3916125000nm2	ocrf°,1	(N/mm2)	γ	(採用值328N/mm2) 福本 oult,1 (3<02)	式 oult,1 (0.2<2<√2)	ocrf°,2	(N/mm2)	γ	(採用催272N/mm2) 西村 oult,2 (λ<0.7)	式 oult,2 (0.7<2.)	MIN (œult,1 OR œult,2)	19,709	17,673		17,673			
1	上77ッジ厚		(mm)	tuf	24	2 -AY=2655000mm2	横座屈	_		(採用值328N/mm2)		ねじれ	降阻		(採用値272N/mm2)		MIN (oult,	oult,f <oult,w< th=""><th>oult,f>oult,w</th><th></th><th>採用値</th><th></th><th></th><th></th></oult,w<>	oult,f>oult,w		採用値			
	上75沙。幅		(mm)	Buf	750	A=18000mm2	oult,f	(N/mm2)										Mult,s	(KN·m)	圧曲げの	場合採用			

合成前断面検討 (SECT-3-R)

П																								_
		1 地定			S OK																/	/	/	_
		照査式			0.086													/	/	/				
照査	Mult,s Qult		(KR)		3,065										/	/	/							
謡	Mult,s		(kN) (kN·m)		-793 17,673 3,065							/	/	/										
	2	0							/	/	/													
	2	Σ	(kN·m)		6,468.9		/	/	_															
	固定	点間距離	(mm)	LIf	6250	I=2246063 mm2	2,366		0.387	355	328	594		0.773	355	333	328		/	/	/			
下7523°	降伏応力度		(N/mm2)	aylf	355	AY^2=54175776188mm2	ocrf*,1	(N/mm2)	γ	採用值328N/mm2) 福本 cult,1 (A<0.2)	式 oult,1 (0.2<\2<2)	ocrf*,2	(N/mm2)	γ	(採用値333N/mm2) 西村 Gult,2 (7<0.7)	式 oult,2 (0.7<3.)	MIN (sult, 1 OR sult, 2)	23,767	23,278		23,278			
	下75沙。厚		(mm)	tlf	33	AY=36617625nm2	横座屈			(株用値328N/mm2)		ねじれ	座屈		(採用值333N/mm2)		MIN (oult,	oult,f <oult,w< th=""><th>oult,f>oult,w</th><th></th><th>採用値</th><th>/</th><th></th><th></th></oult,w<>	oult,f>oult,w		採用値	/		
	下万沙,幅		(mm)	BIf	750	A=24750mm2	19 oult,f	(N/mm2)										Mult,s	(KN·m)	負曲げの	場合採用	1		
	降伏せん断	応力度	(N/mm2)	Á1	205		61	91	164	61	99	61								1,616 (Yuw 1,592mm) 負曲げの	(Ylw 1,334mm) 場合採用	/	/	/
	73% 外比			σ	2.136		(a>1)	(α<1)		τcr°<0.8τy	tcr > 0.8 ty	採用値	77,862	10,067,625				1,295,701,542	117,095,313,484	1,616	1,367	25,723	7,198	3,065
	正曲げ		負曲げ		正曲げ			N/mm2)					m2)	nm3)	u)	∑l(mm4)	(mm4)	mm4)	m4)	(Mi	(mu	(m.7	(N)	K N
	成力	勾配	9	(at/ac)	-0.838		TCL	(採用值19N/mm2)	$0.8 \cdot \tau_y$	tcr			∑A(mm2)	ZA·Y(mm3)	e(mr	ΣI(mr	2A·Y^2(mm4)	ΣA·e^2(mm4)	∑ln(mm4)	Yu (mm)	Y1 (mm)	MY(KN·m)	Qp (KN)	Onlt (KN)
h17°	固定	点間距離	(mm)	Lw	6250		73		2.205	355	201	19		2.412	355	188	12		5.439	355	19	169		160
	降伏応力度		(N/mm2)	αλω	355	I=25050878776mm2	ocr	(N/mm2)	γ	西村 oult,b (λ<1.0)	式 oult,b (1.0<元)	ocr	(N/mm2)	γ	西村 oult. (\(\lambda < 1.0\)	式 oult. (1.0<2.)	σcr°	(N/mm2)	7	西村 oult,c (1<0.7)	式 oult,c (0.7<2.)	oult	(N/mm2)	黎田德
	ウェブ厚		(mm)	tw	12	A=35112mm2	雑曲げ	φ=-1		(採用値201N/mm2) 西村		曲げ,引張り	-7 <p<-1< th=""><th></th><th>(採用値188N/mm2) 西村</th><th></th><th>純圧縮</th><th>$\phi = 1$</th><th></th><th>(採用值61N/mm2) 西村</th><th></th><th>曲げ,圧縮</th><th>-1<0<1</th><th></th></p<-1<>		(採用値188N/mm2) 西村		純圧縮	$\phi = 1$		(採用值61N/mm2) 西村		曲げ,圧縮	-1<0<1	
	ウェブ高		(mm)	hw	2926		rult,w	(N/mm2p=-1																
	固定「	点間距離	(mm)	Luf	6250	I=864000mm2	2,366 gult,w		0.387	355	328	314		1.063	355	272	272	/	/	/	/			-
E77VV	降伏応力度		(N/mm2)	ayuf	355	AY"2=39161250000mm2	ocrf*,1	(N/mm2)	γ	(採用值328N/mm2) 福本 cult,1 (λ<0.2)	式 oult,1 (0.2<3<<72)	ocrf°,2	(N/mm2)	γ	(採用値272N/mm2) 西村 oult,2 (3<0.7)	式 oult,2 (0.7<2.)	MIN (oult,1 OR oult,2)	602'61	17,673		17,673			
4	下772%厚		(mm)	fuf	24	-AY=2655000mm2	横座屈			(採用值328N/mm2)		ねじれ	座囲		(採用值272N/mm2)		MIN (σult,)	oult,f <oult,w< th=""><th>σult,f>σult,w</th><th></th><th>採用値</th><th></th><th></th><th></th></oult,w<>	σult,f>σult,w		採用値			
	上75沙,幅		(mm)	Buf	750	A=1800mm2	oult,f	(N/mm2)										Mult,s	(KN·m)	正曲げの	場合採用			

合成前断面検討 (SECT-4-L)

E77111						7=7						1	下7777				照査		
降伏応力度	力度	固定	ウェブ高	ウェブ厚	降伏応力度	国定	応力 正	正曲げ	775. 小比	降伏せん断	下75沙帽	下7525"厚	降伏応力度	国定	2	~ Wu	Mult,s Qult		
		点間距離				点間距離				応力度				点間距離	Σ			照為六	無
(N/mm2)	m2)	(mm)	(mm)	(mm)	(N/mm2)	(mm)	0	負曲げ		(N/mm2)	(mm)	(mm)	(N/mm2)	(mm)	(kN·m)	(kN)	(kN·m) (kN)	_	
(0)	oyuf	Luf	hw	tw	αλw	Lw	-(at/ac)		σ	ty	BIf	tlf	oylf	IIf					
24	355	6250	2926	12	355	6250	-0.902 正	正曲げ	0.534	202	750	29	355	6250	6,468.9	-793	17,681 6,071	1 0.07	ÖK
-AY=2655000mm2	AY"2=3916125000mm2 I=	I=864000mm2		A=35112mm2	I=25050878776mm2						A=21750mm2	AY=3213 562 5mm2	AY^2=47480385938mm2	I=1524313 mm2					
ocrfe,1	1	2,366	2,366 gult,w #	雑曲げ	ocr	73	tcr	(α>1)	(1>	65	59 oult,f	横座屈	serf*,1	2,366	/				
	(N/mm2)		(N/mm2p=-1	-1	(N/mm2)		(採用值69N/mm2)	mm2) (α<1)	(1)	69	(N/mm2)		(N/mm2)		/				
	γ	0.387			7	2.205	0.8 · try			164			γ	0.387	_				
) 福本	(採用值328N/mm2) 福本 (oult,1 (3<0.2)	355		(柴用値201N/mm2) 西村	西村 oult,b (λ<1.0)	355	TOT	> rer	tcr°<0.8ty	69		(採用值328N/mm2) 福本 oult,1 (3<0.2)	富本 cult,1 (3<0.2)	355		/			
百	oult,1 (0.2<λ<√2)	328		IH	式 oult,b (1.0<2.)	201		<°rr>	tcr ^e >0.8ty	106			式 oult,1 (0.2<\2)	328		/			
	ocrf°,2	314	#	曲げ,引張り	ocr	99		採用値	値	69		ねじれ	scrf°,2	459		/			
	(N/mm2)		9	-7 <p<-1< td=""><td>(N/mm2)</td><td></td><td>ΣA(mm2)</td><td>2)</td><td>74,862</td><td></td><td></td><td>極超</td><td>(N/mm2)</td><td></td><td></td><td></td><td>,</td><td></td><td></td></p<-1<>	(N/mm2)		ΣA(mm2)	2)	74,862			極超	(N/mm2)				,		
	У	1.063			y	2.319	ΣA·Y(mm3)		5,585,625				γ	0.879			/		
) 西村	(採用催272N/mm2) 西村 oult,2 (3<0.7)	355		(株用値194N/mm2) 西村	西村 σult. (λ<1.0)	355	e(mm)		75			(採用值307N/mm2)	(採用値307N/mm2) 西村 oult,2 (λ<0.7)	355			/		
松	oult,2 (0.7<λ)	272		IH	式 oult. (1.0<2,)	194	∑I(mm4)		25,053,267,089				式 oult,2 (0.7<3.)	307			/		
MIN (oult,1 OR oult,2)	oult,2)	272	藻	純圧縮	GCL	12	ZA·Y^2(mm4)		86,641,635,938			MIN (σult,1 OR	OR oult,2)	307				,	
	19,377		•	$\phi = 1$	(N/mm2)		ΣA·e^2(mm4)	m4)	421,098,750		Mult,s	oult,f < oult,w	21,871					/	
	17,681	_			Y	5.439	∑ln(mm⁴	E	,273,804,276		(KN·m)	oult,f>oult,w	20,784	/				/	
		/		(採用値61N/mm2) 西村	西村 oult,c (λ<0.7)	355	Yu (mn	(u	1,562	1,562 (Yuw 1,538mm) 負曲げの	負曲げの			/				/	
	17,681	/		IH	式 oult,c (0.7<3.)	19	Y1 (mn	H	1,417	(Ylw 1,388mm) 場合採用		採用値	20,784	/					/
				曲げ、圧縮	oult	181	MY(KN·m)		25,290	/									/
1	1		7	-1<0<1	(N/mm2)		(KN)	(Z	7,198	/									/
					採用値	181	Qult (KN)	(N)	6,071	/									
(SECT-4-R)																			
E75%						ψ±7°						1	F777V"				照本		
	降伏応力度	固定	ウェブ語	ウェブ厚	降伏応力度	国定	成力	正曲げ	7スペクト比	降伏せん断	下75%。幅	下75沙"厚	降伏応力度	国定	?	~ Wu	Mult,s Oult		
_						İ				-		-		1	,	-			

2
f
E
Ū
Ċ
4

上子デンド 上子デンド 上子デンド 上子デンド 上子デンド 上子デンド 日本 日本 日本 日本 日本 日本 日本 日	_																								_
1979/ 19			和 和			S OK																/	/	/	
1979/7 1979/7			照香芝	_		<u> </u>												,	/	/	/				
1. 1. 1. 1. 1. 1. 1. 1.	真	s Qult				6,07									,	/	/								
1	a;	Mult,		(kN·1										/	/										
1		~	0							/	/	/													
1		~	Σ	(kN:			_	/	_		16		_		-	lic	- I								
(Vinual)		固定	点間距離	(mm)	LIF			2,366		0.387	355	328	459		0.875	355	307	307		/	/	/			1
1	77.7.7	降伏応力度		(N/mm2)	oylf	355	AY^2=47480385938mm2	ocrf*,1	(N/mm2)	γ	a本 σult,1 (λ<0.2)		serf°,2	(N/mm2)	γ	西村 oult,2 (7<0.7)	式 σult,2 (0.7<λ.)	OR oult,2)	21,871	20,509		20,509			
1	_			(mm)	JII			横座屈			(採用值328N/mm2)		おじれ	座屈		(採用值307N/mm2)		MIN (σult, l	oult,f < oult,w	oult,f>oult,w		採用値	/		
1		下乃沙。幅		(mm)	BIf	750	A=21750mm2	oult,f	(N/mm2)										Mult,s	(KN·m)	負曲げの	場合採用	1		
(Vinual)		降伏せん断	応力度	(N/mm2)	ty			69	69	164	69	106	69								(Yuw 1,538mm)	(Ylw 1,388mm)	_	/	7
(mm)		73% 外比			ъ	0.534		(a>1)	(a<1)		tcre<0.8ty	tcr > 0.8 ty	採用値	74,862	5,585,625	75				111,273,804,276	1,562	1,417	25,290	7,198	1209
(mm)			2配		αt/αc)			tcr	条用值69N/mm2)	yı - 8.	tor			ΣA(mm2)	ZA·Y(mm3)	e(mm)	ΣI(mm4)	:A·Y^2(mm4)	EA • e^2(mm4)	∑In(mm4)	Yu (mm)	Y1 (mm)	MY(KN·m)	Qp (KN)	Onlt (KN)
Comparison	717	_		(mm)	Ė			73	*		355	201	81			355	209	12							500
(mm)		降伏応力度	74;	(N/mm2)	мÃо	355	I=25050878776mm2	ocr	(N/mm2)	γ	西村 oult,b (λ<1.0)		ocr	(N/mm2)	٧	西村 oult. (\(\lambda < 1.0\)		ocr	(N/mm2)	γ	西村 oult,c (1<0.7)		oult	(N/mm2)	
1		ウェブ厚		(mm)	tw		A=35112mm2	純曲げ	φ=-1		(採用値201N/mm2)		曲げ,引張り	-7 <p<-1< td=""><td></td><td>(採用值209N/mm2)</td><td></td><td>純圧縮</td><td>$\phi = 1$</td><td></td><td>(採用值61N/mm2)</td><td></td><td>曲げ,圧縮</td><td>-1<p<1< td=""><td></td></p<1<></td></p<-1<>		(採用值209N/mm2)		純圧縮	$\phi = 1$		(採用值61N/mm2)		曲げ,圧縮	-1 <p<1< td=""><td></td></p<1<>	
17.0 17.0		ウェブ高		(mm)	hw	2926		sult,w	(N/mm)																
(mm)		点間距離	(mm)	Luf	6250	I=864000mm2	2,366		0.387	355	328	314		1.063	355	272	272		_	/				1	
mm (m	7777	降伏応力度		(N/mm2)	aynt	355	AY"2=3916125000mm2	ocrf°,1	(N/mm2)	γ	a		ocrf°,2	(N/mm2)	γ	雪村 σult,2 (λ<0.7)	式 oult,2 (0.7<元)	OR oult,2)	775,61	17,835		17,835			
mn) mm2) mm2) ff の を発用	T			(mm)	fuf	24		横座屈			(採用值328N/mm2)	in.	ねじれ	座屈		(採用値272N/mm2) [k	in	MIN (oult,1	σult,f < σult,w	σult,f>σult,w		採用値			
		上75ッジ 幅		(mm)	Buf	750	A=18000mm	oult,f	(N/mm2)										Mult,s	(KN·m)	正曲げの	場合採用			

0.441 照產式 Qult (KN (kN·m) Mult,s √ o∑ Š (kN·m) 固定 点間距離 (mm) LIf 2) 西村 oult,2 (2<0.7) 式 oult,2 (0.7<2.) ocrf*,1 (N/mm2) cult,1 (λ<0.2)
σult,1 (0.2<λ<√2)
σult,1 (0.10)
σult,1 (0.10) oult,2) MIN (oult,1 OR (採用值355N/mm2) < oult, w AY=5347800k なじれ 座屈 (mm) 69 cult,f | (N/mm2) | 164 | 115 | 115 トフランジ 幅 Mult,s (KN・m) 負曲げの 場合採用 (mm) Blf 降伏せん断 応力度 (N/mm2) tcr^e<0.8ty tcr^e>0.8ty 採用值 $(\alpha > 1)$ $(\alpha < 1)$ 2.5./(mm2)
2.5./.Y(mm3)
e(mm)
2.5./.Y(mm4)
2.5./.Y(2,0mm4)
2.5./.Y(2,0mm4)
2.5./.Y(2,0mm4)
2.5./.Y(2,0mm4)
2.5./.Y(2,0mm4)
3.5./.Y(2,0mm4)
3.5./.Y(2,0mm4)
4.5./.Y(2,0mm4)
4.5 負曲げ τcr^e (採用値81N/mm2) 0.8 · ty rcr 点間距離 (mm) Lw 355 249 14 85 355 212 133 .036 355 65 489 | 西村 out,c (3<0.7) |式 out,c (0.7<\(\alpha\)) σult,b (λ<1.0)
σult,b (1.0<λ.)
συτε 降伏応力度 (N/mm2) 用値 (N/mm2) f oult. (3<1.0)
oult. (1.0<2)
ocr (N/mm2) (N/mm2) oyw $\sigma c \, r^{\rm e}$ (採用值249N/mm2 (採用值65N/mm2 (採用值212N/mm 曲げ,引張り -7<p<-1 ウェブ厚 (mm) 曲げ,圧縮 -1<φ<1 純圧縮 $\phi = 1$ 355 328 314 (mm) Luf h 西村 cult,2 (A<0.7) 式 cult,2 (0.7<2.) | Sqult, 1 (\(\lambda < 0.2\) | \(\lambda \) | \(\l 19,944 ocrf*,1 (N/mm2] 降伏応力度 oult,2) MIN (oult,1 OR (採用値272N/mm2) oult,w (採用值328N/mm) ねじれ 座屈 横座屈 (mm) 上75ッジ 幅 Mult,s (KN・m) 正曲げの 場合採用 (N/mm2 (mm) Buf

(SECT-5-C)

合成前断面検討

型 W

128

合成前断面検討 (SECT-6-L)

照査	~ Mult,s Qult	M Q 医梅状 型印 (PN) (PN) (PN)	(KIN) (KIN-III)	-7,296.2 1,146 22,201 6,071 0.05 OK			_	_		_	_	_	/	/	_	/	/							照査	~ Mult,s Qult 医粉斗 主形	·m) (kN) (kN·m) (kN)		870.6 596 17,679 6,071 0 OK			/		/		_	_	/	_	/	_			
下7529°	降伏応力度	点間距離 (2////////////////////////////////////	(mm)	355 6250	AY^2=:2498584000mm2	ocrf*,1 2,366	(N/mm2)	λ 0.387	(採用艦328N/mm2) 福本 cult,1 (λ<0.2) 355	± σult,1 (0.2<λ<√2) 328	ocrf*,2 559	/mm2)	γ 0.	(3<0.7)	32/	out,2)	22,201		22,201					下755%	路伏応力度 固定 上間距離		oylf Ll:	355	AY^2=2498584000mmd I=2048(ocrf*,1 2,366	(N/mm2) 3 0 387	(桑田信328N/mm2) 福本 [cult.1 (3,40.2) 355	·/_2)		/mm2)	0	#\frac{\alpha(1.0.7)}{\circ}	(0.7<%)	MIN (σult,1 OR σult,2) 327	23,597	22,921	120020	7 77,371
	降伏せん断 下フランジ幅 下フランジ厚	応力度 (mm) (mm)	BIL	205 750	A=240	59 oult,f 横座屈	69 (N/mm2)	164		106	4 つ な り	田樹		(採用價327N/r		Mult s milt fe milt w			(Ylw 1,347mm) 場合採用 採用値		 - 	7			降伏せん断 下ランジ幅 下ラシジ厚 ☆ヵ审	N/mm2) (mm) (mm)	BIE	205 750	A=24000mm2 AY=35496000mm2	Б	69 (N/mm2)			4.7.th			(採用值327N/I				(KN⋅m) oult,f>σult,w	(Yuw 1,579mm) 慎田(すの) (Xun 1,342mm) 古人訪田 訪田研	
	正曲げ 7スペクト比 降り	11 2	8	負曲げ		(α>1)	(採用值69N/mm2) (α<1)		r tcr ^e <0.8ty	tcr°>0.8ty	採用値		ZA·Y(mm3) 8,946,000	-	ł	+	Σln(mm4) 115,676,005,704	1,603		25,618	Qp (KN) 7,198	Qult (KN) 6,071			正曲げ 7スペクト比 降り	(N)	σ	正曲げ 0.534			yθN/mm2) (α<1)	r		採用値	2A(mm2) 77,112	ZA·Y(mm3) 8,946,000	ľ	T		EA·e^2(mm4) 1,037,619,072	115,676,005,704	Yu (mm) 1,603 (Yuv	6/6
9x7°	国定	点間距離 2	ŀ	250		73 tcr ^e		2.205 0.8 · ty	0) 355 ter	λ.) 201	98		2:032	355	213	7	5.439	355	19	250		213 Qult		ή±7°	度 固定 応力 占開記簿 勿酌	(mm)	Lw	355 6250 -0.853	6mm2	73	2205	355	201		_	2.393	355	189	12		5.439	355	_
	ブ厚 降代応力度	(Mmm)N)		12	A=35112mm2	ocr	(N/mm2)	~	(採用値201N/mm2) 西村 cult,b (3<1.0)	式 oult,b (1.0<元)	b ocr	(N/mm2)	7	(柴用値213N/mm2) 西村 cult. (3<1.0)		ocr (N/mm2)	7	(採用値61N/mm2) 西村 oult,c (3.<0.7)	式 oult,c (0.7<元)			採用値			7厚 降伏応力度	n) (N/mm2)	αλM		A=35112mm2	ocr	(N/mmZ)	(株田信201N/mm2) 固村 cult b (3<10)	式 oult,b (1.0<2)				to	云 otult. (1.0<2)	ocr	(N/mm2)	γ	(東王僧61N/mm2) 四村 Gult,c (大<0.7)	
	ビ ウェブ高 ウェブ厚	(mm)	f hw tw	250 2926		2,366 gult,w 純曲げ	(N/mm2φ=-1	0.387	355 (採用値20	328	314 曲げ,引張り	-7 <p<-1< td=""><td></td><td></td><td>27.2</td><td></td><td>÷</td><td>(採用値</td><td>_</td><td>曲げ、圧縮</td><td>-1<0<1</td><td></td><th></th><td></td><td>E ウェブ画 ウェブ厚 E サェブ画 ウェブ厚</td><td>n) (mm) (mm)</td><td></td><td>2926</td><td></td><td>2,366 gult,w 維曲げ</td><td>(N/mm/q=-1</td><td></td><td></td><td>314 曲げ,引張り</td><td></td><td>1.063</td><td></td><td></td><td>272 維圧縮</td><td>$\phi = 1$</td><td>-</td><td></td><td>_</td></p<-1<>			27.2		÷	(採用値	_	曲げ、圧縮	-1<0<1				E ウェブ画 ウェブ厚 E サェブ画 ウェブ厚	n) (mm) (mm)		2926		2,366 gult,w 維曲げ	(N/mm/q=-1			314 曲げ,引張り		1.063			272 維圧縮	$\phi = 1$	-		_
上フランジ	降伏応力度 固定	点間距離 (アルルタ) (アルル)	+	355	I=8640	σcrr ^e ,1 2	(N/mm2)		福本 oult,1 (3<02)	式 oult,1 (0.2<4<72)	ocrf°,2	(N/mm2)		te	π σult,2 (0.7<π)	OK oun,2)	17,931		17,931					E797v*	降伏応力度 固定 占贈昭離	(N/mm2) (mm)	7		AY"2=39161250000mm2 I=864000mm2		(N/mm2)		式 cult,1 (0.2<4<2)	ocrf°,2	(N/mm2)		臣	天 oult,2 (0.7<2.)	MIN (oult,1 OR oult,2)	19,628	17,679	057 51	6/0//
14	上752%。幅 上752%。庫		Buf tuf	20	-AY=26550000m	oult,f 横座屈	(N/mm2)		(採用值328N/mm2) 福本 cult,1 (3<02)		ねじれ	座屈		(採用值272N/mm2)	O JE	Mults cult f< cult w	_	0	場合採用 採用値				前断面検討 (SECT-6-R)	14	上フランジ幅 上フランジ厚	(mm) (mm)	fuf	0	O00mm2 -A	oult,f 横座屈	(N/mm/2)	(48田/昭328N/mm2)		ねじれ	座面		(採用値272N/mm2)				(KN·m) cult,f>cult,w	計画けら 当今該田 該田様	

合成前断面検討 (SECT-7-L)

П		州			7																		_	7
		13年			109 OK															/	/	/		
	ıļ.	照荷片	(kN)		'49 0.C												/	/	/					
照垄	Mult,s Qult		(kN·m)		596 17,214 2,749 0.009									/	/	/								
	Mu	-	(kN) (kN		96 17,						/	/	/											
	((kN·m) (k		870.6			/	/	/														
	~	Σ	(K			12	<u>/</u>	_	-	S	∞	4		6	2	52	2	ı			_			
	固定	点間距離	(mm)	JП	6250	I=864000mm2	2,366		285.0	355	328	314		1.063	325	272	272	/	/	/	_			
下75%	降伏応力度		(N/mm2)	oylf	355	AY^2=3916125000mm2	ocrf*,1	(N/mm2)	У	(採用値328N/mm2) 福本 oult,1 (λ<0.2)	式 σult,1 (0.2<λ<√2)	ocrf°,2	(N/mm2)	γ	(採用値272N/mm2) 西村 oult,2 (2<0.7)	式 oult,2 (0.7<3.)	MIN (oult, 1 OR oult, 2)	18,527	17,214		17,214			
T	下7沙沙厚		(mm)	tlf	24	AY=26550000mm2	横座屈			(株用値328N/mm2)		ねじれ	廃阻		(採用値272N/mm2)		MIN (oult,	oult,f <oult,w< th=""><th>oult,f>oult,w</th><th></th><th>採用値</th><th></th><th></th><th></th></oult,w<>	oult,f>oult,w		採用値			
	下75½。幅		(mm)	Blf	750	A=18000mm2	16 oult,f	(N/mm2)										Mult,s	(KN·m)	負曲げの	易合採用			
	降伏せん断	応力度	(N/mm2)	ty	205		16	13	164	16	51	16						_		(Yuw 1,463mm) 負曲げの	(Ylw 1,463mm) 場合採用	/	/	7
	7スペクト比			α	2.136		(a>1)	(a<1)		tcre<0.8ty	tcr 5-0.8ty	採用値	98189	0	0	22,965,033,545	78,322,500,000	0	101,287,533,545		1,487	24,181	865'9	2,749
	正曲げ		負曲げ		正曲げ			(株用値16N/mm2)		12	į.	松	m2)		_	-	_		∑In(mm4)		Г		KN)	KN)
	応力	勾配	Ф	-(at/ac)	-1.000		tcre	(採用値16	$0.8 \cdot \tau_{\rm y}$	TCL			∑A(mm2)	ΣA·Y(mm3)		∑(mm4)	∑A·Y^2(mm4)	ΣA·e^2(mm4)			Y1 (mm)	MY(KN·m)	Qp (KN)	Qult (KN)
h=7°	国定	点間距離	(mm)	Lw	6250		19		2.412	355	188	19		2.412	355	188	10		5.958	355	99	188		188
	降伏応力度		(N/mm2)	σyw	355	I=22963305545mm2	ocr	(N/mm2)	γ	(採用值188N/mm2) 西村 oult,b (3<1.0)	式 oult,b (1.0<元)	ocre	(N/mm2)	γ	(採用値188N/mm2) 西村 oult. (λ<1.0)	式 oult. (1.0<2.)	ocr	(N/mm2)	γ	(採用値56N/mm2) 西村 oult,c (λ<0.7)	式 oult,c (0.7<\lambda)	oult	(N/mm2)	採用値
	ウェブ厚		(mm)	tw	11	A=32186mm2	純曲げ	2φ=-1		(採用值188N/mm2)		曲げ,引張り	-7 <p<-1< th=""><th></th><th>(株用値188N/mm2)</th><th></th><th>純圧縮</th><th>$\phi = 1$</th><th></th><th>(採用值56N/mm2)</th><th></th><th>曲げ、圧縮</th><th>-1<φ<1</th><th></th></p<-1<>		(株用値188N/mm2)		純圧縮	$\phi = 1$		(採用值56N/mm2)		曲げ、圧縮	-1<φ<1	
	ウェブ高		(mm)	hw	2926		2,366 oult,w	(N/mm2p=-1																
	固定	点間距離	(mm)	Luf	6250	3 I=864000mm2	2,366		0.387	355	328	314		1.063	355	272	272		/	/	7			
E77111"	降伏応力度		(N/mm2)	Jnko	355	AYY2=39161250000mm2	serf°,1	(N/mm2)	У	(採用值328N/mm2) 福本 cult,1 (λ<0.2)	式 oult,1 (0.2<2<√2)	ocrf°,2	(N/mm2)	γ	(採用催272N/mm2) 西村 oult,2 (λ<0.7)	式 oult,2 (0.7<2.)	MIN (sult,1 OR sult,2)	18,527	17,214		17,214			
T	下7ランジ厚	_	(mm)	tuf	24	-AY=2655000mm2	横座屈	_		(採用值328N/mm2)		ルコ な	座屈	_	(採用値272N/mm2)		MIN (oult,	oult,f < oult,w	oult,f>oult,w		採用値			
	上75ッジ。幅		(mm)	Buf	750	A=18000mm2	oult,f	(N/mm2)										Mult,s		正曲げの				

合成前斯面検討 (SECT-7-C)

		_																						_
		1 地定			ÖK																/	/	/	
		照権式			0.01													/	/	/				
照査	Mult,s Qult		(KR)		17,214 2,749										/	/	/							
脳	Mult,s		(kN) (kN·m)		17,21							/	/	/										
	~	0			2 0				/	/	/													
	~	Σ	(kN·m)		3,897.2	_	/	_	_							_								
	固定	点間距離	(mm)	LIF	6250	I=864000mm2	2,366		0.387	355	328	314		1.063	355	272	272	/	/	/	/			1
下フランジ	降伏応力度		(N/mm2)	aylf	355	AY^2=3916125000mm2	ocrf*,1	(N/mm2)	γ	a本 σult,1 (λ<0.2)	式 oult,1 (0.2<3<<72)	ocrf*,2	(N/mm2)	γ	(採用値272N/mm2) 西村 oult,2 (λ<0.7)	式 oult,2 (0.7<2,)	MIN (oult, 1 OR oult, 2)	18,527	17,214		17,214			
4	直,4444.1		(mm)	JII	24	AY=26550000mm2	横座屈			(採用值328N/mm2) 福本 cult,1 (3<0.2)	IN	424	座屈		(採用値272N/mm2)	IN	MIN (σult,1	oult,f <oult,w< td=""><td>oult,f>oult,w</td><td></td><td>採用値</td><td></td><td></td><td></td></oult,w<>	oult,f>oult,w		採用値			
	下75½,幅		(mm)	Blf	750	A=18000nm2	16 oult,f	(N/mm2)										Mult,s	(KN·m)	負曲げの	場合採用			
	降伏せん断	応力度	(N/mm2)	τy	205		91	13	164	16	51	16								1,487 (Yuw 1,463mm) 負曲げの	(Ylw 1,463mm) 場合採用		/	7
	7416,5826			σ	2.136		(a>1)	(a<1)		tcre<0.8ty	tcr°>0.8ty	採用値	98189	0	0	22,965,033,545	78,322,500,000	0		1,487	1,487	24,181	865'9	2 749
	応力 正曲げ	勾配	φ負曲げ	(at/ac)	-1.000 正曲げ		tore	(採用值16N/mm2)	0.8 · ty	tcr			∑A(mm2)	ZA·Y(mm3)	e(mm)	∑l(mm4)	∑A·Y^2(mm4)	ΣA·e^2(mm4)	SIn(mm4)	Yu (mm)	Y1 (mm)	MY(KN·m)	Qp (KN)	Oult (KN)
9±7°	固定 応	点間距離 勾	(mm)	Lw	6250 -1		19		2.412 0.8	355	188	19		2.412	355	188	72 01	Ñ	5.958	355	99	188 N		188
	降伏応力度	400	(N/mm2)	ayw	355	I=22963305545mm2	ger	(N/mm2)	γ	西村 oult,b (\lambda<1.0)	表 oult,b (1.0≪)	ocr	(N/mm2)	γ.	西村 oult. (\(\lambda < 1.0\)	式 oult. (1.0<2.)	ocr	(N/mm2)	У	西村 oult,c (1,<0.7)	式 oult,c (0.7<2)	oult	(N/mm2)	雰田仁
	ウェブ厚		(mm)	tw	11	A=32186mm2	雑曲げ	φ=-1		(採用值188N/mm2) 西村		曲げ,引張り	-7 <p<-1< td=""><td></td><td>(採用値188N/mm2) 西村</td><td></td><td>純圧縮</td><td>$\phi = 1$</td><td></td><td>(採用值56N/mm2) 西村</td><td></td><td>曲げ,圧縮</td><td>-1<0<1</td><td></td></p<-1<>		(採用値188N/mm2) 西村		純圧縮	$\phi = 1$		(採用值56N/mm2) 西村		曲げ,圧縮	-1<0<1	
	ウェブ高		(mm)	hw	2926			(N/mm2q=-1																
	固定「	点間距離	(mm)	Luf	6250	=864000mm2	2,366 gult,w		0.387	355	328	314		1.063	355	272	272		_	/	7			-
上フランジ	降伏応力度		(N/mm2)	oyuf	355	AY"2=3916125000mm2	gerf°,1	(N/mm2)	γ	智本 oult,1 (A<0.2)	式 oult,1 (0.2<3<<72)	ocrf°,2	(N/mm2)	γ	(採用値272N/mm2) 西村 oult,2 (3<0.7)	式 oult,2 (0.7<2,)	MIN (σult,1 OR σult,2)	18,527	17,214		17,214			
4	直,4/44开		(mm)	Jm	24	-AY=26550000mm2	横座屈			(採用值328N/mm2) 福本 oult,1 (3<02)		ねじれ	座屈		(採用值272N/mm2)		MIN (oult,1	oult,f <oult,w< td=""><td>oult,f>oult,w</td><td></td><td>採用値</td><td></td><td></td><td></td></oult,w<>	oult,f>oult,w		採用値			
	上77沙。幅		(mm)	Buf	750	A=18000mm2	oult,f	(N/mm2)										Mult,s	(KN·m)	正曲げの	場合採用			

3.4.3.2 完成時の照査

決定断面一覧

ИМЕНТИ	<i>7</i> E								
	上フラ	ランジ	ウニ	ェブ	下フラ	ランジ	パネル数	断面積	単位重量
	幅mm	板厚mm	幅mm	板厚mm	幅mm	板厚mm		mm2	t/m
SECT-1	750	24	2926	9	750	27	4	64584	0.507
SECT-2	750	24	2926	10	750	35	1	73510	0.577
SECT-3	750	24	2926	12	750	33	1	77862	0.611
SECT-4	750	24	2926	12	750	29	4	74862	0.588
SECT-5	750	24	2926	18	800	45	4	106668	0.837
SECT-6	750	24	2926	12	750	32	4	77112	0.605
SECT-7	750	24	2926	11	750	24	1	68186	0.535

照査結果一覧

	終局限界	使用限界	決定M
SECT-1	0.997	0.867	正
SECT-2	0.960	0.864	正
SECT-3	0.925	0.858	正
SECT-4	0.936	0.539	負
SECT-5	0.975	0.622	負
SECT-6	0.972	0.565	負
SECT-7	0.662	0.506	正

次頁以降に、代表的なSECT-2(正曲げ)、SECT-5(負曲げ)の断面計算例を示す。

完成時の照査(SECT-2)

完成時においては下式を満足することを確認する.

終局限界状態の照査

$$\left(\begin{array}{c} 1.7M \\ \hline M_{ult} \end{array}\right)^{-4} \quad + \quad \left(\begin{array}{c} 1.7Q \\ \hline Q_{ult} \end{array}\right)^{-4} \quad < \quad 1.0$$

ここに、

M : 完成時における曲げモーメント

Q : 完成時におけるせん断力

M_{ult}: AASHTO LRFD により算出した終局曲げモーメント

Qult: Basler式により算出した終局せん断力

使用限界状態の照査

$$M_{D1} + M_{D2} + M_{L} < M_{v} / 1.15$$

ここに、

 M_{D1} : 合成前死荷重による曲げモーメント M_{D2} : 合成後死荷重による曲げモーメント

 M_L : 活荷重による曲げモーメント

M_v : 降伏モーメント

1. 設計条件

・支間長

• 桁配置

張り出し長 2.450 m 床版支間 5.500 m

床版

床版厚 300 mm ハンチ高 80 mm 設計基準強度 40 N/mm2

中間支点付近 材質 SD345

降伏応力 345 N/mm2

 橋軸方向鉄筋 (上段)
 D16 @
 200 d'
 =
 67.5 mm

 橋軸方向鉄筋 (下段)
 D16 @
 200 d
 =
 232.5 mm

・主桁

材質 SM490Y

降伏応力 355 N/mm2

上フランジ 750 mm x 24 mm パネル数 1 ウェブ 2926 mm x 10 mm α = 2.136 下フランジ 750 mm x 35 mm

断面積 735.1 cm2

横桁

横桁間隔 6250 mm

・荷重係数(降伏モーメント算出時)

合成前・後死荷重に対して 1.30 合成後活荷重および衝撃に対して 2.00

• 断面力

正曲げ

	ョげモーメント(kN·m)	せん断力 (kN·m)	照査	結果(約	§局)	照査結	果(使用
合成前死荷重	11748.9	-	M_{ult}	41277	0.982	M_{total}	23852
合成後死荷重	1420.0	-	Q _{ult}	2445	0.411	$M_{y}/1.15$	27610
活荷重	10683.5	-	判定	0.9	960	判定	0.8639
合計	23852.4	590.7		OK			OK

2. 床版有効幅

床版の有効幅は道路橋示方書Ⅱ10.3.5により算出する.

支間中央

・張出側

∴床版の有効幅 be = 1.995 + 2.2611 + 0.750 + 2 x 0.080 = 5.1661 m

3. 断面諸元

正曲げに対して

(1) 合成前断面

			A(cm2)	y(cm)	Ay(cm3)	$Ay^2(cm4)$	I(cm4)
U.FLG	750 x	24	180.00	-147.5	-26550	3916125	86
WEB	2926 x	10	292.60	0	0	0	2087573
L.FLG	750 x	35	262.50	148.05	38863	5753685.7	268
			735.10		12313	9669811	2087928

```
偏心量 \delta = 12313 / 735 = 16.750 cm 断面二次モーメント I = 11757738 - 735 x 16.750 ^2 = 11551490 cm4 断面係数(主桁上縁)W_{top\ of\ steel\ 1} = 11551490 / 165.450 = 69819 cm3 断面係数(主桁下縁)W_{bottmo\ of\ steel\ 1} = 11551490 / 133.050 = 86821 cm3
```

(2) 合成後断面 (n = 7)

			A(cm2)	y(cm)	Ay(cm3)	$Ay^2(cm4)$	I(cm4)
SLAB	5166.1 x	300	2214.06	-171.7	-380155	65272570	166055
U.FLG	750 x	24	180.00	-147.5	-26550	3916125	86
WEB	2926 x	10	292.60	0	0	0	2087573
L.FLG	750 x	35	262.50	148.05	38863	5753685.7	268
			2949.16		-367842	74942381	2253982

```
偏心量 \delta = -367842 / 2949.16 = -124.727 cm

断面二次モーメント I = 77196363 - 2949.16 x -124.727 ^2 = 31316422 cm4

断面係数(床版上縁)W_{bp} = 31316422 / 61.973 = 505327 cm3

断面係数(主桁上縁)W_{top\ of\ steel\ 2} = 31316422 / 23.973 = 1306344 cm3

断面係数(主桁下縁)W_{bottmo\ of\ steel\ 2} = 31316422 / 274.527 = 114074 cm3
```

(3) 塑性断面

			A(cm2)	Fc,Fy(N/mm2)	f(kN)	$\Sigma f(kN)$
SLAB	5166.1 x	300	15498.45	40	52695	52695
U.FLG	750 x	24	180.00	355	6390	
WEB	2926 x	10	292.60	355	10387	26096
L.FLG	750 x	35	262.50	355	9319	

朔性中立軸

断面内軸力0の条件より塑性中立軸は床版断面内となる.

(4) 降伏モーメント

4. 正曲げ断面の照査

(1) M_{ult}の算出

FOUR LRFD DESIGN EXAMPLES OF STEEL HIGHWAY BRIDGES (AISI) に収録されている Example 3: THREE-SPAN CONTINUOUS COMPOSITE I GIRDER に倣いMult を算出する.

1) Check Ductility Requirement

$$D_p \le \frac{d + t_s + t_h}{7.5} = \frac{2985 + 300 + 80}{7.5} = 448.7 \text{ mm}$$
 $\ge D_p = 148.57 \text{ mm}$ OK

ここに,

D_p: 床版上面から塑性中立軸までの距離

d : 鋼桁高 t_s : 床版厚 t_h : ハンチ高

2) Check Web Slenderness

$$\frac{-2D_{cp}}{t_w} \leq \quad 3.76 \ \sqrt{\frac{E}{F_{yc}}} = \quad 3.76 \ \sqrt{\frac{200000}{355}} = \quad 89.2 \ mm$$

$$\geq D_{cp} = \quad 0 \ mm \qquad OK$$

ニコンパクト断面のためMult=Mpとなる.

ここに,

$$D_{cp}$$
 : 塑性断面での圧縮を受けるウェブの高さ $D_{cp}=D_p$ - t_s - t_h - $t_{cf}=148.57$ - 300 - 80 - 24 = -255.4 mm \rightarrow 0 mm

t_w : ウェブ厚 E: ヤング係数

Fvc: 圧縮フランジの降伏応力

t_{cf} : 圧縮フランジ厚

3) An additional check of section proportions

$$0.1 \le \frac{I_{yc}}{I_y} = \frac{843750000}{2074462583} = 0.407 \le 0.9$$
 OK

ここに、

$$I_{yc}$$
 : 圧縮フランジの弱軸まわりの断面二次モーメント
$$I_{yc} = 24 \ x \ 750^{\ 3} \ / \ 12 = 843750000 \ mm4$$
 I_{y} : 鋼桁の弱軸まわりの断面二次モーメント

$$I_y = 843750000 + 2926 \times 10^3 / 12 + 35 \times 750^3 / 12$$

= 2074462583 mm4

4) 全塑性モーメントMn の算出

			A(cm2)	Fc,Fy(N/mm2)	F(kN)	y(mm)	$F \cdot y(kN \cdot m)$	Σy(mm)
SLAB	5166.1 x	149	7675.31	40	26096	74	1939	74
U.FLG	750 x	24	180.00	355	6390	392	2505	
WEB	2926 x	10	292.60	355	10387	1867	19393	2035
L.FLG	750 x	35	262.50	355	9319	3347.5	31195	

$$M_p = 26096 \text{ x} \quad 1960 \text{ x} \quad 10^{-3} = 51154 \text{ kN} \cdot \text{m}$$

5) M_{ult} の算出

中間支点断面がノンコンパクト断面と仮定すると M_{ult} は下式となる.

$$M_{ult} = 1.3 R_h M_y \leq M_p$$

ここに,

 R_h : 1.0

M_y : 降伏モーメント

 $M_{y} = 31751 \text{ kN} \cdot \text{m}$

M_p : 全塑性モーメント

 $M_p = 51154 \text{ kN} \cdot \text{m}$

$$1.3 \times 1.0 \times 31751 = 41277 \text{ kN} \cdot \text{m} < 51154 \text{ kN} \cdot \text{m}$$

∴
$$M_{ult}$$
 = 41277 kN·m とする。

(2) Q_{ult}の算出

Baslerの式によりQult を算出する.

$$\tau_y = \sigma_y$$
 / $\sqrt{3} = 355$ / $\sqrt{3} = 204.96 \; \text{N/mm2}$

$$Q_p = \tau_v \times b \times t_w = 204.96 \times 2926 \times 10 \times 10^{-3} = 5997 \text{ kN}$$

$$\alpha = 2.136$$

$$k_s = 5.34 + 4.00 (1 / 2.136) ^2 = 6.22 : \alpha \ge 1$$

 $k_s = 4.00 + 5.34 (1 / 2.136) ^2 = ### : \alpha \le 1$

$$\tau_{cr}^{e} = k_{s} \frac{\pi^{2}E}{12(1-\mu^{2})} \left(\frac{t_{w}}{b}\right)^{2}$$

$$= 6.22 \frac{\pi^{2}E}{12(1-\mu^{2})} \left(\frac{10}{2926}\right)^{2} = 13 \text{ N/mm2}$$

$$\frac{Q_{ult}}{Q_p} = \frac{\tau_{cr}}{\tau_y} + \frac{\sqrt{3}}{2} \cdot \frac{1 - \frac{\tau_{cr}}{\tau_y}}{\sqrt{(1 + \alpha^2)}}$$

$$\frac{Q_{ult}}{5997} = \frac{13}{204.96} + \frac{\sqrt{3}}{2} \cdot \frac{1 - \frac{13}{204.96}}{\sqrt{(1 + 2.136^{2})}}$$

$$Q_{ult} = 2445 \text{ kN}$$

(3) 終局限界状態の照査

$$\left(\begin{array}{cccc} 1.7 & x & 23852 \\ \hline 41277 \end{array}\right)^4 + \left(\begin{array}{cccc} 1.7 & x & 591 \\ \hline 2445 \end{array}\right)^4 = 0.960 < 1.0$$

OK

(4) 使用限界状態の照査

$$11749 + 1420 + 10684 = 23852 \text{ kN} \cdot \text{m} < 31751 / 1.15 = 27610 \text{ kN} \cdot \text{m}$$

OK

完成時の照査(SECT-5)

完成時においては下式を満足することを確認する。

終局限界状態の照査

$$\left(\begin{array}{c} 1.7M \\ \hline M_{ult} \end{array}\right)^{-4} \quad + \quad \left(\begin{array}{c} 1.7Q \\ \hline Q_{ult} \end{array}\right)^{-4} \quad < \quad 1.0$$

ここに、

M : 完成時における曲げモーメント

Q : 完成時におけるせん断力

M_{ult}: AASHTO LRFD により算出した終局曲げモーメント

Qult: Basler式により算出した終局せん断力

使用限界状態の照査

$$M_{D1} + M_{D2} + M_{L} < M_{v} / 1.15$$

ここに、

 M_{D1} : 合成前死荷重による曲げモーメント M_{D2} : 合成後死荷重による曲げモーメント

M_L: 活荷重による曲げモーメント

M_v : 降伏モーメント

1. 設計条件

・支間長

• 桁配置

張り出し長 2.450 m 床版支間 5.500 m

床版

床版厚 300 mm ハンチ高 80 mm 設計基準強度 40 N/mm2

中間支点付近 材質 SD345

降伏応力 345 N/mm2

 橋軸方向鉄筋 (上段)
 D22 @ 100 d' = 67.5 mm

 橋軸方向鉄筋 (下段)
 D22 @ 100 d = 232.5 mm

・主桁

材質 SM490Y

降伏応力 355 N/mm2

上フランジ 750 mm x 24 mm パネル数 4 ウェブ 2926 mm x 18 mm $\alpha = 0.534$ 下フランジ 800 mm x 45 mm

断面積 1066.7 cm2

横桁

横桁間隔 6250 mm

・荷重係数(降伏モーメント算出時)

合成前・後死荷重に対して 1.30 合成後活荷重および衝撃に対して 2.00

• 断面力

負曲げ部

	ョげモーメント(kN·m)	せん断力 (kN·m)	J	照査結果		照査結果	果(使用
合成前死荷重	-13403.9	-	M_{ult}	40602	0.970	M_{total}	23167
合成後死荷重	-1587.4	-	Q _{ult}	10179	0.547	$M_{y}/1.15$	37272
活荷重	-8176.1	-	判定		0.975	判定	0.6216
合計	-23167.4	3274.7		OK			OK

2. 床版有効幅

床版の有効幅は道路橋示方書Ⅱ10.3.5により算出する。

支点上

```
・張出側
```

支間側

∴床版の有効幅 be = 1.5672 + 1.726 + 0.750 + 2 x 0.080 = 4.2032 m

3. 断面諸元

負曲げに対して

(1) 合成前断面

			A(cm2)	y(cm)	Ay(cm3)	$Ay^2(cm4)$	I(cm4)
U.FLG	750 x	24	180.00	-147.5	-26550	3916125	86
WEB	2926 x	18	526.68	0	0	0	3757632
L.FLG	800 x	45	360.00	148.55	53478	7944156.9	608
			1066.68		26928	11860282	3758326

(2) 合成後断面(綱桁+鉄筋)

			A(cm2)	y(cm)	Ay(cm3)	$Ay^2(cm4)$	I(cm4)
上鉄筋	42 x	D22	162.58	-179.95	-29257	5264730.7	-
下鉄筋	42 x	D22	162.58	-163.45	-26574	4343524.9	-
U.FLG	750 x	24	180.00	-147.5	-26550	3916125	86
WEB	2926 x	18	526.68	0	0	0	3757632
L.FLG	800 x	45	360.00	148.55	53478	7944156.9	
			1391.84		-28903	21468537	3758326

```
偏心量 \delta = -28903 / 1391.84 = -20.766 cm 断面二次モーメント I = 25226863 - 1391.84 x -20.766 ^2 = 24626678 cm4 断面係数(上段鉄筋) W_{bar} = 24626678 / 159.184 = 154705 cm3 断面係数(主桁上縁) W_{top\ of\ steel\ 3} = 24626678 / 127.934 = 192495 cm3 断面係数(主桁下縁) W_{bottmo\ of\ steel\ 3} = 24626678 / 171.566 = 143541 cm3
```

(3) 降伏モーメント

- 4. 負曲げ断面の照査
- (1) M_{ult} の算出

三上の式によりMultを算出する。

1) ψの算出

$$\psi = - y_t / y_c = - 125.53 / 167.07 = -0.751$$

- 2) σ_{ult.f} の算出
 - i) 横座屈により決定するフランジの終局応力度

$$\begin{split} \sigma_{cr\,f,1}^{\,\,e} &= \frac{\pi^2 E}{12} \, \left(\begin{array}{c} b_f \\ \overline{L} \end{array} \right)^2 \\ &= \frac{\pi^2 E}{12} \, \left(\begin{array}{c} 800 \\ \overline{6250} \end{array} \right)^2 \, = \, 2695.1 \, \, \text{N/mm2} \\ \\ \lambda &= \sqrt{\left(\sigma_{yf}/\sigma_{cr\,f,1}^{\,\,e}\right)} \, = \sqrt{\left(\begin{array}{c} 355 \ / \ 2695.1 \right)} = \, 0.3629 \\ \\ \sigma_{ult,1}/\sigma_{yf} &= \#\#\# \\ &= 1 \, - \, 0.412 \, \left(\begin{array}{c} 0.3629 \ - \, & 0.2 \ \right) \, = \, 0.9329 \\ \\ \sigma_{ult,1} &= 0.9329 \, \text{ x} \, & 355 \, = \, 331 \, \, \text{N/mm2} \\ \end{split}$$

ii) ねじれ座屈(板の局部座屈)により決定するフランジの終局応力度

∴
$$\sigma_{\text{ult,f}}$$
 = 331 N/mm2 とする。

- 3) $\sigma_{ult,w}$ の算出
 - i) ψ=-1 (曲げ) のとき

ii)-7<ψ<-1 (曲げ、引張り) のとき

$$\lambda = \sqrt{(\sigma_{yw}/\sigma_{cr}^{e})} = \sqrt{(355 / 125)} = 1.683$$

$$\sigma_{ult} = 0.6875 \text{ x} \qquad 355 = 244 \text{ N/mm2}$$

iii) ψ=1 (圧縮) のとき

$$\lambda = \sqrt{(\sigma_{yw}/\sigma_{cr}^{\ e})} = \sqrt{(355\ /27} = 3.602$$

$$\sigma_{ult,c} = 0.2444 \text{ x} \quad 355 = 87 \text{ N/mm2}$$

iv)-1<ψ<1 (曲げ、圧縮) のとき

$$\begin{split} \sigma_{ult} & = \frac{1}{\frac{1 + \psi}{2\sigma_{ult,c}} + \frac{1 - \psi}{2\sigma_{ult,b}}} \\ & = \frac{1}{\frac{1 + -0.751}{2 \times 87} + \frac{1 + -0.751}{2 \times 269}} = 213 \text{ N/mm2} \end{split}$$

$$\psi$$
 = -0.751 より $\sigma_{ult,w}$ = 213 N/mm2 とする。

4) M_{ult} の算出

i) $\sigma_{\text{ult,f}} \leq \sigma_{\text{ult,w}}$ (圧縮フランジ強度 \leq ウェブ強度) のとき

$$\frac{M_{ult}}{M_y} \; = \; \frac{\sigma_{ult,f}}{\sigma_{yf}}$$

$$\frac{M_{ult}}{42863} = \frac{331}{355}$$

$$M_{ult} = 39986 \text{ kN} \cdot \text{m}$$

ii) $\sigma_{ult.f} > \sigma_{ult.w}$ (圧縮フランジ強度>ウェブ強度)のとき

$$\frac{M_{ult}}{M_y} \; = \; \frac{\sigma_{ult,w}}{\sigma_{yf}} \left\{ \begin{array}{c} (1-\;\;\psi\;\;) \;\; (\frac{\sigma_{ult,f}}{\sigma_{ult,w}} \;\; -1\;\;) \\ 1+\;\; \frac{A_{ft}}{A_{fc}} \;\; + (\;\; 1+\; \psi^2 \;\; \frac{A_w}{3A_{fc}} \;\;) \end{array} \right\}$$

$$M_{ult} = 40602 \text{ kN} \cdot \text{m}$$

$$\sigma_{\text{ult,f}}$$
 > $\sigma_{\text{ult,w}}$ より M_{ult} = 40602 kN·m とする。

(2) Q_{ult}の算出

Baslerの式によりQultを算出する。

$$\tau_y = \sigma_y \ / \ \sqrt{3} = 355 \ / \ \sqrt{3} = 204.96 \ N/mm2$$

$$Q_p = \tau_y \times b \times t_w = 204.96 \times 2926 \times 18 \times 10^{-3} = 10795 \text{ kN}$$

$$\alpha = 0.534$$

$$\tau_{cr}^{e} = k_{s} \frac{\pi^{2}E}{12(1-\mu^{2})} \left(\frac{t_{w}}{b}\right)^{2}$$

$$= 22.73 \frac{\pi^{2}E}{12(1-\mu^{2})} \left(\frac{18}{2926}\right)^{2} = 155 \text{ N/mm2}$$

$$\frac{Q_{ult}}{Q_p} = \frac{\tau_{cr}}{\tau_y} + \frac{\sqrt{3}}{2} \cdot \frac{1 - \frac{\tau_{cr}}{\tau_y}}{\sqrt{(1 + \alpha^2)}}$$

$$\frac{Q_{\text{ult}}}{10795} = \frac{155}{204.96} + \frac{\sqrt{3}}{2} \cdot \frac{1 - \frac{155}{204.96}}{\sqrt{(1 + 0.534^{2})}}$$

$$Q_{ult} \quad = \quad \quad 10179 \ kN$$

(3)終局限界状態の照査

$$\left(\begin{array}{cccc} 1.7 & x & 23167 \\ \hline 40602 \end{array}\right)^4 + \left(\begin{array}{cccc} 1.7 & x & 3275 \\ \hline 10179 \end{array}\right)^4 = 0.975 < 1.0$$

OK

(4) 使用限界状態の照査

 $13404 + 1587 + 8176 = 23167 \text{ kN} \cdot \text{m} < 42863 / 1.15 = 37272 \text{ kN} \cdot \text{m}$

OK

3.5 数量の算出

3.5.1 算出条件

- (1) 主桁断面に関する数量を算出する.
- (2) 横桁,添接板については考慮しない.

3.5.2 数量算出結果

各設計法での主桁数量算出結果を下表に示す. 数量算出の詳細については次頁以降に示す.

表-3.5.1 工数算定要素集計表

				従来設計法	JH少補剛 薄板設計	波形鋼板 ウェブ	限界状態設計法
大型材片	材片数		個	84	84	84	84
	材片重量	1	kg	216,388	238,274	204,410	183,348
小型材片	材片数		個	388	206		146
	材片重量	2	kg	16,944	9,720		6,432
部材数		5	個	28	28	28	28
対傾構	加工鋼重	3	kg				
	部材数	7	個				
加工鋼重		1+2+3	kg	233,332	247,994	204,410	189,780
部材数		5+7	個	28	28	28	28
板継溶接延			m				
大型材T維	r型材T継手溶接延長 m		1,206	1,206	1,368	1,206	

数量総括表 (従来設計法)

種別 材片	幅	板厚	長さ	員数	単位重量	1個当たり重量	重量	材質	摘要
	(mm)	(mm)	(mm)		(kg/m3)	(kg/ケ)	(kg)		
(SECT-1)		員数2	,		()		(2)		
PL B	750	25	12119	2	7850	1784	3568	SM490YB	U.FLG
PL B	2925	15	12119	2	7850	4174	8348	SM490YA	WEB
PL B	750	28	12119	2	7850	1998	3996	SM490YB	L.FLG
PL S	180	14	2925	16	7850	58	928	SM400A	V.STIFF
PL S	160	13	1490	14	7850	24	336	SM400A	H.STIFF
(SECT-2))	員数2							
PL B	750	26	10937	2	7850	1674		SM490YB	U.FLG
PL B	2924	15	10937	2	7850	3766		SM490YA	WEB
PL B	750	38	10937	2	7850	2447		SM490YB	L.FLG
PL S	180	14	2924	14	7850	58		SM400A	V.STIFF
PL S	160	13	1490	12	7850	24	288	SM400A	H.STIFF
(SECT-3)		員数2							
PL B	750	26	10938	2	7850	1674		SM490YB	U.FLG
PL B	2924	15	10938	2	7850	3766		SM490YA	WEB
PL B	750	38	10938	2	7850	2447		SM490YB	L.FLG
PL S	180	14	2924	14	7850	58		SM400A	V.STIFF
PL S	160	13	1490	12	7850	24	288	SM400A	H.STIFF
(SECT-4)		員数2							
PL B	750	23	10937	2	7850	1481		SM490YB	U.FLG
PL B	2927	15	10937	2	7850	3769		SM490YA	WEB
PL B	750	32	10937	2	7850	2061		SM490YB	L.FLG
PL S	180	14	2927	14	7850	58		SM400A	V.STIFF
PL S	160	13	1490	18	7850	24	432	SM400A	H.STIFF
(SECT-5)		員数2							
PL B	750	29	10938	2	7850	1868		SM490YB	U.FLG
PL B	2921	20	10938	2	7850	5016		SM490YB	WEB
PL B	800	50	10938	2	7850	3435		SM520C-H	L.FLG
PL S	220	17	2921	14	7850	86		SM400A	V.STIFF
PL S	190	15	1490	14	7850	33	462	SM400A	H.STIFF
(SECT-6)		員数2							
PL B	750	23	9375	2	7850	1269		SM490YB	U.FLG
PL B	2927	15	9375	2	7850	3231		SM490YA	WEB
PL B	750	36	9375	2	7850	1987		SM490YB	L.FLG
PL S	180	14	2927	12	7850	58		SM400A	V.STIFF
PL S	160	13	1490	16	7850	24	384	SM400A	H.STIFF
(SECT-7)		22	0275	1	70.50	10.00	1270	CMAOONE	LLELC
PL B	750	23	9375	1	7850	1269		SM490YB	U.FLG
PL B	2927	15	9375	1	7850	3231		SM490YA	WEB
PL B	750	23	9375		7850	1269		SM490YB	L.FLG
PL S	180	14	2927	6	7850	58		SM400A	V.STIFF
PL S	160	13	1490	5	7850	24	120	SM400A	H.STIFF
(SECT-8)		22	10027	1	7050	1 4 0 1	1 401	CM400MD	HEIC
PL B	750 2927	23 15	10937	1	7850 7850	1481		SM490YB	U.FLG WEB
		23	10937 10937	1	7850 7850	3769		SM490YA	L.FLG
PL B	750			1		1481		SM490YB	
PL S PL S	180	14 13	2927	7	7850 7850	58 24		SM400A	V.STIFF
PL S	160	13	1490	6	/830	24	144	SM400A	H.STIFF
				-					
					△計 /→	· 振1 木八\	116666	1. ~	
					土)「市口	:桁1本分)	110000	kg	

数量総括表 (従来設計法)

鋼材	数量	総括表(全	·橋分)							
		SM520C-H	11-4/9/	50	13740					
	12	51112200 11	小計	- 50	13740					
	PL	SM490YB	7 PI	38	19576					
		51.1.7012		36	7948					
				32	8244					
				29	7472					
				28	7992					
				26	13392		64624			
				25	7136		0.00			
				23	22000					
				20	20064		49200			
			小計		113824					
	PL	SM490YA		15	88824					
			小計		88824					
	PL	SM400A		17	2408					
				15	924					
				14	9628					
				13	3984					
			小計		16944					
	合計	+			233332	kg				
積算	用数	女量総括表 (全橋分)						
大型	<u>!</u> 材片	ī数						84	個	
大型	材片	重量						216,388	kg	
小型	材片	ī数						388	個	
小型	<u>!</u> 材片	重量						16,944	kg	
加工	_重量	<u> </u>						233,332	kg	
内57	70K釒	岡重量						0	kg	
T継-	手溶	接長						1,206	m	
部材	数							28	個	

数量総括表(JH少補剛薄板設計)

種別	材片	幅	板厚	長さ	員数	単位重量	1個当たり重量	重量	材質	摘要
12274	1371	(mm)	(mm)	(mm)	,,,,,	(kg/m3)	(kg/ケ)	(kg)	1,7	71.42
(SEC	CT-1		員数2	(=====)		(-18, -110)	(8,7)	(8)		
(В	750	24	12119	2	7850	1712	3424	SM490YB	U.FLG
	В	2926	21	12119	2	7850	5846		SM490YB	WEB
	В	750	24	12119	2	7850	1712		SM490YB	L.FLG
	S	180	14	2926	4	7850	58		SM400A	V.STIFF
	CT-2		員数2			7000			51.110011	7.57111
	В	750	26	10937	2	7850	1674	3348	SM490YB	U.FLG
	В	2924	21	10937	2	7850	5272		SM490YB	WEB
PL	В	750	38	10937	2	7850	2447	4894	SM490YB	L.FLG
	S	180	14	2924	4	7850	58		SM400A	V.STIFF
(SEC	CT-3)	員数2							
	В	750	25	10938	2	7850	1610	3220	SM490YB	U.FLG
	В	2925	21	10938	2	7850	5274		SM490YB	WEB
	В	750	35	10938	2	7850	2254		SM490YB	L.FLG
PL	S	180	14	2925	4	7850	58	232	SM400A	V.STIFF
(SEC	CT-4))	員数2							
	В	750	23	10937	2	7850	1481	2962	SM490YB	U.FLG
PL	В	2927	15	10937	2	7850	3769	7538	SM490YA	WEB
PL	В	750	32	10937	2	7850	2061	4122	SM490YB	L.FLG
PL	S	180	14	2927	14	7850	58		SM400A	V.STIFF
PL	S	160	13	1490	18	7850	24	432	SM400A	H.STIFF
	CT-5)		員数2							
PL	В	750	29	10938	2	7850	1868	3736	SM490YB	U.FLG
PL	В	2921	20	10938	2	7850	5016		SM490YB	WEB
	В	800	50	10938	2	7850	3435	6870	SM520C-H	L.FLG
	S	220	17	2921	14	7850	86		SM400A	V.STIFF
	S	190	15	1490	14	7850	33	462	SM400A	H.STIFF
	CT-6)		員数2							
	В	750	23	9375	2	7850	1269		SM490YB	U.FLG
	В	2927	15	9375	2	7850	3231		SM490YA	WEB
	В	750	36	9375	2	7850	1987		SM490YB	L.FLG
	S	180	14	2927	12	7850	58		SM400A	V.STIFF
	S	160	13	1490	16	7850	24	384	SM400A	H.STIFF
	CT-7									
	В	750	23	9375	1	7850	1269		SM490YB	U.FLG
	В	2927	21	9375	1	7850	4524		SM490YB	WEB
	В	750	23	9375	1	7850	1269		SM490YB	L.FLG
	S	180	14	2927	1	7850	58	58	SM400A	V.STIFF
	CT-8)								a	
PL		750	23	10937	1	7850	1481		SM490YB	U.FLG
	В	2927	21	10937	1	7850	5277		SM490YB	WEB
	B	750	23	10937	1	7850	1481		SM490YB	L.FLG
PL	S	180	14	2927	2	7850	58	116	SM400A	V.STIFF
\sqcup						<u> </u>	-1/1 - 1 -/\\	122007	1	
						合計(主	術1本分)	123997	кд	

数量総括表(JH少補剛薄板設計)

錮材	数量	総括表(全	橋分)	I						
		SM520C-H	1114 23 7	50	13740					
\vdash	111	51415200-11	小計	50	13740					
	PL	SM490YB	\1.hl	38	9788					
	I L	SIVITYOTE		36	7948					
				35	9016					
				32	8244					
				29	7472					
				26	6696		49164			
				25	6440		47104			
			-	24	13696					
				23	22000					
				21	85170					
				20	20064		147370			
\vdash			小計	20	196534		14/3/0			
\vdash	DI	CM400X/A	/1,具上	15						
$\vdash\vdash$	PL	SM490YA	J. ⊉1.	15	28000					
	DI	CM 400 A	小計	17	28000					
\vdash	PL	SM400A		17	2408					
				15	924					
				14	4756					
			1 = 1	13	1632					
	\ <u> </u>		小計		9720					
	合計	-			247994	kg				
イナルケ	· III W		人区八							
		量総括表 (全橋分,)					les-	
大型	材片	数						84	個	
大型	材片	重量						238,274	kg	
小型	材片	重量						206	個	
小型	材片	重量						9,720	kg	
加工	重量	<u> </u>						247,994	kg	
内57	70K釒	町重量						0	kg	
T継	手溶	接長						1,206	m	
部材	数							28	個	
				İ						
			 							
\vdash			 							
			 							
ш		l						<u> </u>	l	

数量総括表 (波形:フランジ)

種別	材片	幅	板厚	長さ	員数	単位重量	1個当たり重量	重量	材質	摘要
		(mm)	(mm)	(mm)		(kg/m3)	(kg/ケ)	(kg)		
(SEC	T-1)) (員数2			<u> </u>		()		
PL	В	750	28	12119	2	7850	1998	3996	SM490YB	U.FLG
PL	В	2925	9	13747	0	7850	2841		SM490YA	WEB
PL	В	750	40	12119	2	7850	2854	5708	SM490YB	L.FLG
(SEC	CT-2))	員数2							
PL	В	750	30	10937	2	7850	1932	3864	SM490YB	U.FLG
PL	В	2924	9	12406	0	7850	2563	0	SM490YA	WEB
PL	В	750	50	10937	2	7850	3220	6440	SM520C-H	L.FLG
(SEC	CT-3)		員数2							
PL	В	750	30	10938	2	7850	1932	3864	SM490YB	U.FLG
	В	2924	9	12408	0	7850	2563		SM490YA	WEB
PL	В	750	50	10938	2	7850	3220	6440	SM520C-H	L.FLG
(SEC	CT-4)		員数2							
PL	В	750	25	10937	2	7850	1610	3220	SM490YB	U.FLG
PL	В	2927	10	12406	0	7850	2851	0	SM490YA	WEB
PL	В	750	35	10937	2	7850	2254	4508	SM490YB	L.FLG
(SEC	CT-5))	員数2							
PL	В	750	41	10938	2	7850	2640	5280	SM490YB	U.FLG
	В	2921	12	12408	0	7850	3414	0	SM490YA	WEB
PL	В	800	59	10938	2	7850	4053	8106	SM520C-H	L.FLG
(SEC	CT-6))	員数2							
	В	750	23	9375	2	7850	1269	2538	SM490YB	U.FLG
	В	2927	9	10635	0	7850	2199	0	SM490YA	WEB
	В	750	42	9375	2	7850	2318	4636	SM520C-H	L.FLG
(SEC	CT-7))								
	В	750	23	9375	1	7850	1269	1269	SM490YB	U.FLG
	В	2927	9	10635	0	7850	2199	0	SM490YA	WEB
	В	750	27	9375	1	7850	1490	1490	SM490YB	L.FLG
(SEC	CT-8))								
PL	В	750	23	10937	1	7850	1481	1481	SM490YB	U.FLG
PL	В	2927	9	12406	0	7850	2565	0	SM490YA	WEB
PL	В	750	27	10937	1	7850	1739	1739	SM490YB	L.FLG
						合計(主	析1本分)	64579	kg	

数量総括表 (波形:フランジ)

細材	一数是	と 総括表(全	極分)							
坚門7/2 ,		SM520C-H	1101/3/	59	16212					
	1 L	3W1320C-11		50	25760					
				42	9272					
				41	10560		45592			
			小計	41	61804		45392	-		
	DI	CM400MD	小町	40						
	PL	SM490YB		40	11416					
				35	9016					
				30	15456					
				28	7992		20022			
				27	6458		38922			
				25	6440					
			,	23	10576		17016			
<u> </u>			小計		67354			ļ		
	PL	SM490YA		12	0					
				10	0					
				9	0					
			小計		0					
	合計	<u> </u>			129158	kg				
積算	[用数	女量総括表 (全橋分)							
大型	<u>!</u> 材片	r数						56	個	
大型	<u>!</u> 材片	重量						129,158	kg	
小型	<u>!</u> 材片	i数 i重量						0	個	
小型	<u>!</u> 材片	i 重量						0	kg	
加工	.重量	<u>t</u>						129,158	kg	
内57	70K釒	岡重量						0	kg	
T継.	手溶	接長						0	m	
部材	数							28	個	
								 		
				-						
\vdash				-				 		
								 		
\vdash			-	-				-		
\vdash								-		
			<u> </u>					l .		

数量総括表 (波形:ウェブ)

種別	材片	幅	板厚	長さ	員数	単位重量	1個当たり重量	重量	材質	摘要
		(mm)	(mm)	(mm)		(kg/m3)	(kg/⅓)	(kg)		
(SEC	T-1)))	員数2	,		· · ·	(2 - /	(2)		
PL	В	750	28	12119	0	7850	1998	0	SM490YB	U.FLG
PL	В	2925	9	13747	2	7850	2841	5682	SM490YA	WEB
PL	В	750	40	12119	0	7850	2854	0	SM490YB	L.FLG
(SEC	CT-2)		員数2							
PL	В	750	30	10937	0	7850	1932	0	SM490YB	U.FLG
PL	В	2924	9	12406	2	7850	2563	5126	SM490YA	WEB
PL	В	750	50	10937	0	7850	3220	0	SM520C-H	L.FLG
(SEC	CT-3)		員数2							
	В	750	30	10938	0	7850	1932		SM490YB	U.FLG
PL	В	2924	9	12408	2	7850	2563	5126	SM490YA	WEB
PL	В	750	50	10938	0	7850	3220	0	SM520C-H	L.FLG
(SEC	CT-4)		員数2							
PL	В	750	25	10937	0	7850	1610	0	SM490YB	U.FLG
	В	2927	10	12406	2	7850	2851	5702	SM490YA	WEB
PL	В	750	35	10937	0	7850	2254	0	SM490YB	L.FLG
(SEC	CT-5)		員数2							
PL	В	750	41	10938	0	7850	2640	0	SM490YB	U.FLG
PL	В	2921	12	12408	2	7850	3414	6828	SM490YA	WEB
PL	В	800	59	10938	0	7850	4053	0	SM520C-H	L.FLG
(SEC	CT-6)		員数2							
	В	750	23	9375	0	7850	1269		SM490YB	U.FLG
	В	2927	9	10635	2	7850	2199	4398	SM490YA	WEB
	В	750	42	9375	0	7850	2318	0	SM520C-H	L.FLG
(SEC	CT-7)									
	В	750	23	9375	0	7850	1269		SM490YB	U.FLG
	В	2927	9	10635	1	7850			SM490YA	WEB
	В	750	27	9375	0	7850	1490	0	SM490YB	L.FLG
(~	CT-8)									
	В	750	23	10937	0	7850	1481		SM490YB	U.FLG
	В	2927	9	12406	1	7850	2565		SM490YA	WEB
PL	В	750	27	10937	0	7850	1739	0	SM490YB	L.FLG
						合計(主	·桁1本分)	37626	kg	

数量総括表 (波形:ウェブ)

細材	数量	総括表(全	橋分)							
2017		SM520C-H	1181 / 3 /	59	0					
	112	51413200-11		50	0					
				42	0					
				41	0		0			
			小計	71	0		0			
	DI	SM490YB	√1.□I	40	0					
	1 L	31V14901D	-	35	0					
				30	0					
				28	0					
-				27	0		0			
				25	0		U			
_				23	0		0			
			.I. ∌ I.	23			U			
_	DI	CM400374	小計	10	12656					
	PL	SM490YA		12	13656					
				10	11404					
			1 = 1	9	50192					
	A =	ļ	小計		75252					
	合計	<u> </u>			75252	kg				
-C-1- hah										
槓貨	上用数	量総括表 (全橋分,)					les.	
大型	材片	数						28	個	
大型	材片	重量						75,252	kg	
小型	材片	一数 一重量						0	個	
小型	<u>!</u> 材片	重量						0	kg	
加工	_重量	Ł						75,252	kg	
内57	70K釒	岡重量							kg	
T継	手溶	接長						1,368	m	
部材	数							28	個	
			-							

数量総括表(限界状態設計法)

種別	材片	幅	板厚	長さ	員数	単位重量	固当たり重	重量	材質	摘要
		(mm)	(mm)	(mm)		(kg/m3)	(kg/ħ)	(kg)		
	CT-1)		員数2							
	В	750	24	12119	2	7850	1712		SM490YB	U.FLG
	В	2926	9	12119	2	7850	2505		SM490YA	WEB
	В	750	27	12119	2	7850	1926		SM490YB	L.FLG
PL	S	120	10	2926	16	7850	28	448	SM400A	V.STIFF
	CT-2)		員数2							
	В	750	24	10937	2	7850	1545		SM490YB	U.FLG
PL	В	2926	10	10937	2	7850	2512		SM490YA	WEB
	В	750	35	10937	2	7850	2254		SM490YB	L.FLG
	S CT-3	120	10 員数2	2926	4	7850	28	112	SM400A	V.STIFF
	B	750	具数2 24	10938	2	7850	1546	2002	SM490YB	U.FLG
	В	2926	12	10938	2	7850 7850	3015		SM490YA	WEB
PL	В	750	33	10938	2	7850	2125		SM490YB	L.FLG
PL	S	120	10	2926	4	7850	2123		SM400A	V.STIFF
	S	150	12	2926	2	7850	41		SM400A	V.STIFF
	CT-4)		員数2	2,20		, 65 0		- 02	51.11.0011	, 1111
	В	750	24	10937	2	7850	1545	3090	SM490YB	U.FLG
	В	2926	12	10937	2	7850	3015		SM490YA	WEB
PL	В	750	29	10937	2	7850	1867	3734	SM490YB	L.FLG
PL	S	150	12	2926	14	7850	41	574	SM400A	V.STIFF
(SEC	CT-5))	員数2							
	В	750	24	10938	2	7850	1546		SM490YB	U.FLG
PL	В	2926	18	10938	2	7850	4522		SM490YA	WEB
	В	800	45	10938	2	7850	3091		SM520C-H	L.FLG
PL	S	210	17	2926	14	7850	82	1148	SM400A	V.STIFF
	CT-6)		員数2	0075		5050	1225	2650	C) (100)	LI DI G
	В	750	24	9375	2	7850	1325		SM490YB	U.FLG
	В	2926	12	9375	2	7850	2584		SM490YA	WEB
PL PL	B S	750 150	32 12	9375 2926	12	7850 7850	1766 41		SM490YB SM400A	L.FLG V.STIFF
	CT-7)		12	2920	12	7830	41	492	51V14UUA	V.511FF
	B	750	24	9375	1	7850	1325	1325	SM490YB	U.FLG
	В	2926	11	9375	1	7850	2369		SM490YA	WEB
	В	750	24	9375	1	7850	1325		SM490YB	L.FLG
PL	S	120	10	2926	1	7850	28		SM400A	V.STIFF
	S	150	12	2926	2	7850	41		SM400A	V.STIFF
	CT-8)		_							
	В	750	24	10937	1	7850	1545	1545	SM490YB	U.FLG
	В	2926	11	10937	1	7850	2763	2763	SM490YA	WEB
	В	750	24	10937	1	7850			SM490YB	L.FLG
	S	120	10	2926	2	7850	28		SM400A	V.STIFF
PL	S	150	12	2926	2	7850	41	82	SM400A	V.STIFF
						合計(主	桁1本分)	94890	kg	

数量総括表 (限界状態設計法)

細材	*数量	と 総括表(全	·橋分)				1			
		SM520C-H	111117777	45	12364					
	1 L	51/15200 11	小計	- 10	12364					
	PL	SM490YB	, 1 HI	35	9016					
	1 1	SIVITYOTE		33	8500					
				32	7064					
				29	7468					
				27	7704		39752			
				24	48356		37132			
			小計	27	88108					
	PL	SM490A	\(\frac{1}{1}\).□	18	18088					
	1 L	SIVITOA		12	34456					
				11	10264					
				10	10048					
				9	10048					
\vdash			小計	,	82876					
	PL	SM400A	(1) H	17	2296					
\vdash	11	DIVITOUA	 	12	2624					
\vdash	_		 	10	1512					
			小計	10	6432					
	合計	<u> </u>	√1.¤I		189780	kα				
	ЦР	<u> </u>			107700	ĸg				
 積質	L i 田逝	】 女量総括表()						
大型	 	上数		/				84	個	
大型	 材	重量						183,348		
小型								146	個	
小型	 材	重量						6,432		
加工	. 电晶	<u> </u>						189,780	ko	
内57	70K £	· 阿重量							kg	
		[1] 						1,206	m	
部材								28	個	
HIA I. 1	25/							20	III	
\vdash										
\vdash			-							
			-							
\vdash			-							
\vdash										
\vdash			-							
\vdash										
\vdash										

3.6 製作コスト算出

3.6.1 製作コスト算出方針

各設計法での数量算出結果より、コスト算出を行う. コスト算出方法および方針は基本的に文献 4 に 準拠する.

- (1) 費用は、工場製作費(直接工事費+間接工事費)に着目する.
- (2) 直接工事費は、材料費と、製作費を計上する. 耐候性橋梁を想定しているため、工場塗装費は考慮しない.
- (3) 間接工事費は、間接労務費(製作費の 38%)、工場管理費(製作費+間接労務費の 28.8%)を計上する.
- (4) 材料費は、鋼材費と副資材費を計上する.
- (5) 鋼材費はベース価格に対し、規格エキストラと寸法エキストラを計上する.

ベース価格は文献 5 より 75,000 円/t とする.

規格エキストラ、降伏点一定エキストラは文献5よりそれぞれ設定する.

寸法エキストラは文献 4 のIV-7-①-2 頁 (ガーター形式) より 1,500 円/t とする.

(6) 鋼種別単価(円/t) は次式により算出する. (表-3.6.1)

鋼種別単価=[ベース価格+エキストラ]× $(1+\alpha)$ -0.7× α × (スクラップ単価)

α:鋼材の割増率(ロス率)で,鋼板の場合10%

スクラップ単価は22,500円/tとする.

ベース単価 規格エキストラ -Hエキストラ 寸法エキストラ スクラップ 鋼種別単価 材質 板厚 SM520C-H 50<t≤100 75,000 29,000 2,000 1,500 22,500 114,800 SM520C-H 38<t≦50 75,000 26,000 2,000 1,500 22,500 111,600 SM490YB 38<t≦50 75,000 22,000 1,500 22,500 105, 100 SM490YB $25 < t \le 38$ 75,000 19,000 1,500 22, 500 101,800 SM490YB 75,000 16,000 22,500 98,600 t≦25 1,500 SM490YA t≤25 75,000 13,000 1,500 22,500 95, 400 SM490A t≤50 75,000 12,000 1,500 22,500 94,300 75,000 SM400A t≦38 3,500 1,500 22,500 85, 100

表-3.6.1 鋼種別単価表

- (7) 副資材費は、工場製作にかかわる溶接材料及び消耗材料で、加工鋼重当り溶接材料込みで文献 4 のIV -7-①-4 頁より 11,300 円/t とする.
- (8) 製作費は、本体の加工組立工数 (Y1)、本体の溶接工数 (Y2)、本体の仮組立工数 (Y3)を計上する. 対傾構組立工数 (Y4)、付属物製作工数 (Y5) は考慮しない.
- (9) 橋梁形式別標準工数は、文献6の「少数主桁」の値を用いる.
- (10) 本体の仮組立工数 (Y3) には仮組立省略の補正係数 ε (-41%) を考慮する.
- (11) 波型ウェブの製作工数は文献6により算出する.
- (12) 波型ウェブの製作工数算出条件は、鋼材の割増率 (P1) は鋼板 (1.08)、標準製作工数 (P2) は上フランジ付き桁高変化なしの 5.4 とし、アングルジベル等は考慮しない.
- (13) 工数単価(直接労務費)は、文献4のIV-7-①-14頁より27,400円とする.

3.6.2 製作コスト算出結果

各設計法での主桁製作コスト算出結果を下表に示す. 製作コスト算出の詳細については次頁以降に示す.

表-3.6.2 主桁製作コスト算出結果

		従来設計法	JH少補剛 薄板設計	波形鋼板 ウェブ	限界状態 設計法	備考
概算鋼重	t	233.332	247.994	204.410	189.780	
材料費	円	25,515,621	27,369,665	23,277,934	20,701,559	
製作費	円	14,679,002	13,030,070	19,193,426	10,706,276	波形のみ塗装費用を含む
間接労務費	円	5,578,020	4,951,426	7,293,501	4,068,384	製作費×0.38
工場管理費	円	5,834,022	5,178,670	7,628,234	4,255,102	(製作費+間接労務費)×0.288
合計	円	51,606,665	50,529,831	57,393,095	39,731,321	

従来設計法

			柞	才	料	費			
項	Ħ	名 称	規格	単位	数量	単 価	金 額	摘	要
鋼 木	扳	SM520C-H	38 <t≦50< td=""><td>t</td><td>13.740</td><td>111,600</td><td>1,533,384</td><td></td><td></td></t≦50<>	t	13.740	111,600	1,533,384		
IJ		SM490YB	25 <t≦38< td=""><td>ıı</td><td>64.624</td><td>101,800</td><td>6,578,723</td><td></td><td></td></t≦38<>	ıı	64.624	101,800	6,578,723		
"		SM490YB	t≦25	ı,	49.200	98,600	4,851,120		
IJ		SM490YA	t≦25	II.	88.824	95,400	8,473,809		
"		SM400A	t≦38	ıı	16.944	85,100	1,441,934		
副資材	費			t	233.332	11,300	2,636,651		
計							25,515,621		

		ff	角	作	星	₽					
連続飯桁		3	×	IP	7	₹					

項目	名 称	規格	単位	数量		単	価	金	額	摘	要
	直接労務費		人	535	.73		27,400		14,679,002		
全体製作工数	Y=	{(Y1+Y2)xK+	Y3+Y4}	x (1+α) x	(1+β) x	(1+γ) x	(1+δ)	+Y5		
	=	工数 535.73					······································				
		Y1:	本体の加	 工組立工数 			423.73				
		Y2:	本体の溶				67.54				
		K:	570材相 による影				1.00				
		Y3:		[[祖立工数			44.46				
		Y4:	体傾構 及び横構	 組立工数			0.00				
		Y5:	付属物の	製作工数			0				
		α:	重連によ	 る補正率			0.00%				
		β:	斜橋また 曲線橋に	:は :よる補正率 :			0.00%				
		γ:		 による補正	率		0.00%				
		δ:	平均 支間長に	 -よる補正率			0.00%				

基続飯桁		\$	Ψ	作	費		
項目	名 称	規格	単位	数量	単価	金額	摘 要
	本体の 加工組立工数	Y1=	A1 x a1 x	x K1 + A2 x a2 x	 x K2		
		=	423.73				
		A1:	大型材片	数		84個	
		A2:	小型材片			388個	
			形式によ	オ片当りの橋梁 こる標準工数		2.73	
			形式によ	オ片当りの橋梁 こる標準工数		0.48	
		K1:	重量によ	オ片当りの こる影響係数	KG 216,388	1.06	X= 1.09
		K2:		オ片当りの こる影響係数	16,944	0.97	X= 0.96
	本体の溶接工数	Y2=	B1 x b1 /	10 + B2 x b2 /	10		
		=	67.54				
		B1:	大型大片	 板継溶接延長 		0m	
		B2:		英延長(実長)	oly lo co	1,206m	
		b1:	橋梁形式	「板継溶接10m) だによる標準工	数	0.81	
		b2:		「T継手溶接延 じによる標準工		0.56	

連続鈑桁		f and a second	Ą	作	費		
項 目		規格	単位	数量	単 価	金額	摘要
	570材相当品 による影響割増	K=	1 + W0 x	K3			
		=	1.00				
		W0:		「鋼重に占める	割合	0.00%	0kg 233,332kg
		K3:	570材相 による景			0.28	
	本体の 仮組立工数	Y3=	СхсхК	4 x (1+ε)			
		_	44.46				
		C:		体部材数		28個	
		c:	部材の橋 による標	標準工数		1.95	
		K4:		る影響係数	KG 233,332	1.38	X= 1.46
		:3	仮組立の 工数低洞)簡略化による		-41%	

車続鈑桁		景		作	費		
項目	名称体傾構及び	規格	単位	数量	単価	金額	摘 要
	横構組立工数	Y4=	(C1 x c1	x K5) + (C2 x o	2 x K5)		
		_	0.00				
		C1:	体傾構部	材数		0個	
			横構部材			0個	
	00.000.000.000.000	c1:	体傾構 1 当りの標	厚準工数		0.00	
		c2:	横構1部 当りの標	厚準工数		0.00	
		K5:	(主桁高n 面積によ	n x 主桁間隔m こる影響係数	0.000m	体傾構 0.00	X= 0.00
					桁間隔 0.000m	横 構 0.00	

				想	AT .	作		費					
連続飯桁								T				Ţ	
項	E	名 称	規	格	単位	数	量	単	価	金	額	摘	要
												00000000000000000000000000000000000000	
		付属物の			Dxdx($(1 + \beta)$	+			
		製作工数		Y 5=	F x f x (1	+ β) + C	ixgx($(1 + \alpha)$					
				=	0.00								
				D:	伸縮継手	の加工	罁重			0.0	00t		
				d:	伸縮継手	-の標準	工数			0.	00		
				E:	高欄の加	1工鋼重				0.0	00t		
				e:	高欄の標	準工数				0.	00		
				F:	防護柵の	加工鋼	車			0.0	00t		
				f:	防護柵の	標準工	数			0.	00		
				G:	検査路の	加工鋼	重			0.0	00t		
				g:	検査路の	標準工	数			0.	00		
				α:	重連によ	る補正	率			0.0	0%		
				β:	斜橋によ	る補正	率			0.0	0%		
				β:	曲線橋に	よる補	正率			0.0	0%	ателения по по по по по по по по по по по по по	

JH少補剛薄板設計

		柞	オ	料	費			
項目	名 称	規格	単位	数量	単 価	金 額	摘	要
鋼 板	SM520C-H	38 <t≦50< td=""><td>t</td><td>13.740</td><td>111,600</td><td>1,533,384</td><td></td><td></td></t≦50<>	t	13.740	111,600	1,533,384		
11	SM490YB	25 <t≦38< td=""><td>JJ</td><td>49.164</td><td>101,800</td><td>5,004,895</td><td></td><td></td></t≦38<>	JJ	49.164	101,800	5,004,895		
11	SM490YB	t≦25	IJ	147.370	98,600	14,530,682		
11	SM490YA	t≦25	JJ	28.000	95,400	2,671,200		
II.	SM400A	t≦38	IJ	9.720	85,100	827,172		
副資材費			t	247.994	11,300	2,802,332		
計						27,369,665		
	маланананана							

		ff	义	作		費					
連続飯桁		3	×	IP		貝					
項目	名称	規格	単位	数 』	量	単	価	金	額	摘	要
	直接労務費		人	4	75.55		27,400		13,030,070		
全体製作工数	Y=	{(Y1+Y2)xK+	Y3+Y4}	x (1+α)	x (1-	+β) x	(1+γ) x	(1+δ)	+Y5		
	=	工数 475.55									
		Y1:	本体の加	工組立工	数		360.98				
	na.co.co.co.co.co.co.co.co.co.co.co.co.co.	Y2:	本体の落				67.54				
		K:	570材相 による影				1.00				
		Y3:		紅立工数			47.03				
		Y4:	体傾構 及び横様	- 青組立工数			0.00				
		Y5:	付属物σ	製作工数			0				
		α:	重連によ	る補正率			0.00%				
•		β:	斜橋また 曲線橋に	<u>-</u> は -よる補正	率		0.00%				
•		γ:		とによる補	正率		0.00%				
	***************************************	δ:	平均 支間長に	 よる補正	率		0.00%				

基続飯桁		\$	ff	作	費		
項	1 名称	規格	単位	数量	単 価	金額	摘 要
	本体の 加工組立工数	Y1=	A1 x a1 >	K1 + A2 x a2 x	K K2		
		=	360.98				
		A1:	大型材片	数		84個	
		A2:	小型材片			206個	
			形式によ	片当りの橋梁 る標準工数		2.73	
			形式によ	オ片当りの橋梁 こる標準工数		0.48	
		K1:	重量によ		KG 238,274	1.13	X= 1.19
		K2:			9,720	1.03	X= 1.04
	本体の溶接工数	Y2=	B1 x b1 /	10 + B2 x b2 /	10		
		_	67.54				
		B1:	大型大片	板継溶接延長		0m	
		B2:		受延長(実長)		1,206m	
		b1:	橋梁形式	板継溶接10m) による標準工	数	0.81	
		b2:		T継手溶接延 による標準工		0.56	

) (0 1		\$	角	作	費		
連続飯桁 項 目	名称	規格	単位	数量	単価	金額	摘要
タ ロ	570材相当品	が 1日	平仏	数 里	半 叫	亚 假	100 女
	による影響割増	K=	1 + W0 x	K3			
		=	1.00				
		W0:	570材相 本体加工	当品の ニ鋼重に占める	割合	0.00%	0kg 247,994kg
			570材相	当品			
		K3:	による景	多響係数		0.28	
				VIII III III III III III III III III II			Volume VV construction of the Construction of
	本体の 仮組立工数	Y3=	СхсхК	4 x (1+ε)			
		_	47.03				
		C:				28個	
		c.	部材の橋 による橋			1.95	OR THE PROPERTY OF THE PROPERT
			1部材置	≦りの	KG	1.75	X=
		K4:		る影響係数	247,994	1.46	1.56
		ε:	仮組立の 工数低源)簡略化による 成		-41%	

連続鈑桁		\$	Ä	作	費		
項目	名称	規格	単位	数量	単価	金額	摘 要
	対傾構及び 横構組立工数	Y4=	(C1 x c1	x K5) + (C2 x o	22 x K5)		
		_	0.00				
		C1:	体傾構剖	B材数		0個	
		C2:	横構部材			0個	
	00.000.000.000.000.000		体傾構 1 当りの標	厚準工数		0.00	
			横構1部 当りの標	厚準工数		0.00	
		K5:	(主桁高n 面積によ	n x 主桁間隔m こる影響係数	0.000m	体傾構 0.00	X= 0.00
					桁間隔 0.000m	横 構 0.00	
	L. Comments and the comments are comments and the comments and the comments and the comments are comments and the comments and the comments and the comments ar						

				想	AT .	作		費					
連続飯桁								T				Ţ	
項	E	名 称	規	格	単位	数	量	単	価	金	額	摘	要
												00000000000000000000000000000000000000	
		付属物の			Dxdx($(1 + \beta)$	+			
		製作工数		Y 5=	F x f x (1	+ β) + C	ixgx($(1 + \alpha)$					
				=	0.00								
				D:	伸縮継手	の加工	罁重			0.0	00t		
				d:	伸縮継手	-の標準	工数			0.	00		
				E:	高欄の加	1工鋼重				0.0	00t		
				e:	高欄の標	準工数				0.	00		
				F:	防護柵の	加工鋼	車			0.0	00t		
				f:	防護柵の	標準工	数			0.	00		
				G:	検査路の	加工鋼	重			0.0	00t		
				g:	検査路の	標準工	数			0.	00		
				α:	重連によ	る補正	率			0.0	0%		
				β:	斜橋によ	る補正	率			0.0	0%		
				β:	曲線橋に	よる補	正率			0.0	0%	ателения по по по по по по по по по по по по по	

			柞	t	料	費			
項	3	名 称	規格	単位	数量	単 価	金 額	摘	要
鋼 柞	反	SM520C-H	50 <t≦100< td=""><td>t</td><td>16.212</td><td>114,800</td><td>1,861,137</td><td></td><td></td></t≦100<>	t	16.212	114,800	1,861,137		
"		SM520C-H	38 <t≦50< td=""><td>"</td><td>45.592</td><td>111,600</td><td>5,088,067</td><td></td><td></td></t≦50<>	"	45.592	111,600	5,088,067		
11		SM490YB	38 <t≦50< td=""><td>11</td><td>11.416</td><td>105,100</td><td>1,199,821</td><td></td><td></td></t≦50<>	11	11.416	105,100	1,199,821		
"		SM490YB	25 <t≦38< td=""><td></td><td>38.922</td><td>101,800</td><td>3,962,259</td><td></td><td></td></t≦38<>		38.922	101,800	3,962,259		
11		SM490YB	t≦25	"	17.016	98,600	1,677,777		
11		SM490YA	t≦25	"	75.252	95,400	7,179,040		
副資材費	₽ T			t	204.410	11,300	2,309,833		
計							23,277,934		
		VACORIA DE LA CONTRA DELA CONTRA DE LA CONTRA DELA CONTRA DELA CONTRA DELA CONTRA DE LA CONTRA DELA CONTRA DE LA CONTRA DE LA CONTRA DELA CONTRA DELA CONTRA DE LA CONTRA DELA CONTRA DELA CONTRA DELA CONTRA DE LA CONTRA DELA CO							

	製	作	費	(波	形鋼材	·····································		
項目	名称	規格	単位	数量	単 価	金 額	摘	要
	直接労務費		人	447	27,400	12,247,800		
			t	75.252				
			人目/t	7.4	上下フランジ(桁高変化有り		
			人目/t	7.1	上下フランジ(桁高変化無し		
			人目/t	5.7	上フランジ付	桁高変化有り		
			人目/t	5.4	上フランジ付	桁高変化無し		
			人目/t	14.8	アングルジベル	<u></u>		
			人日/t	9.1	パーフォンド	~~ <i>I</i> L		
		質量割り増し		0.10				

連続鈑桁	製	作	† (上下	フ ラ こ	/ ジ)		
項目	名 称	規格	単位	数量	単 価	金額	摘	要
	直接労務費		人	253.49	27,400	6,945,626		
全体製作工数	Y=	{(Y1+Y2)xK+	Y3+Y4}	x (1+α) x (1-	+β) x (1+γ) x	(1+δ) +Y5		
	=	工 数 253.49						
		Y1:	本体の加	1工組立工数	149.82			
		Y2:	本体の落		76.61			
		K:	570材相 による影		1.00			
Acceptance		Y3:		組立工数	27.06			
		Y4:	体傾構 及び横構	組立工数	0.00			
		Y5:	付属物の	製作工数	0			
Andrea		α:		る補正率	0.00%			
		β:	斜橋また 曲線橋に	は よる補正率	0.00%			
		γ:	桁高変化	による補正率	0.00%			
		δ:	平均 支間長に	よる補正率	0.00%			

連続鈑桁	製	作	† (上下	フ ラ :	ン ジ)	
項 目	名 称	規格	単位	数量	単 価	金額	摘要
	本体の 加工組立工数	Y1=	A1 x a1 x	K1 + A2 x a2 x	K2		
		=	149.82				
		A1:	大型材片	数		56個	
		A2:	小型材片			0個	
		a1:	形式によ	「片当りの橋梁 こる標準工数		2.73	
		a2:	形式によ	片当りの橋梁 る標準工数		0.48	
		K1:	重量によ	片当りの る影響係数	KG 129,158	0.98	X= 0.97
		K2:		片当りの る影響係数	0	0.14	X= 0.00
	本体の溶接工数	Y2=	B1 x b1 /	10 + B2 x b2 / 1	10		
		_	76.61				
		B1:		板継溶接延長		0m	
		B2:		延長(実長)		1,368m	
		b1:	橋梁形式	板継溶接10m による標準工	数	0.81	
		b2:		T継手溶接延 による標準工		0.56	

基続飯桁	製	作	* (上下	フラン	/ ジ)	
項目	名称	規 格	単位	数量	単価	金 額	摘 要
	570材相当品 による影響割増	K=	1 + W0 x K				
	0.0000	=	1.00				
		W0:	570材相当 本体加工銀	品の 剛重に占める	割合	0.00%	0kg 129,158kg
		K3:	570材相当 による影響			0.28	
	本体の 仮組立工数	V3=	CxcxK4	y (1+g)			
	XIII - 1 - 3X	=		A (1 · 0)			
		C:	本体の全体			28個	
		c:	部材の橋須による標準	售工数		1.95	
		K4:	1部材当り重量による	5影響係数	KG 129,158	0.84	X= 0.81
		ε:	仮組立の制 工数低減	育略化による)	-41%	

連続飯桁		製	作	費 (上下	フラン	/ ジ)	
項	目	名 称	規格	単位	数量	単 価	金額	摘 要
		体傾構及び 横構組立工数	Y4=	(C1 x c1	x K5) + (C2 x c	2 x K5)		
			=	0.00				
	······································		C1:	体傾構部] 3材数 		0個	
			C2:	横構部材			0個	
			c1:	体傾構 1 当りの標	準工数		0.00	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		c2:	横構1部	準工数		0.00	
			K5:		n x 主桁間隔m る影響係数	0.000m	体傾構 0.00	X= 0.00
			***************************************			桁間隔 0.000m	横 構 0.00	

	製	 作	• (	上下	フラン	ノ ジ )	
連続鈑桁		I					
項目	名 称	規格	単位	数量	単 価	金 額	摘 要
		navonanono m					
	付属物の		Dxdx(	$1 + \alpha$ ) x $(1 + \beta)$ -	Exex(1+β)	+	
	製作工数	Y5=	F x f x (1	$+\beta$ ) + G x g x (	$1 + \alpha$ )		
		=	0.00				
		D:	伸縮継手	の加工鋼重		0.000t	
		d:	伸縮継手	の標準工数		0.00	
		E:	高欄の加	1工鋼重		0.000t	
		e:	高欄の標	準工数		0.00	
		F:	防護柵の	加工鋼重		0.000t	
		f:	防護柵の	標準工数		0.00	
		G:	検査路の	加工鋼重		0.000t	
		g:	検査路の	標準工数		0.00	
		α:	重連によ	る補正率		0.00%	
		β:	斜橋によ	る補正率		0.00%	
		β:	曲線橋に	よる補正率		0.00%	

#### 限界状態設計法

			柞	才	料	費			
項	Ħ	名 称	規格	単位	数量	単 価	金 額	摘	要
錙	板	SM520C-H	38 <t≦50< td=""><td>t</td><td>12.364</td><td>111,600</td><td>1,379,822</td><td></td><td></td></t≦50<>	t	12.364	111,600	1,379,822		
J.	J	SM490YB	25 <t≦38< td=""><td>JJ</td><td>39.752</td><td>101,800</td><td>4,046,753</td><td></td><td></td></t≦38<>	JJ	39.752	101,800	4,046,753		
J.	J	SM490YB	t≦25	IJ	48.356	98,600	4,767,901		
J.	J	SM490A	t≦50	JJ	82.876	94,300	7,815,206		
J.	J	SM400A	t≦38	IJ	6.432	85,100	547,363		
副資	材費			t	189.780	11,300	2,144,514		
言	+						20,701,559		

					隻	Ų	作		費					
<b>基続飯桁</b>							T						T	
項	3	名	称	規	格	単位	数	量	単	価	金	額	摘	要
		直接	労務費			人		390.74		27,400		10,706,276		
							-							
全体製作	L数		Y =			Y3+Y4}	x (1+α	) x (1-	+β) x	(1+γ) x	(1+δ)	+Y5		
			=	I.	奴 390.74									
					Y1:	本体の加	工組立	工数		285.83				
					Y2:	本体の落				67.54				
					K:	570材相 による景				1.00				
					Y3:	本体の仮	紅組立工	数		37.37				
					Y4:	体傾構 及び横様	<b>射組立工</b>	数		0.00				
					Y5:	付属物の	製作工	数		0				
					α:	重連によ		率		0.00%				
		***************************************			β:	斜橋また 曲線橋に		正率		0.00%				
		***************************************			γ:	桁高変化	とによる	補正率		0.00%				
					δ:	平均 支間長に	  よる補]	正率		0.00%				

連続鈑桁		#	Ž	作	費				
項目	名称	規格	単位	数量	単単	五 金	額	摘	要
	本体の 加工組立工数	Y1=	A1 x a1 :	x K1 + A2 x a	12 x K2				
		=	285.83						
		A1:	大型材片	数		841	固		
		A2:	小型材片			146	個		
		a1:	形式によ	オ片当りの橋 こる標準工数		2.7	'3		
		a2:	形式によ	オ片当りの橋 こる標準工数		0.4	8		
	W	K1:	重量によ	オ片当りの こる影響係数	183,34		)5		92
		K2:		オ片当りの こる影響係数	6,432	2 0.9	17	X= 0.	97
	本体の溶接工数	Y2=	B1 x b1 /	10 + B2 x b2	2 / 10				
		=	67.54						
		B1:		     板継溶接延	長	0n	n		
		B2:		接延長(実長)		1,20	6m		
		b1:	橋梁形式	†板継溶接10 †による標準	工数	0.8	31		
		b2:		†T継手溶接 犬による標準	延長10m当り 工数	の 0.5	6		

連続鈑桁		<b>\$</b>	Ä	作	費		
項 目	名称	規格	単位	数量	単 価	金額	摘要
	570材相当品 による影響割増	K=	1 + W0 x	K3			
		=	1.00				
		W0:		<b>二鋼重に占める</b>	割合	0.00%	0kg 189,780kg
		K3:	570材相 による景			0.28	
	本体の 仮組立工数	Y3=	СхсхК	4 x (1+ε)			
		=	37.37				
		C:		     体部材数		28個	
		c:	部材の格による機	標準工数		1.95	
		K4:		る影響係数	KG 189,780	1.16	X= 1.19
		:3	仮組立の 工数低洞	)簡略化による		-41%	

連続鈑桁		景		作	費		
項目	名称体傾構及び	規格	単位	数量	単価	金額	摘 要
	横構組立工数	Y4=	(C1 x c1	x K5) + (C2 x o	2 x K5)		
		_	0.00				
		C1:	体傾構部	材数		0個	
			横構部材			0個	
	00 mm 400 mm	c1:	体傾構 1 当りの標	厚準工数		0.00	
		c2:	横構1部 当りの標	厚準工数		0.00	
		K5:	(主桁高n 面積によ	n x 主桁間隔m こる影響係数	0.000m	体傾構 0.00	X= 0.00
					桁間隔 0.000m	横 構 0.00	
				us de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la const			
				VV			

					集	AT .	作		費					
連続飯桁									I				Ţ	
項	<b>a</b>	名	称	規	格	単位	数	量	単	価	金	額	摘	要
													***************************************	
	f	寸属物の				Dxdx(				$(1 + \beta)$	+			
		製作工	.数		Y5=	F x f x (1	+ β) + <b>(</b>	Эхдх(	$1 + \alpha$					
					=	0.00								
					D:	伸縮継手	の加工	鋼重			0.0	00t		
					d:	伸縮継手	の標準	工数			0.	00		
					E:	高欄の加	1工鋼重				0.0	00t	**************************************	
					e:	高欄の標	準工数				0.	00		
					F:	防護柵の	加工鋼	重			0.0	00t		
					f:	防護柵の	標準工	数			0.	00		
					G:	検査路の	加工鋼	重			0.0	00t		
					g:	検査路の	標準工	数			0.	00		
					α:	重連によ	る補正	率			0.0	0%		
					β:	斜橋によ	る補正	率			0.0	0%		
					β:	曲線橋に	よる補	正率			0.0	0%	<b>политический</b>	

# 3.7 結果·考察

### 3.7.1 主桁断面比較

支間中央(正曲げ),中間支点上(負曲げ)の各設計法での決定断面を下表に示す.

表-3.7.1 主桁断面比較

支間中央(正曲げ)検討結果

人间十六(正面7) 使的相不										
	1	ランジ	ウェブ		下フランジ		断面積	単位重量	従来比	備考
	幅(mm)	板厚(mm)	幅(mm)	板厚(mm)	幅(mm)	板厚(mm)	(mm2)	(kN/m)	使未比	加 与
従来設計法	750	26	2924	15	750	38	91860	0.721	1.000	
少補剛設計法	750	26	2924	21	750	38	109404	0.859	1.191	
波形鋼板ウェブ	750	30	2920	9	750	50	86280	0.677	0.939	・ウェブ延長 未考慮
限界状態設計法	750	24	2926	10	750	35	73510	0.577	0.800	

中間支点上(負曲げ)検討結果

		ランジ 板厚(mm)	_	ェブ 板厚(mm)	下フ: 幅(mm)	ランジ  板厚(mm)	断面積 (mm2)	単位重量 (kN/m)	従来比	備考
<b>従来設計法</b>	750		2921	,	800	<u> </u>	120170		1.000	
少補剛設計法	750	29	2921	20	800	50	120170	0.943	1.000	・従来設計と 同様
波形鋼板ウェブ	750	41	2909	12	800	59	112858	0.886	0.939	・ウェブ延長 未考慮
限界状態設計法	750	24	2926	18	800	45	106668	0.837	0.888	

- ・JH 少補剛薄板設計では、支間中央で少補剛設計を行なうことで従来設計よりウェブ厚が増加している。また、ウェブ厚が増加することで、フランジ厚が若干減少する断面もみられた。中間支点上は従来設計から変更はない。少補剛薄板設計の前提条件より、適用範囲が正曲げ区間のみに限定されるため、従来設計に比べ正曲げ区間でウェブ厚が増加する以外は大きな断面変化はなかった。
- ・波形鋼板ウェブを使用した場合は、支間中央、中央支点上で従来設計に比べウェブ厚が減少しており、特にせん断力の影響が少ない支間中央では大幅に減少している。アコーディオン効果によりウェブが曲げモーメントに抵抗しないため、支間中央、中間支点上ともに、上下フランジ厚は従来設計より増加している。
- ・限界状態設計法では、支間中央、中間支点上ともに、従来設計よりウェブ、フランジ厚が減少している. 断面計算は前死荷重時、完成時しか行っていないが、特に正曲げ区間においてウェブ厚がかなり薄くなる 結果となっているため、施工中(輸送、吊上げ等)の安定性照査を別途行う必要があると思われる。

#### 3.7.2 数量比較

各設計法での数量算出結果から、各数量項目についての従来設計に対する比率を表-3.7.2 に示す. また、鋼重の比較グラフを図-3.7.1 に示す.

				従来設計法	JH少補剛 薄板設計	波形鋼板 ウェブ	限界状態 設計法
大型材片	材片数		個	1.000	1.000	1.000	1.000
	材片重量	1	kg	1.000	1.101	0.945	0.847
小型材片	材片数		個	1.000	0.531	0.000	0.376
	材片重量	2	kg	1.000	0.574	0.000	0.380
部材数		5	個				
対傾構	加工鋼重	3	kg				
	部材数	7	個				
加工鋼重		1+2+3	kg	1.000	1.063	0.876	0.813
部材数		5+7	個	1.000	1.000	1.000	1.000
板継溶接延	E長		m				
大型材T継手溶接延長			m	1.000	1.000	1.134	1.000

表-3.7.2 各設計法数量の従来設計に対する比率

- ・JH 少補剛薄板設計では、正曲げ区間のウェブ厚が増加したことにより、大型材片重量が従来設計より 10%程度増加した. 一方、少補剛設計により、小型材片重量、材片数は40%以上の低減となっている. 全体鋼重では6%程度の増加となった.
- ・波形鋼板ウェブを使用した場合は、ウェブ 厚減少の影響が大きく、大型材片重量が5% 低減した.また、波形加工よりウェブ補剛 材を必要としないため、小型材片重量、材 片数が0となり、全体鋼重でも12%の低減 となった.ただし、ウェブ形状より、大型 材片T継手溶接延長が、13%増加した.

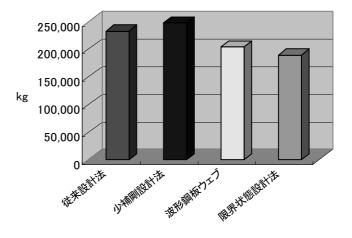



図-3.7.1 鋼重比較グラフ

- ・限界状態設計法では、大型材片重量が15%程度低減するとともに、ウェブ補剛材を省略する(端支点、中間支点付近は設置する)設計を行なっているため、小型材片重量、材片数も60%以上の低減となり、全体鋼重出は20%弱の低減となった。
- ・全体鋼重の比較では、鋼重の重い順に JH 少補剛薄板設計→従来設計→波形鋼板ウェブ→限界状態設計の順となった.

#### 3.7.3 製作コスト比較

各設計法での製作コスト算出結果から、各設計法での従来設計に対する比率を表-3.7.3に示す。また、製作コストの比較グラフを図-3.7.2に示す。

		従来設計法	JH少補剛 薄板設計	波形鋼板 ウェブ	限界状態 設計法	備考
概算鋼重	t	1.000	1.063	0.876	0.813	
材料費	円	1.000	1.073	0.912	0.811	
製作費	円	1.000	0.888	1.308	0.729	波形のみ塗装費用を含む
間接労務費	円	1.000	0.888	1.308	0.729	製作費×0.38
工場管理費	円	1.000	0.888	1.308	0.729	(製作費+間接労務費)×0.288
合計	円	1.000	0.979	1.112	0.770	

表-3.7.3 各設計法製作コストの従来設計に対する比率

- ・JH 少補剛薄板設計では、大型材片重量が増加することから材料費が 7%程度増加するが、小型材片重量、材片数が減少するため製作費が 11%低減し、合計コストで 2%の低減となった.
- ・波形鋼板ウェブを使用した場合は, 鋼材重量が減少するため材料費は 9%の低減となるが,波型鋼板の製作 比分が増加することで,製作費で 30%の増加,合計コストでも11%の 増加となった.ただし,波形鋼板製 作費算出に適用した製作歩掛が上フ

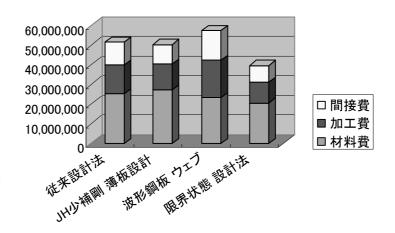



図-3.7.2 製作コスト比較グラフ

ランジを含んだものであること(波形鋼板のみの歩掛なし),また,波形鋼板の製作歩掛に塗装費用が含まれているという見解もあり,実構造に見合った歩掛を考慮することで製作コスト低減の余地がある.

- ・限界状態設計法では、鋼重、材片数の低減により材料費で19%、製作費で27%、合計コストで23%の低減となった.
- ・合計コストの比較では、コストの高い順に波形鋼板ウェブ→従来設計→JH 少補剛薄板設計→限界状態設計 の順となった.

### 3.8 まとめ

- ・同一のモデル橋梁を対象に、種々の設計方法で試設計を行いコストを算出することで、それぞれの設計法 方のコスト縮減効果を具体的な数値で比較する作業を行った。その結果、設計、積算時の多々の仮定に基 づくものではあるが、主桁の製作コストの比較と言う形でコスト縮減効果の傾向を確認することが出来た。
- ・JH 少補剛薄板設計は既に施工事例もあり、実際のプロジェクトでコスト縮減に寄与しているものであり、 今回の検討でもそのコスト縮減効果を確認できた.
- ・波形鋼板ウェブを使用した場合については、今回の検討では従来設計よりも製作コストが増加する結果となった。しかし、製作コストを算出するための歩掛が、鋼桁に使用する場合において整備されておらず、高目と思われる歩掛を適用していることから、今後本構造に見合った製作歩掛が整備することにより、製作コスト低減の余地があると考えられる。また、鋼重は従来設計より低減される結果となっており、架設費用も含めた総建設費の面では、有利な面もある。
- ・限界状態設計法については、現状は国内での明確な基準が整備されておらず、今回の検討でも多々の仮定の下での検討となったが、鋼重、製作コストともに大きな低減効果が期待できることが確認できた。今後の鋼橋の競争力強化のためにも、早期の基準整備が望まれる。

### 参考文献

- 1) 日本道路公団:設計要領第二集
- 2) 「新しい PC 橋の設計」編集委員会:新しい PC 橋の設計,2003.5
- 3) AISI: FOUR LRFD DESIGN EXAMPLES OF STEEL HIGHWAY BRIDGES,1996.5
- 4) 平成 17 年度国土交通省土木工事標準積算基準書(河川·道路編)
- 5) 建設物価調査会:建設物価(H18.10)
- 6) 東・中・西日本高速道路㈱監修: 土木工事積算基準(H18.7)