

Japan Steel Bridge Engineering Association TECHNICAL REPORT /No.078 平成26年3月

はじめに

近年の IT・通信やセンシング技術の発達により,橋梁の挙動を計測する技術が飛躍的に 向上し,要素技術開発や応用研究が盛んに行われている.従来も様々な形で橋梁挙動の計測 が利活用されてきたが,その簡易化や高度化とともに,橋梁の健全性評価など新たな応用も 期待されている.しかしながら,近年開発が進む各種センシング技術が,橋梁挙動の計測の 観点から,どのような特性をもち,どのような目的で利活用可能なのか,明確にはなってい ない.センシング技術の特性を踏まえて適切に計測・処理されなければデータとしての価値 もその応用も極めて限定的なものとなる.センシング技術の発達の成果を取り入れていくた めにはセンシング技術・利活用方法に関する理解を深める必要がある.

そこで、鋼橋技術研究会「最新センシング技術の適用に関する研究部会」では、情報収集, 課題の整理を行うとともに、実橋梁の試験計測やそのデータ解析に取り組み、センシング技 術とその利活用方法を検討してきた.多岐にわたるセンシング技術から振動計測と歪・応力 計測技術に着目し、それぞれワーキンググループを構成して、計測技術と計測事例、データ 処理方法の文献調査、実橋梁や室内模型を利用した試験計測とデータ解析に取り組んだ.そ の結果、本報告書に記載しているようにそれぞれのワーキンググループで貴重な成果を取り まとめる事ができた.本報告書や部会活動が、近年開発の進むセンシング技術を鋼橋関連実 務に実効的に取り込む端緒となれば幸いである.

本報告書を取りまとめるにあたりご尽力いただきました,幹事の永谷秀樹氏(宮地エンジ ニアリング株式会社),君島信夫氏(現千葉県,部会当時宮地鐵工所),技術幹事兼ワーキン ググループ長の古川聖氏(株式会社横河ブリッジ),ワーキンググループ長の吉岡勉氏(大 日本コンサルタント株式会社),平山繁幸氏(首都高速道路技術センター,部会当時株式会 社東京鉄骨橋梁),講習会開催はじめ本部会活動に多大な貢献を頂いた宮森保紀氏(北見工 業大学准教授)の各位に感謝の意を表します.また,本報告書の取りまとめに協力いただき ました最新センシング技術の適用に関する研究部会各位および本部会の活動に際しまして 貴重なご助言をいただきました鋼橋技術研究会の関係各位に感謝いたします.

> 鋼橋技術研究会最新センシング技術の適用に関する研究部会 部会長 長山智則 副部会長 宮下 剛

鋼橋技術研究会 最新センシング技術の適用に関する研究部会 会員名簿

部会長	長山	智則	東京大学
副部会長	宮下	岡山	長岡技術科学大学
幹 事	古川	聖	(株) 横河ブリッジ
]]	永谷	秀樹	宮地エンジニアリング (株)
部会員	宮森	保紀	北見工業大学
]]	奥村	学	片山ストラテック (株)
]]	下峠	康宏	(株)建設技術研究所
//	井上	治郎	パシフィックコンサルタンツ (株)
11	前田	直志	(株) 長大
11	吉岡	勉	大日本コンサルタント (株)
11	田代	大樹	大日本コンサルタント (株)
11	稻盛	貴光	横河工事 (株)
11	須藤	丈	日立造船 (株)
11	大迫	章平	JIP テクノサイエンス (株)
]]	山本	晃弘	(株) 綜合技術コンサルタント
]]	河野	憲一	伊藤忠テクノソリューションズ (株)
]]	豊田	純教	川田テクノシステム (株)
11	中島	一浩	(株) ロブテックスファスニングシステム
旧部会員	平山	繁幸	(株) 東京鐵骨橋梁
]]	桂	千代	(株) サクラダ
]]	川口	和行	(株) オリエンタルコンサルタンツ
]]	君島	信夫	宮地エンジニアリング (株)
]]	石田	辰英	(株)建設技術研究所
]]	竹田	翔	JIP テクノサイエンス (株)
]]	中川	美香	伊藤忠テクノソリューションズ (株)
11	藤井	克紀	(株) ロブテックスファスニングシステム

鋼橋技術研究会

最新センシング技術の適用に関する研究部会 調査研究報告書

1. 振動計測技術の鋼橋への適用に関する研究

2. 歪・応力計測技術の鋼橋への適用に関する研究

鋼橋技術研究会

1. 振動計測WG 調査研究報告書

振動計測技術の鋼橋への適用に関する研究

振動計測技術の鋼橋への適用に関する研究 目次

§1. はじめに	1 – 1
 § 2. 振動計測技術の文献調査 2-1. 橋梁振動計測のニーズと事例の整理 2-2. 振動を利用した橋梁健全度評価の海外事例 2-3. 各種センサの特徴整理 2-4. 振動データの分析方法の整理 	1 - 2 1 - 2 1 - 40 1 - 41 1 - 58
§ 3. 実橋振動計測 3-1. 概要 3-2. 槇木沢橋-耐震補強前後の振動特性比較 3-3. 首都高大橋 JCT-ランプ橋の振動特性の同定 3-4. 幸魂大橋斜張ケーブルー最新センシング技術による張力測定	1 - 66 1 - 66 1 - 67 1 - 96 1 - 111
§4. まとめと今後の課題 巻末資料. ロスアラモス報告書抄訳	1 – 129

§1.はじめに

構造物の寿命・劣化度を推定し効率的に維持管理をするために、また、地震・台風などの大外力 作用時の安全性を評価するために、現有性能把握が欠かせない。近年のセンシング技術の発展は目 覚ましく、MEMS 技術を利用した無線センサにより構造物の挙動が詳細に把握できるようになりつつ ある。

振動モニタリング WG では、先ず、橋梁振動の計測ニーズの整理として実務の事例や研究事例を 文献調査等により整理し、シーズの整理として各種センサの特徴整理を行った。また、振動を利用 した橋梁健全度評価方法として体系的にまとめられている米国ロスアラモス報告書の抄訳を行い、 振動計測技術の適用の参考とするとともに、振動データの分析方法の整理を行った。

次に、無線センシング技術の振動計測性能や利点、改善点を明らかにすること、耐震補強や損傷 による振動特性変化を検知できるか否かを明確にすることを目的として、3 橋の実橋振動計測およ び解析的検討を行った。まず、鋼逆ランガー橋の槇木沢橋では、無線センサにより耐震補強前後の 多点振動計測を行い、振動計測性能や耐震補強による特性変化を分析した。立体曲線ラーメン橋で ある首都高大橋 JCT ランプ橋では、複雑な構造系における有線センサに対する無線センサの優位性 の差を明らかにした。2 径間連続鋼斜張橋である幸魂大橋では、レーザードップラー速度計 LDV に よるケーブル振動計測の精度および有効性を示すとともに、立体骨組み解析によりケーブルに変状 が生じた場合のケーブル張力の変化量や閾値の検討を行った。

以上の研究により,橋梁振動に関する最新センシング技術の適用性についてまとめるとともに, 今後の課題を示した。

§2.振動計測技術の文献調査

2-1. 振動計測のニーズと事例の整理

2-1-1.実務の事例

ニーズ	健全性評価のためのケーブル張力測定
内容	 ・ 斜張橋や吊橋,ニールセン橋などのケーブル構造において,導入されたケーブル 張力の経年変化を定量的に評価したいというニーズがあり,振動を用いた方法が 確立されている。 ・ 本州四国連絡高速道路(株)の点検要領(平成14年3月改訂)では,5年周期の精 密点検において,斜張ケーブルやハンガーロープの張力測定が義務づけられてい る。
事例の有 無	多数あり
事例紹介	 明石海峡大橋ハンガーロープや生口橋斜張ケーブルなど,本四架橋の長大橋ケーブル 類で実績がある。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
 課題	 ・環境変動や測定方法による結果のばらつきがある。 ・損傷程度と張力変化量との関係が不明確。すなわち、構造安全性を判断するための閾値が設定されていない。

課題	 ケーブルに制振装置が設置された後、現地で減衰性能の全数検査が行われている
	か不明。
	 ケーブルの加振方法として、一般的に、人手による強制加振が行われている。し
	かし、ケーブルが長大化するにつれて加振が困難となる。加振方法の工夫が必要。
	 上記の問題に対する改善案として、常時微動の活用が考えられる。しかし、常時
	微動から同定される減衰はばらつきが大きい。そのため、同定精度を向上させる
	方策が必要である。また、常時微動と強制加振から得られる減衰の整理が十分に
	されていない。

ニーズ	動的耐風設計された実橋振動計測
内容	 構造物の対風応答は、固有振動数や振動モード形状および構造減衰によって大きく影響を受ける。合理的な動的耐風設計を行うためには、構造物の振動特性を十分に把握しておく必要がある。 吊橋や斜張橋のような長大橋では、動的耐風設計が設計上極めて重要であり、風洞実験による空力応答現象の検証に加えて、振動特性を把握するために実橋振動計測が実施されている。 けた橋においても、合理化橋梁である鋼少数主げた橋を長支間で適用する場合に、ねじれ振動の耐風安定性の確保が重要となり、風洞実験に加えて実橋振動計測が実施されている。
事例の有無	多数あり
事例紹介	多々羅大橋など長大橋をはじめ,鋼少数主桁橋および複合ラーメンI桁橋で実橋振 動計測が実施されている。
	<complex-block></complex-block>
	 真辺保仁, 佐々木伸幸, 山口和範: 多々羅大橋の実橋振動実験, 橋梁と基礎 Vol. 33, No. 5, pp.27-30, 1999.5 西岡直樹, 鳥海隆一, 岡清志, 佐々木伸幸: 安芸灘大橋の振動実験, 土木学会第 55 回年 次学術講演会, I-B104, pp.208-209, 2000.9 村越潤, 麓興一郎, 芦塚憲一郎, 清田錬次, 宮崎正男: 鋼少数主桁橋の耐風安定性と振 動特性に関する実験的検討, 橋梁振動コロキウム'03 論文集, pp.357-362, 2003.9 奥村学, 結城洋一, 中野隆, 上島秀作, 畑中章秀, 宮崎正男, 新井恵一, 麓興一郎, 横 山功一: 複合ラーメン I 桁橋の起振機を用いた実橋振動試験, 土木学会第 65 回年次学術 講演会, I-494, pp.987-988, 2010.9
課題	 ・構造減衰の計測結果にばらつきが大きく、ある値に特定できるとは言い難い。 ・構造減衰を解析的に推定することが困難であり、実橋振動計測で評価せざるを得ないが、十分な計測データが現状では得られていない。 ・構造減衰には振幅依存性があると指摘されており、動的耐風設計に採用する構造減衰は、起振機試験において 100gal 程度により振動させる必要がある。

ニーズ	制振対策された標識柱の振動抑制効果の検証
内容	・ 高架道路上の標識柱は、橋梁の交通振動によって振動が誘起され、取付ボルト
	の緩みや部材の疲労損傷が発生することがある。
	• F型標識柱を対象として、小型の制振装置(TMD)を設置して、その振動抑制
	効果を計測した。
	・ 制振装置により, 柱基部の発生応力および梁先端における加速度応答が大幅に
	低減したことを確認した。
事例の有無	数件あり
事例紹介	高速道路上の F 型標識柱をはじめ, 門型標識柱等で振動計測および柱基部の応力測
	定が実施されている。
	#BRB #BRB #SEB #SEB 「「」」」」 「」」」 #SEB #SEB 「」」」 「」」」 「」」」 #SEB 「」」」 「」」」 (第二日本) #SEB 「」」」 「」」」 (第二日本) #SEB 「」」」 「」」」 (第二日本) #SEB 「」」」 「」」」 (第二日本) 1 次 (梁先端格軸)
	図 2-12 F型標識柱の制振 図 2-13 F型標識柱の固有
	5750 1000 女技頂部 25/30 機械方向 没方滴 支技基部 約直方向 35/前 25/30 35/前 55.8gal 0 55.8gal 0 </th
	(※)●は振動計例点 基部鉛直-梁先端鉛直(1次モード相当) 基部橋軸-梁先端橋軸(2次モード相当)
	図 2−14 F 型標識柱の制振対策と振動計測
	 安藤高士,松本茂,迫田治行,南條正洋,畑中章秀,松田良平:高架道路上のF型標識柱に 対する制振装置の振動抑制効果について,土木学会第 59 回年次学術講演会,1-412, pp.823-824,2004.9 (財)阪神高速道路管理技術センター:阪神高速道路における鋼橋の疲労対策【三訂版】,第 11章 道路標識柱基部の疲労損傷,pp.111-117,2012.3 尾畑守夫,森尻渉,島崎洋治:照明柱に対するTRMDの制振効果,土木学会第 57 回年次学 術講演会,I-598, pp.1195-1196,2002.9 立石一真,波多野保史,多田仁志,飯田毅,河野健二:走行荷重による高架橋上照明柱の振 動計測とチェーンダンパーの制震効果,土木学会第 57 回年次学術講演会,I-599, pp.1107-1198,2002.9
課題	 ・ 標識柱の振動は、橋梁の交诵振動に誘起されるため、標識柱の設置位置によっ
H/IN/KZZ	て振動性状が異なる。
	 ・ 供用下での振動計測となるため、非接触タイプの振動測定の確立が望まれる。

ニーズ	標識柱の損傷発見のための非接触型振動測定と評価システムの開発
内容	 高架道路上の標識柱の損傷発見のための点検方法は、交通規制が必要なこと、 点検箇所が高所で作業が困難な場所にあること、また対象構造の数量が多いこ となどの課題があり、交通規制することなしに容易にかつ安全に点検できるこ とが要望されている。 門型標識柱および逆L型照明柱を対象として、接触型のサーボ型変位測定器、 非接触型の光学式変位測定器およびビデオカメラ画像解析器の3つの測定方法 で振動挙動を実測した。 非接触型の光学式およびビデオカメラによる測定方法の有効性が確認され、1 次の固有振動と振幅については良好な結果が得られた。
事例の有無	数件あり
事例紹介	都市高速道路上の門型標識柱等で、交通規制無しで非接触型変位測定器による振動 計測が実施されている。
	図 2-15 非接触型による振動測 (c) ビデオカメラ測定標点
	図 2-16 逆 L 型照明柱の測
	(a) 測定点 (寸法:mm) (b) 光字式測定標点 (C) ビチオカメラ測定標点 (D) 2-17. 即型標識社の測定
	変位 表-1 測定振動数の比較と固有振動解析結果 図-7 門型標識柱の測定結果の一例 時刻(秒) 変位 一一回内以、3.10 2次 8.15 2次 8.15 調節症 砂腸濃濃 2次 8.15 2次 8.15 2次 8.15 2次 8.15 2次 8.15 2次 4.94 4.92 5.02 2次 4.94 4.93 4.92 2次 4.94 4.90 - 2次 4.90 2次 4.90 2次 4.90 2次 4.94 4.90 - 2次 4.90 2次 4.91 2次 4.91 2次 4.91 20 - 21 21 21 21
	にのの振動測定・解析・評価ンスアムの開発, 土本字会第 56 回年次字術講演会, 1-A154, pp.308-309, 2001.10
課題	 2次以上の振動モードの測定精度の向上が必要である。 どの程度の損傷の有無の可能性が発見できるかを明らかにする必要がある。

ニーズ	地震時の異常検知(常時モニタリング)
内容	 大規模な震災が発生した場合、地域の緊急輸送ネットワークをいち早く確保することは、発災直後の救急活動、救援物資輸送などの震後対応において極めて重要である。これより、地震発生時に道路構造物の被害を迅速に把握し、通行可能ルートを即座に判定するシステムの整備が求められている。
事例の有無	数件あり
事例紹介	NTT データでは、東京工業大学、横浜国立大学、首都高速道路株式会社と協同で、 道路橋に発生した異常を、継続的かつリアルタイムに検知するモニタリングシステ ム (BRIMOS: BRIdge MOnitoring System)を開発している。 このシステムでは、道路橋に設置した光ファイバセンサから橋桁および橋脚の段 差、間隔、振動、傾斜などのさまざまなデータを連続的かつ継続的に収集し、解析 することで道路橋の異常や損傷を検知する。また、光ファイバセンサの歪データお よび監視カメラ映像情報から車両重量を推定するとともに車種判別を行い、道路橋 の損傷の主要因となっている車重・車種の通行データを自動収集する。 最近では、東京ゲートブリッジに導入されている。
	<complex-block></complex-block>
	$\vec{v} = 2^{-2}$ 橋桁移動の監視結 図 2-21 橋桁の固有振動監視 図 2-22 重量車両の交通量監視結果 ¹⁾
	 石川 裕治,宮崎早苗:橋の異常を瞬時にキャッチ!橋梁モニタリングシステム BRIMOS の開発,NTT技 術ジャーナル,Vol.21,No.9,pp.26-29,2009. 石川 裕治,宮崎早苗,東森美和子,佐々木栄一,三木千壽:光ファイバセンサによる多角的橋梁モニタ リングシステムの開発,土木学会第60回年次学術講演会,pp.1301-1302,2005.9 ㈱NTTデータ:ICT を活用した街づくりとグローバル展開〜共創型 M2M クラウド〜,入手先,総務省 ICT 街 づ く り 推 進 部 会 (第 5 回 会 合) 配 布 資 料 資 料 5 - 2, http://www.soumu.go.jp/main_content/000148675.pdf,(参照 2012.08.09).
課題	 ・長期にわたって大量のセンサから収集されるデータの蓄積と、蓄積されたデータの分析手法を確立する。 ・センサデータを横断的に活用し、より付加価値の高いサービスを提供する。

内容 ・ 度後の巡視点検を迅速化するととも応災時期、天候、施設の設置状況など よらない施設被害の地堤、観測記録に基づく定量的な被災判定を実現し、早 の交通啓開や2次災害などによる危険回避を行うとともに、効率的な機後後 計画の立案を支援する必要がある。事例の有無数件あり事例紹介総合技術開発プロジェクトで行われた技術開発の1つに、「大規模地震発生商 に備架の被災度を迅速に把握する技術」がある。構造物の町石周期が損傷によって変化する特性を利用した。 被災度の定量的な判定 でおしたがも被災度利定で用いる計測デークを収集する技術の開発。 れている。(1) 被災度判定手法の開発 RC 福興の損傷に伴う構造物の固有周期の変化に基づき、構造物の最大応等 位および被災度を推定する手法が提案されている。(1) 被災度判定手法の開発 RC 福興の損傷に伴う構造物の固有周期の変化に基づき、構造物の最大応等 位および被災度を推定する手法が提案されている。「ここでは、図2-23 に示すように構造物を1 質点系の振動モデルに簡略化 る。構造物の慣性質量、創性をそれぞれ M, K とすると、振動モデルの固有馬 T は次式で与えられる。アーマス 人Kここで、地震前の健全な状態の固有周期、剛性をそれぞれ T ₆ , K ₆ とし、地 後の被災した状態の固有周期、剛性をそれぞれ T ₆ , K ₆ とし、地 後の被災した状態の固有周期、剛性をそれぞれ T ₆ , K ₆ とこ2ここで、地震前の健全な状態の固有周期、剛性をそれぞれ T ₆ , K ₆ とし、地 後の被災した状態の固有周期、剛性をそれぞれ T ₆ , K ₆ (1.2)ここで、地震前の健全な状態の固有周期、剛性をそれぞれ T ₆ , K ₆ とし、地 後の被災した状態の固有周期、剛性をそれぞれ T ₆ , K ₆ (1.2)ここで、地震前の健全な状態の回転有限期の変化は次式で与えられる。 <th>ニーズ</th> <th>地震時の異常検知(被災度判定)</th> <th></th>	ニーズ	地震時の異常検知(被災度判定)	
事例紹介数件あり事例紹介総合技術開築プロジェクトで行われた技術開発の1つに、「大規模地震発生通 に橋梁の被災度を迅速に把握する技術」がある。構造物の被災度の定量的な判定 行うため、構造物の固有周期が損傷によって変化する特性を利用した"被災度判 手法の開発"、および、広域に及ぶ巡視点検を迅速に行うため、"パトロールカー 用いて移動しながら被災度判定で用いる計測データを収集する技術の開発"が行 れている。(1) 被災度判定手法の開発 RC 橋脚の損傷に伴う構造物の固有周期の変化に基づき、構造物の最大応答 位および被災度を推定する手法が提案されている。(1) 被災度判定手法の開発 RC 橋脚の損傷に伴う構造物の固有周期の変化に基づき、構造物の最大応答 位および被災度を推定する手法が提案されている。「ここでは、図 2-23 に示すように構造物を 1 質点系の振動モデルに簡略化 る。構造物の慣性質量、剛性をそれぞれ N, K とすると、振動モデルの固有関 T は次式で与えられる。アニマで、地震前の健全な状態の固有周期、剛性をそれぞれ Ta, Ka とし、地 後の被災した状態の固有周期、剛性をそれぞれ Ta, Ka とすると、被災前後の 有周期の変化は次式で与えられる。アニマ、構造物が図 2-24 に示すような弾完全塑性型の骨格曲線を有する 仮定すると、被災前の健全な状態の剛性Ka は、降伏荷重 P, 降伏変位 d, を いて次式で与えられる。ビニマ、構造物が図 2-24 に示すような弾完全塑性型の骨格曲線を有する 仮定すると、被災前の健全な状態の剛性Ka は、降伏荷重 P, 降伏変位 d, を いて次式で与えられる。ビニマ、構造物が図 2-24 に示すような弾完全塑性型の骨格曲線を有する 仮定すると、被災前の健全な状態の剛性Ka は、降伏荷重 P, 降伏変位 d, を いて次式で与えられる。ビニマ、構造物が短 2-24 に示すような弾完全塑性型の骨格曲線を有する 仮定すると、被災前の健全な状態の剛性Ka Li、降伏荷重 P, 降伏変位 d, を いて次式で与えられる。ビスした後の剛性 Ka Li、一般には構造物の履歴特性に依存するが、これを に最大応答変位 d, exax に対する割線剛性で与えると次式で表される。Ka = $\frac{P_i}{d_{-max}}$ エス(1.3)、式(1.4)を式(1.2)に代入し、応答塑性率μとして整理すると次が得られる。μ = $\frac{d_{-max}} = \left(\frac{T_i}{2} \right^2 \right)$ (1.5)	内容	 ・ 震後の巡視点検を迅速化するとともに発災時刻,天候,施設の設置状況など よらない施設被害の把握,観測記録に基づく定量的な被災判定を実現し, の交通啓開や2次災害などによる危険回避を行うとともに,効率的な震後後 計画の立案を支援する必要がある。 	ご用して
事例紹介 総合技術開発プロジェクトで行われた技術開発の1つに、「大規模地震発生間に に構築の被災度を迅速に把握する技術」がある。構造物の被災度の定量的な判定 行うため、構造物の進入度の定量的な判した "核災度判 手法の開発"、および、広域に及ぶ巡視点検を迅速に行うため、"パトロールカー 用いて移動しながら被災度判定で用いる計測データを収集する技術の開発"が行 れている。 (1) 被災度判定手法の開発 RC 構脚の損傷に伴う構造物の固有周期の変化に基づき,構造物の最大応答 位および被災度を推定する手法が提案されている。 「ここでは、図 2-23 に示すように構造物を 1 質点系の振動モデルに簡略化 る。構造物の慣性質量、剛性をそれぞれ M、K とすると、振動モデルの固有囲 T は次式で与えられる。 $T = 2\pi \sqrt{\frac{M}{K}}$ (1.1) ここで、地震前の健全な状態の固有周期、剛性をそれぞれ T _o K ₀ とし、地 後の被災した状態の固有周期、剛性をそれぞれ T _o K ₀ とすると、被災前後の 有周期の変化は次式で与えられる。 $\frac{T_d}{T_0} = \sqrt{\frac{K_0}{K_0}}$ (1.2) ここで、構造物が図 2-24 に示すような弾完全塑性型の骨格曲線を有する 仮定すると、被災前の健全な状態の剛性 K ₀ は、降伏荷重 P ₁ 、降伏変位 d, を いて次式で与えられる。 $K_0 = \frac{P_c}{d_c}$ (1.3) 被災した後の剛性 K ₀ (t, 一般には構造物の履歴特性に依存するが、これを に最大応答変位 d, r _{max} に対する割線剛性で与えると次式で表される。 $K_d = \frac{P_c}{d_{cmax}}}$ (1.4) 式(1.3)、式(1.4)を式(1.2)に代入し、応答塑性率μとして整理すると次 が得られる。	事例の有無	数件あり	
(1) 被災度判定手法の開発 RC 橋脚の損傷に伴う構造物の固有周期の変化に基づき,構造物の最大応答 位および被災度を推定する手法が提案されている。 「ここでは、図 2-23 に示すように構造物を 1 質点系の振動モデルに簡略化 る。構造物の慣性質量、剛性をそれぞれ M、K とすると,振動モデルの固有周 T は次式で与えられる。 $T = 2\pi \sqrt{\frac{M}{K}}$ (1.1) ここで,地震前の健全な状態の固有周期,剛性をそれぞれ T _o 、K _o とし,地 後の被災した状態の固有周期,剛性をそれぞれ T _o 、K _o とし,地 後の被災した状態の固有周期。剛性をそれぞれ T _o 、K _o とし,地 後の被災した状態の固有周期、剛性をそれぞれ T _o 、K _o とし、地 後の被災した状態の固有周期、剛性をそれぞれ T _o 、K _o とし、地 後の被災した状態の固有周期、剛性をそれぞれ T _o 、K _o とし、地 後の被災した状態の固有周期、剛性をそれぞれで T _o 、K _o とし、地 後の被災した状態の固有周期、剛性をそれぞれ T _o 、K _o とし、地 後の被災した状態の固有周期、剛性をそれぞれ T _o 、K _o とし、地 後の被災した状態の固有周期、剛性をそれぞれ T _o 、K _o とし、地 後の被災した状態の固有周期、剛性をそれぞれで T _o 、K _o とし、地 後の被災した状態の固有周期、剛性をそれぞれ T _o 、K _o とし、地 後の被災した状態の固有周期、剛性をそれぞれ T _o 、K _o とし、地 (1.2) ここで、構造物が図 2-24 に示すような弾完全塑性型の骨格曲線を有する 板 ² - ¹ / ₀ = $\sqrt{\frac{K_0}{T_0}}$ (1.3) 被災した後の剛性 K _o (a, 一般には構造物の履歴特性に依存するが、これを に最大応答変位 d ₁	事例紹介	総合技術開発プロジェクトで行われた技術開発の1つに、「大規模地震発生直に橋梁の被災度を迅速に把握する技術」がある。構造物の被災度の定量的な判定 行うため、構造物の固有周期が損傷によって変化する特性を利用した"被災度半 手法の開発"、および、広域に及ぶ巡視点検を迅速に行うため、"パトロールカー 用いて移動しながら被災度判定で用いる計測データを収集する技術の開発"が行 れている。	≦ 三 町 − 〒 後を定をわ
「ここでは、図 2-23 に示すように構造物を 1 質点系の振動モデルに簡略化 る。構造物の慣性質量、剛性をそれぞれ M、K とすると、振動モデルの固有用 T は次式で与えられる。 $T = 2\pi \sqrt{\frac{M}{K}} $ (1.1) ここで、地震前の健全な状態の固有周期、剛性をそれぞれ T ₀ 、K ₀ とし、地 後の被災した状態の固有周期、剛性をそれぞれ T _d 、K _d とすると、被災前後の 有周期の変化は次式で与えられる。 $\frac{T_d}{T_0} = \sqrt{\frac{K_0}{K_d}} $ (1.2) ここで、構造物が図 2-24 に示すような弾完全塑性型の骨格曲線を有する 仮定すると、被災前の健全な状態の剛性 K ₀ は、降伏荷重 P,、降伏変位 d,を いて次式で与えられる。 $K_0 = \frac{P_y}{d_y} $ (1.3) 被災した後の剛性 K _d は、一般には構造物の履歴特性に依存するが、これを に最大応答変位 d _{r・max} に対する割線剛性で与えると次式で表される。 $K_d = \frac{P_y}{d_{rmax}} $ (1.4) 式(1.3)、式(1.4)を式(1.2)に代入し、応答塑性率μとして整理すると次 が得られる。 $\mu = \frac{d_{rmax}}{d_r} = \left(\frac{T_d}{d_r}\right)^2 $ (1.5)		(1) 被災度判定手法の開発 RC 橋脚の損傷に伴う構造物の固有周期の変化に基づき,構造物の最大応客 位および被災度を推定する手法が提案されている。	李変
$T = 2\pi \sqrt{\frac{M}{K}}$ (1.1) ここで、地震前の健全な状態の固有周期、剛性をそれぞれ T ₀ , K ₀ とし、地 後の被災した状態の固有周期、剛性をそれぞれ T _a , K _d とすると、被災前後の 有周期の変化は次式で与えられる。 $\frac{T_d}{T_0} = \sqrt{\frac{K_0}{K_d}}$ (1.2) ここで、構造物が図 2-24 に示すような弾完全塑性型の骨格曲線を有する 仮定すると、被災前の健全な状態の剛性 K ₀ は、降伏荷重 P _y 、降伏変位 d _y を いて次式で与えられる。 $K_0 = \frac{P_y}{d_y}$ (1.3) 被災した後の剛性 K _d は、一般には構造物の履歴特性に依存するが、これを に最大応答変位 d ₁ , maxに対する割線剛性で与えると次式で表される。 $K_d = \frac{P_y}{d_{rmax}}$ (1.4) 式(1.3)、式(1.4)を式(1.2)に代入し、応答塑性率 μ として整理すると次 が得られる。 $\mu = \frac{d_{rmax}}{d_{rmax}} = \left(\frac{T_d}{d_y}\right)^2$ (1.5)		「ここでは,図2-23に示すように構造物を1質点系の振動モデルに簡略们 る。構造物の慣性質量,剛性をそれぞれM,Kとすると,振動モデルの固有用 T は次式で与えられる。	とす 罰期
ここで、地震前の健全な状態の固有周期、剛性をそれぞれ T ₀ 、K ₀ とし、地後の被災した状態の固有周期、剛性をそれぞれ T _d 、K _d とすると、被災前後の 有周期の変化は次式で与えられる。 $\frac{T_d}{T_0} = \sqrt{\frac{K_0}{K_d}} \qquad (1.2)$ ここで、構造物が図 2-24 に示すような弾完全塑性型の骨格曲線を有する 仮定すると、被災前の健全な状態の剛性 K ₀ は、降伏荷重 P _y 、降伏変位 d _y を いて次式で与えられる。 $K_0 = \frac{P_y}{d_y} \qquad (1.3)$ 被災した後の剛性 K _d は、一般には構造物の履歴特性に依存するが、これを に最大応答変位 d _x .maxに対する割線剛性で与えると次式で表される。 $K_d = \frac{P_y}{d_{rmax}} \qquad (1.4)$ 式(1.3)、式(1.4)を式(1.2)に代入し、応答塑性率μとして整理すると次 が得られる。 $\mu = \frac{d_{rmax}}{d_{rmax}} = \left(\frac{T_d}{d_x}\right)^2 \qquad (1.5)$		$T = 2\pi \sqrt{\frac{M}{K}} $ (1.1)	
$\frac{T_d}{T_0} = \sqrt{\frac{K_0}{K_d}} $ (1.2) ここで、構造物が図 2-24 に示すような弾完全塑性型の骨格曲線を有する 仮定すると、被災前の健全な状態の剛性 K ₀ は、降伏荷重 P _y 、降伏変位 d _y を いて次式で与えられる。 $K_0 = \frac{P_y}{d_y} $ (1.3) 被災した後の剛性 K _d は、一般には構造物の履歴特性に依存するが、これを に最大応答変位 d _x maxに対する割線剛性で与えると次式で表される。 $K_d = \frac{P_y}{d_{r,max}} $ (1.4) 式(1.3)、式(1.4)を式(1.2)に代入し、応答塑性率μとして整理すると次 が得られる。 $\mu = \frac{d_{r,max}}{d_{r,max}} = \left(\frac{T_d}{d_x}\right)^2 $ (15)		ここで,地震前の健全な状態の固有周期,剛性をそれぞれ T ₀ , K ₀ とし, 後の被災した状態の固有周期,剛性をそれぞれ T _d , K _d とすると,被災前後の 有周期の変化は次式で与えられる。	也震つ固
ここで、構造物が図 2-24 に示すような弾完全塑性型の骨格曲線を有する 仮定すると、被災前の健全な状態の剛性 K ₀ は、降伏荷重 P _y 、降伏変位 d _y を いて次式で与えられる。 $K_0 = \frac{P_y}{d_y} $ (1.3) 被災した後の剛性 K _d は、一般には構造物の履歴特性に依存するが、これを に最大応答変位 d _{r・max} に対する割線剛性で与えると次式で表される。 $K_d = \frac{P_y}{d_{r,max}} $ (1.4) 式(1.3)、式(1.4)を式(1.2)に代入し、応答塑性率μとして整理すると次 が得られる。 $\mu = \frac{d_{rmax}}{d_{r,max}} = \left(\frac{T_d}{d_r}\right)^2 $ (1.5)		$\frac{T_d}{T_0} = \sqrt{\frac{K_0}{K_d}} $ (1.2)	
$K_{0} = \frac{P_{y}}{d_{y}}$ (1.3) 被災した後の剛性 K _d は、一般には構造物の履歴特性に依存するが、これを に最大応答変位 d _{r・max} に対する割線剛性で与えると次式で表される。 $K_{d} = \frac{P_{y}}{d_{r,max}}$ (1.4) 式(1.3)、式(1.4)を式(1.2)に代入し、応答塑性率μとして整理すると次 が得られる。 $\mu = \frac{d_{r,max}}{d_{r,max}} = \left(\frac{T_{d}}{d_{r,max}}\right)^{2}$ (1.5)		ここで,構造物が図 2-24 に示すような弾完全塑性型の骨格曲線を有する 仮定すると,被災前の健全な状態の剛性 K ₀ は,降伏荷重 P _y ,降伏変位 d _y を いて次式で与えられる。	,と :用
被災した後の剛性 K _d は、一般には構造物の履歴特性に依存するが、これを に最大応答変位 d _{r・max} に対する割線剛性で与えると次式で表される。 $K_{d} = \frac{P_{y}}{d_{r,max}}$ (1.4) 式(1.3)、式(1.4)を式(1.2)に代入し、応答塑性率μとして整理すると次 が得られる。 $\mu = \frac{d_{r,max}}{d_{r,max}} = \left(\frac{T_{d}}{r_{d}}\right)^{2}$ (1.5)		$K_0 = \frac{P_y}{d_y} \tag{1.3}$	
$K_{d} = \frac{P_{y}}{d_{r\max}}$ (1.4) 式(1.3),式(1.4)を式(1.2)に代入し、応答塑性率μとして整理すると次 が得られる。 $\mu = \frac{d_{r\max}}{d_{r\max}} = \left(\frac{T_{d}}{d_{r\max}}\right)^{2}$ (1.5)		被災した後の剛性 K _d は,一般には構造物の履歴特性に依存するが,これる に最大応答変位 d _{r・max} に対する割線剛性で与えると次式で表される。	è仮
式(1.3),式(1.4)を式(1.2)に代入し、応答塑性率 μ として整理すると次が得られる。 $\mu = \frac{d_{r\max}}{d_{r\max}} = \left(\frac{T_d}{d_{r\max}}\right)^2$ (1.5)		$K_d = \frac{P_y}{d_{r \cdot \max}} \tag{1.4}$	
$\mu = \frac{d_{r \cdot \max}}{d_{r} = \left(\frac{T_d}{d_r}\right)^2} \tag{1.5}$		式(1.3),式(1.4)を式(1.2)に代入し,応答塑性率µとして整理すると次が得られる。	;式
$d_{y} (T_{0}) $		$\mu = \frac{d_{r \cdot \max}}{d_y} = \left(\frac{T_d}{T_0}\right)^2 \tag{1.5}$	

ニーズ	橋脚の損傷レベル検知
内容	 鉄道 RC ラーメン高架橋の損傷は、通常被災後の随時検査において目視により 確認がなされる。しかし、近年鋼板巻き補強が施され、目視による損傷の把握 が困難な RC 柱の本数が増加する傾向にある。一方、柱端部に生じる最大応答 部材角と損傷レベルの関係は概ね把握されているため、最大応答部材角を効率 的に測定出来れば、地震後早期に柱の損傷レベル評価が可能となり、復旧作業 の効率化やダウンタイムの減少が期待できる。
事例の有無	数件あり
事例紹介	 ・ (株計測リサーチコンサルタント「ピークセンサー」 計測開始から現在までに生じた変位の最大値をセンサ自体が記憶し、任意の 時点で取り出すことができるセンサ。無電源で最大変形を記憶することができ、 測定時のみ通電する。(財)鉄道総合技術研究所と共同で、橋脚の柱端部に生じ る最大応答部材角を測定し、橋脚の損傷レベルを評価する「鉄道 RC ラーメン 高架橋柱の損傷レベル検知システム」が開発されている。¹⁾
	東部装置拡大図
	支点 測定棒 上 上 二
	図 2-29 損傷レベル検知センサと設置事例 ¹⁾

ニーズ	環境振動問題(振動,騒音,低周波音)の計測
内容	 ・橋梁の交通振動による低周波音は、車両が橋梁上を通過する際に橋梁上部工から空気振動として放射され、近接する居住地域の家具等が振動するなどの物的影響、あるいは振動感や頭痛、吐き気などの心理的・生理的影響がある。 ・供用下での交通振動と放射音の実態を把握するため、建設後間もない7径間連続ラーメン箱桁橋を対象に、低周波音および振動加速度の現地計測を実施した。 ・現地計測の結果より、支間中央での低周波音は、3~5Hzといった鋼桁の低次振動に伴う放射音が大きくなる傾向にあり、可聴域音については支点部近傍で高くなる傾向が認められた。
事例の有無	数件あり
	Predrugendo y by Araminalize Adjacet, takator a do so takashnatize do vacuum data do takashnatize do takashnatize do vacuum data do takashnatize do vacuum data do takashnatize do vacuum data do takashnatize
課題	・ 橋梁から放射される低周波音は,橋種やジョイント構造,路面凹凸,車両速度
	や重量等により一様ではないため、周辺音場を推定することが難しく、対策が
	遅れているのが現状である。

ニーズ	環境振動問題(振動,騒音,低周波音)への対策
内容	 伊勢湾岸自動車道の鋼橋において、開通直後から騒音・振動による周辺住民の 生活環境悪化が課題となっていた。騒音振動調査やシミュレーションによって、 騒音振動の発生源は鋼橋の主桁振動から発生する低周波空気振動であると判断 した。 騒音振動対策として、路下制限を受けない橋梁ではセンターダンパーを設けて、 路下制限を受ける橋梁では鋼桁内に制震装置(TMD)を設けて、それぞれ期待
	通りの振動抑制効果が得られた。 ・伸縮装置周辺の衝撃音対策として、桁端部の床版増厚よび鋼桁コンクリート巻
重例の右無	さ立ても美施した。 数化あり
事例如有無	
	$P_{1} = P_{2} = P_{1} + P_{2} + P_{2$
	 P-Juken (a) P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-P-
課題	・ 床版増厚および鋼桁コンクリート巻き立て対策は、伸縮装置部に車両が通過す
	る際の衝撃に対する振動は抑制されたが、対策範囲が桁端部に限定されたこと
	から、橋梁全体から発生する音の影響により対象家屋への効果は少なかった。

ニーズ	振動発電
内容	 電源確保の困難な場所の計測や構造全体の多点計測では、電池を内蔵した自立型のセンサネットワークを用いることで、配線の手間やコストをかけることなく、計測を行うことができる。しかし、電源が電池による有限な供給となるため、長期間にわたる計測を行う場合、電池交換のメンテナンス作業の手間や、意図しないバッテリー切れの発生による計測中断等が問題となる。 この限られた電源への対策として、駆動部品の省電力化やバッテリー容量の向上が行われているが、近年「振動発電」の利用検討も進められている。「振動発電」とは、橋梁や鉄塔等の構造物等で常に発生している常時微動の振動エネルギーを、微少な電力へ変換する技術であり、エネルギーハーベスティング技術の一種である。 「振動発電」により得られた電力を一定量蓄積することにより、センサネットワークを駆動させることが考えられている。また、ICの低消費電力化が進むことで、10µW程度の発電量であっても、間欠的にセンサからデータを取り込み、無線で送信することが可能になると期待されている。 振動発電の材料には、主に"圧電素子(ピエゾ素子)"、"永久磁石"、"エレクトレット"、"磁歪材料"が用いられているが、それぞれ、出力電圧、共振周波数、寸法等の特性が異なる。
事例の有無	数件あり
事例紹介	 「都都高速道路㈱「五色桜大橋」 五色桜大橋の橋梁下層の点検通路内に、振動のエネルギーを利用して発電する 「振動力発電装置」と設置。「振動力発電装置」は、日中、車両が通行することに よって生じる振動により発電、バッテリーに蓄積する。蓄積された電力(1日あた り0.24Wh×10台)は、イルミネーションの点灯消費電力(1700Wh)の一部に れている。

	 ・ (㈱ネクスコ東日本エンジニアリング「"夢シス"環境発電」 オムロン(㈱,旭硝子(㈱と共同で、高速道路の橋梁に設置することにより、車両 が通過した時の振動による発電実験が行われている。小型の振動発電デバイスで は、周波数 20Hz,加速度 1Gの振動入力時に 10µWの発電効果が得られる。振 動発電によって得られた電力は、"夢シス"ゴム支承反力測定システム RFID デー タロガーの電力への利用等が期待される。
	Biggeride Argestageride Arg
	 図 2-42 小型振動発電デバイスの概要図²⁾ 図 2-43 ゴム支承反力測定システムの概要図³⁾ 1) 首都高速道路㈱:環境にやさしい発電技術を募集, pp. 1-6, 入手先, http://www.tech-shutoko.jp/newtech/topbosyu/new_energie.pdf, (参照 2012.08.09). 2) ㈱ネクスコ東日本エンジニアリング:夢シス「環境発電」リーフレット, p. 1, 入手先, http://www.e-nexco-engi.co.jp/bird-eye-view/jp/pdf/energy-harvesting.pdf, (参照 2012.08.09). 3) ㈱ネクスコ東日本エンジニアリング:夢シス「ゴム支承反力測定システム」リーフレット, pp. 1-2, 入手先, http://www.e-nexco-engi.co.jp/pdf/rubber.pdf, (参照 2012.08.09).
課題	 使用側の消費電力に比べ発電量が小さく,需要と供給のバランスがとれていない。 効率良く発電するためには,加振周波数と発電機振動系の共振周波数を一致させる必要があるため,あらかじめ,加振源の特性の把握が必要である。 振動が規則的な場合,発電量に期待が持てるが,不規則な振動となる場合,発電量に対する信頼性が低くなってしまう。 常時微動を加振源とする場合,大きな発電量は期待できないため,小電力で稼働するシステムの構築が必要である。

Г

ニーズ	常時微動観測による地盤調査
内容	 ・常時微動の卓越周期から観測地点直下の地盤の固有振動周期を推定でき、地震時に特にその周期の地震波が卓越する。 ・常時微動のアレイ観測は、多点における観測記録の時間差から地表面を様々な方向に伝播する常時微動の周期毎の伝播速度を求め、その結果を逆解析するこ
	とによって地盤構造を求める。
	• H/V スペクトル特性は、1地点で観測された常時微動の水平動のスペクトルを
	上下動のスペクトルで除したスペクトル比で、発生源の影響を受けない安定し
	た地盤増幅特性を得ることができる。
事例の有無	
事例紹介	教貨半野の動的地盤構造の解明するために, 常時微動のアレイ観測と一点三成分観 測な実施されている
	図 2-44 地震動と常時微動
	▲アレイ観測点 〇一点三成分観測点 図 2-45 常時微動の発生源
	Matsubagy/fukicho oktentage wurden wie suruse H. wingicho ostimitatelle wirden wie suruse H. wirden wirden wie suruse H. wirden wirden
	• Milionigendae 0.1 1 10 Period (sec)
	図 2−46 常時微動観測点 図 2−47 三成分微動のフーリエおよび H/V
	敦賀平野の常時微動のアレイ観測
	1) 上半文昭:常時微動による地盤・構造物の評価法,(財)鉄道総合技術研究所 RRR, Vol.66,
	No.9, pp.36-37, 2009.9 9) 佐藤毅 書柳友士 里田貴紀 小嶋政企・堂時微動のアレイ観測に其べく剪賀亚野の地般構
	造の推定,土木学会第59回年次学術講演会,1-764, pp.1525-1526, 2004.9
	
課題	 市街地ではアレイ観測の場所確保が難しく、観測の省スペース化が重要な課題
	である。
	 不整形地盤におけるアレイ観測では、地盤構造の推定精度がどの程度有してし
	るのか不明であり、実測と数値シミュレーション等で解明する必要がある。

ニーズ	騒音・振動計測データのリアルタイム収集システム
内容	振動・騒音が規定値に達した場合に現場のパトランプ等を起動させるのみならず、
	モバイル通信技術を活用して、現場から遠く離れた管理事務所に設置したパトラ
	ンプを同時に起動させたり、メールで担当者へ即座に異常を通知することができ
	る。
事例の有無	あり
事例紹介	■株式会社 仙台銘板
	$(URL: http://www.s-meiban.net/sq/vibration_noise.html)$
	<complex-block><complex-block></complex-block></complex-block>
課題	・電源の確保

·研究事例1:鋼鉄道橋の高速走行により発生する局部振動の把握と列車速度の影響¹⁾

(1) 背景

鋼橋は薄板の組み合わせで構成されており,列車走行の高速化による低次モードを中心とした全体モードだけでなく,板としての振動を伴う高次モードによる振動が大きな問題となる可能性がある。このような高次モードによる局部振動は,低次モードでは励起されないような大きな局部応力を伴うことも予想され,耐久性への影響が懸念される。局部振動がどのようなメカニズムで発生するのかを把握することは,列車の高速運転への対応を考える際に極めて重要である。

本研究において計測対象とした鋼箱桁橋では、主桁ウェブの垂直補剛材下端回し溶接部に変状が 発生した。この変状は列車走行に伴う振動現象が原因であると推測されたため^{2),3)},同一の構造デ ィテールを有する部位は変状の有無にかかわらず全て補強が施され、その後、不具合は報告されて いない。変状の原因については、文献 2),3)において詳細に検討されている。そこでは、実橋にお いて広範囲な計測を実施しているが、変状の発生した垂直補剛材下端部の鉛直方向応力計測から、 変状の原因が列車走行時に発生する高次の面外曲げ応力によるものであること、その発生応力の大 きさが列車速度に依存することを明らかとしている。しかし、その高次応力を発生させる振動モー ドを、桁全体が面外ねじれ変形を起こすことによるウェブの面外振動と推察しているものの、振動 性状と局部応力との関係は明確でない点もあり、より詳細な検討が必要と考えられた。また、列車 速度と振動の相関についても定量的な評価を行うには至っていないことから、列車の高速運転がな される中で、さらなる検討により定量的な評価手法を確立することが望まれる。

(2) 目的

本研究では,垂直補剛材下端部の応力と主桁ウェブの加速度に加えて,主桁下フランジの加速度 についても詳細な計測を行い,局部応力を発生させる振動モードおよび振動と速度の相関を定量的 に評価し,列車高速化が局部振動および局部応力の発生に与える影響について検討することとした。

(3) 実橋の振動計測

a)対象橋梁

計測対象橋梁は、完成後40年が経過した、主桁高2600mm、主桁ウェブ間隔2000mmの標準的な 断面を有する支間40mの4径間連続鋼一主箱桁橋である(図2-49)。主にE断面の垂直補剛材下端 の主桁ウェブに変状が発見された。そのため、同一の構造を有する全ての部位は、図2-49(b)に示 すようにT型の補強材を主桁下フランジと主桁ウェブの間に高力ボルトで取り付ける補強工事が実 施され、それ以来、不具合は報告されていない。

図 2-49 検討対象橋梁と変状の概要

b)通過車両

橋梁上を通過する列車は 16 両編成で,一車両あたりの車両長さは 25.0m,重量は定員乗車で約 45t である。一車両あたり 2 台の台車を有し,台車の車軸間隔は 2.5m,台車間隔は 17.5m である。計 測対象橋梁は直橋であり,通過列車は 270km/h を上限として橋梁上を一定速度で通過する。

c)計測方法

実橋の振動現象,局部振動と局部応力,列車速度との関係を明らかにするため,加速度計および ひずみゲージを計測対象橋梁に設置した。計測位置を図 2-50 に示す。計測断面は車両退出側の端 径間5 断面,2 径間目2 断面,車両進入側の端径間(4 径間目)2 断面の合計9 断面とした。

(4) 振動計測の結果

a) 主桁の振動性状

主桁応力の時刻歴波形とフーリエ振幅スペクトルの一例を図 2-51 に示す。 速度の異なる 2 列車 (列車 A および列車 B) における計測結果である。主桁下フランジの応力波形には,列車全体が橋 梁に載荷されることによる大きな 1 つの波形と,規則的に並ぶ 17 個のピークが見られる。後者は 規則的な車軸,台車の通過によるピークであり(列車 A: 2.85Hz,列車 B: 3.00Hz),「連行荷重によ る速度効果」⁴⁾として知られているものである。これは台車の規則的な通過周波数が列車速度に依 存するためであり,次式で表すことができる ⁵⁾。

 $f_{b} = V/90$ [Hz]

(1)

ここで, *f*_bは列車走行時における振動のスペクトルの1次のピークを与える周波数[Hz], *V*は列車 走行速度 [km/h]である。これは,列車が走行するとき軸重が桁に対して,周期的に加える強制振動 の周波数となる。

図2-51 主桁下フランジの応力計測結果

図 2-52 は、計測した 39 列車について、周波数分解能の影響を除去するために、計測された応力の時刻暦波形の後ろにゼロパディングして、ピーク周波数を集計し、列車速度との関係を表したものである。図中には、式(1)の数値線も併記した。このときの列車速度とピーク周波数の相関係数は 0.9989 であり、計測結果と式(1)が極めて良く一致していることが確認される。

図2-52 主桁振動の卓越周波数と列車速度の関係
b) 主桁ウェブと主桁下フランジの振動性状

主桁ウェブと主桁下フランジの加速度の時刻歴波形とフーリエ振幅スペクトルの一例を図 2-53 に示す。図 2-51 で示した速度の異なる 2 列車における断面 L11-12 の計測結果である。主桁ウェブ, 主桁下フランジともに,最大 40m/s²程度の高周波の加速度が見られる。顕著な周波数成分は,主桁 ウェブが 20Hz~50Hz まで多くのピークを持つのに対し,主桁下フランジは列車 A が 28.65Hz,列 車 B が 32.80Hz に顕著なピークを持っている。また,主桁ウェブ,主桁フランジともに,卓越する 周波数のピークは図中の矢印で示したように等間隔に並んでいる。この間隔は,前述した「連行荷 重による速度効果」の式により算出される周期外力 f_bの整数倍となっている。連行荷重は,調和波 でないため,このような成分があるのは当然であるものの,高次のピークが非常に大きいため,高 次モードとの共振が示唆される。 f_bの成分が確認される主桁下フランジの加速度に着目すると,列 車 A の場合,局部振動の卓越周波数 28.65Hz と主桁卓越周波数(258.0/90=) 2.85Hz の比は 10.0,列車 B の場合,局部振動の卓越周波数 32.80Hz と主桁卓越周波数(268.4/90=) 2.98Hz の比は 11.0 となる。

図2-53 主桁ウェブ・主桁下フランジの加速度測定結果

c)垂直補剛材下端部ウェブの局部応力の性状

垂直補剛材下端部における主桁ウェブの局部応力の時刻歴波形とフーリエ振幅スペクトルの一 例を図 2-54 に示す。時刻歴波形から,高周波の振動波形が観察できる。卓越する周波数は列車 A が 28.65Hz,列車 B が 32.80Hz であり,図 2-53 に示した主桁下フランジのフーリエ振幅スペクトル と同じ傾向にある。図 2-55 に,表裏の応力を拡大して重ねた図を併記しているが,表裏の応力は 正負反転しており,板曲げ応力が卓越していることがわかる。また,表裏の応力より曲げ応力およ び膜応力を求めた結果からも、曲げ応力の方が膜応力と比較して、応力振幅が大きく、高周波数成 分が卓越している様子が確認される。

図 2-56 には補強材を取付けた状態にして計測した 39 列車のうち,最も大きな応力が発生した列車の応力波形を示す。図 2-54 で示した補強前の応力に比べ,高周波の応力波形は見られず,発生応力は大幅に低減しており,補強構造が変状の防止に対して効果的であることが確認できる。

(5) 計測結果の分析

a)局部振動と局部応力の関係

図 2-50 (c)に示した垂直補剛材下端部においてひずみゲージにより計測された局部応力と,図 2-50 (b)に示した主桁ウェブ・主桁下フランジの各中央部分において加速度計により計測された加 速度の相関を調査することにより、局部応力の発生原因を検討する。計測した 39 列車について、 主桁下フランジ、主桁ウェブの加速度、対象部の局部応力のフーリエ振幅スペクトルのピーク値を 集計し、縦軸を加速度のフーリエ振幅スペクトル、横軸を応力のフーリエ振幅スペクトルとした図 を図 2-57 (a),(b)に示す。主桁ウェブの加速度と対象部の局部応力の相関係数が断面 L9-10 におい て 0.73、断面 L11-12 において 0.49 であった。また、主桁下フランジの加速度と垂直補剛材下端応 力の相関係数が断面 L9-10 において 0.98、断面 L11-12 において 0.89 であった。主桁下フランジ加 速度と対象部局部応力の相関が高いことから、局部応力の発生原因は主桁下フランジ振動の影響が 大きいと考えられる。

次に、局部応力を発生させる振動モードについて検討する。断面 L11-12の列車 B 通過時(列車速 度 268.4km/h)における主桁上下フランジ加速度、主桁左右ウェブ加速度、垂直補剛材下端の局部応 力、垂直補剛材下端と主桁下フランジとの隙間変位の分布を図 2-58 (a) に示す。主桁上フランジの 鉛直加速度および主桁下フランジの鉛直加速度、垂直補剛材下端部の主桁ウェブ応力、垂直補剛材 下端部の間隙変位は、図 2-49 に示した E 断面における計測結果である。また、主桁ウェブ水平加 速度は、図 2-49 に示した C 断面と E 断面の中央部における計測結果である。図 2-53 (b-1),(b-2) より、列車 B 通過時には、20Hz から 40Hz の振動成分が卓越することが確認される。そのため、図 2-58 (a) の振動波形に対して 20Hz から 40Hz のバンドパスフィルタを適用した後に、拡大して表示 した図を図 2-58 (b) に示す。さらに、あるピーク時刻(6.256 秒)における各値を読み取り、位相を 考慮して振動モード形を図にすると図 2-59 のようになる。ただし、加速度は図 2-53 (b-2)の卓越 周波数である 32.80Hz において変位に換算した。図 2-59 は、垂直補剛材下端の主桁ウェブ回し溶 接部を支点とし、主桁下フランジ中央を腹とする振動モードであり、この振動モードが対象とする 局部応力の発生要因であることがわかった。補強後においては、垂直補剛材下端と主桁下フランジ を T 型の補強材で連結するため、変状の発生した回し溶接部は主桁下フランジの振動の支点にはな らなくなるので、局部応力は大幅に低減することになる。

(b) フィルタ適用後の拡大波形

図 2-58 補強前の垂直補剛材下端部の主桁ウェブ応力,隙間変位,主桁ウェブ・上下フランジ加速度測定結果

(列車速度 268.4km/h)

(黒線は E 断面, 青線は C 断面と E 断面の中央部)

b) 主桁の振動と局部振動の相関

連行荷重による速度効果により説明される主桁の振動性状と、主桁下フランジの局部振動の関係 に着目する。図 2-60 に、主桁下フランジにおいて補強材を取付ける前に加速度計により計測した 全 39 列車分の加速度時刻暦波形のフーリエ振幅スペクトルを周波数-列車速度-フーリエ振幅ス ペクトルの関係として断面 L11-12 について図示する。

まず、図 2-60 において、各列車速度のフーリエ振幅スペクトルに対して上位 3 つのフーリエ振幅スペクトルとそのときの周波数(以下、卓越周波数)についてまとめた図を断面 L9-10 および断面 L11-12 についてそれぞれ図 2-61 (a)および図 2-61 (b)に示す。この図は、列車の各走行速度における出力加速度をフーリエ変換し、そのときのフーリエ振幅スペクトルの卓越周波数を読み取り、図示したものである。列車速度が変化すると、着目位置に入力される列車の車軸列間隔に基づく荷重列の間隔が変化する。つまり、列車速度に応じて入力荷重が変化する。図 2-61 は、様々な入力に対する出力応答のフーリエ振幅スペクトルにおける卓越周波数成分を抽出したものであるため、各断面に対する共振曲線と見なすことができる。

図 2-60 周波数-列車速度-フーリエ振幅スペクトルの関係

次に、図2-60と同様にして、主桁下フランジにおいて補強後に加速度計により計測した全37列 車分の加速度時刻暦波形のフーリエ振幅スペクトルを卓越周波数とフーリエ振幅スペクトルにつ いてまとめた図を断面 L9-10 および断面 L11-12 についてそれぞれ図2-62 (a)および図2-62 (b)に 示す。図2-62より、主桁下フランジの局部振動の固有振動数として、断面 L9-10 では29.60Hz およ び33.50Hz, 39.45Hz, 39.00Hz, 断面 L11-12 では29.40Hz および 33.05Hz, 36.85Hz が同定される。 補強前後の固有振動数の変化について見ると、補強前後で固有振動数の変化は大きくないものの、 若干の増加傾向が見られる。また、補強後では、補強効果に起因すると思われる補強前に見られな い新たな局部振動が発生していることが確認される。

さらに、図 2-60 を卓越周波数と列車速度についてまとめた図を断面 L9-10 および断面 L11-12 に ついてそれぞれ図 2-63 (a) および図 2-63 (b) に示す。図中、連行荷重による速度効果の式(1)によ り算出された強制振動 f_b の整数倍にあたる数値線を併記した。ピーク周波数は列車速度に依存し、 また、周波数 30Hz 付近を中心として等間隔に分布していることがわかる。また、それらのプロッ トは式(1)から算出される f_b の整数倍(10 - 13 倍)に一致していることが確認される。

⁽図中の数字は、固有振動数と主桁の一次の卓越振動数の比を表す。)

c)局部振動と列車速度の関係

図 2-60 において、列車速度と卓越周波数におけるフーリエ振幅スペクトルについてまとめた図 を断面 L9-10 および断面 L11-12 についてそれぞれ図 2-64 (a)および図 2-64 (b)に示す。さらに、 図 2-64 を各固有振動数に着目してまとめ直した図を断面 L9-10 および断面 L11-12 についてそれぞ れ図 2-65 (a)および図 2-65 (b)に示す。それぞれの固有振動数に対して、ある速度においてフー リエ振幅スペクトルが大きくなっているが、この時の主桁下フランジの卓越周波数は主桁の振動数 の整数倍となっている。以上より、主桁の強制振動数 *f* と主桁下フランジの局部振動の固有振動 数の比が整数となるとき、局部振動が増幅されることが明らかとなった。

図2-65 列車速度とフーリエ振幅スペクトルの関係(補強前)

(6) まとめ

変状が発生した鉄道鋼箱桁橋を対象とし、補強材を一時的に撤去する前後で、接触型センサを用いた詳細な振動計測により、局部応力と局部振動、列車速度との関係を調査した。得られた知見を まとめると以下の通りである。

- ・ 変状の発生した垂直補剛材下端と主桁ウェブとの溶接部に局部応力を発生させる要因は、主桁 下フランジを主体とする局部振動である。
- ・ 主桁の一次の卓越振動数 f_bは、列車速度 Vに比例する (f_b = V/90)。主桁下フランジにはこの f_b の整数倍の局部振動が発生し、この整数倍の周波数が主桁下フランジの局部振動の固有振動数 に接近すると、下フランジパネルの振動が大きくなる。T型材で主桁下フランジと垂直補剛材 を連結する現行の補強方法により、振動モード形が変化し、変状を発生させた局部応力は著し く小さくなる。
- 列車が高速運転した場合、主桁下フランジパネルの振動は列車速度に比例して大きくなるのではなく、台車通過周波数 f_bがパネル固有周波数の1/n(nは整数)に近づいたときのみに大きくなる。

参考文献:

- 宮下剛,石井博典,藤野陽三,庄司朋宏,関雅樹:レーザー計測を用いた鋼鉄道橋の高速走行 により発生する局部振動の把握と列車速度の影響,土木学会論文集 A, Vol.63, No.2, pp.277-296, 2007.4.
- 2) 杉本一朗: 溶接鋼鉄道橋の疲労強度と延命化に関する研究, 鉄道総研報告, 特別 23 号, 1997.
- 3) 杉本一朗,三木千壽,市川篤司,伊藤裕一:高速走行下での鋼鉄道箱桁の動的挙動と補剛材下 端部の応力,構造工学論文集 Vol.43A, pp. 1003-1012, 1997.
- 松浦章夫:高速鉄道における橋桁の動的挙動に関する研究,土木学会論文集,No.256, pp.35-47, 1976.
- 5) 原恒雄,吉岡修,神田仁,舟橋秀麿,根岸裕,藤野陽三,吉田一博:新幹線走行に伴う沿線地 盤振動低減のための高架橋補強工の開発,土木学会論文集,No.766/I-68, pp.325-338, 2004.

研究事例 2: 鋼トラス橋を主とした振動特性変化に基づく構造ヘルスモニタリング

(1)研究背景

近年,国内外で損傷事故が相次いでいる鋼トラス橋において,信頼性が高く効率的な維持管理法 の確立が急務である。本論文では振動特性変化に基づく2タイプの健全度評価法について検討して いる。一つは,車両走行時におけるトラス全体と斜材が連成振動するモードの減衰変化を利用した 健全度評価法(手法1)で,もう一つは,打撃試験による斜材の高次振動数変化を利用した健全度 評価法(手法2)である。

図 2-66 最近のトラス橋の重大損傷事例

(2) 斜材連成振動のモード減衰変化を利用した健全度評価法(手法1)

手法1では、まず、鋼トラス橋の基本振動特性を理論的に把握することを目的に、実在するトラ ス橋を対象として各種の固有振動解析を行った。その結果、トラス橋の振動モードとして、上下弦 材の振動が卓越するトラスモード、局所振動としての斜材卓越モードに加えて、それらが連成した 斜材連成モードが理論的に存在することを明らかにした。

次に,理論モード解析によって得られた振動特性が実際のトラス橋に認められるかを実験的に把握することを目的として,下弦材の格点や斜材に加速度計を多数配置した多点同期の供用時振動計測を行い,計測データを ERA 解析した。その結果,トラスモード,斜材卓越モードおよび斜材連成モードの存在を実験的にも確認し,同定された固有振動数やモード形状は概ね理論どおりの振動特性であることを示した。また,トラス橋のモード減衰比については,支承摩擦減衰の影響の大き

い低次トラスモードではばらつきや振幅依存性が顕 著であるものの,斜材振動が連成する可能性のある 高次モードでは安定した減衰同定が可能であり,振 幅依存性も小さいことを明らかにした。

さらに、斜材連成モードの減衰変化に着目するこ とで損傷した斜材を検知することが可能かについて 結論を得ることを目的として、斜材下端部に部分的 な破断が生じた径間を対象に当て板補強前後で荷重 車走行試験を実施し、振動計測を行った。その結果,

図 2-67 研究の着眼点

斜材連成モードの固有振動数の変化は僅かであるものの,損傷した斜材の連成により減衰比が明確 に増加することを捉えることができた。これにより,斜材連成モードの減衰比に着目すれば少ない 計測点で斜材の損傷を同定できる可能性を示唆した。

(3)打撃試験による高次振動数変化を利用した健全度評価法(手法2)

一方,手法2では、トラス斜材をターゲットとして、腐食程度の異なる斜材と補強前後の斜材の 打撃試験計測を行い、詳細なデータ分析から高次の局部振動を利用した損傷検知の可能性について 検討した。まず、斜材の局部振動特性を理論的に把握するために行った FEM 解析より、対象とし た斜材のフランジ腐食では 140Hz 以上の高次ねじれモードおよび板振動モードの振動数低下が顕 著であり、ガセット近傍でのフランジ亀裂では逆対称形の面内曲げモードの振動数低下が顕著とな り、振動数変化には損傷形態に応じたモード依存性があることを示した。次に、実際のトラス斜材 を対象に行った打撃試験データより、100Hz 以上の振動数領域において腐食が進行した斜材の固有 振動数は健全な斜材の振動数に比べて一様に 2~3Hz 小さい値を示し、FEM 解析によって得られ た腐食による振動数変化と大まかに整合した。これにより、リダンダンシー解析によって得られ た腐食による振動数変化と大まかに整合した。これにより、リダンダンシー解析によって事前に崩 壊に至らしめる重要な部材を絞った上で、打撃試験診断法を適用することの有用性を示唆した。ま た、路面より斜材に手が届く断面内での3点同期計測とすること、また、加振位置をウェブ中央と フランジこば面の2箇所で実施することで、曲げモード、ねじれモード、板振動モードの大まかな 分類が可能であった。損傷による振動数変化を正確に捉える上で対応するモードをきちんと判別す ることは重要であり、この方法の有効性を示した。

(4)おわりに

最後に,以上の研究成果を基に,振動特性変化に基づく構造ヘルスモニタリングのニーズとシーズを整理した上で,本研究で開発の可能性を示した,斜材連成モードの減衰変化を利用した鋼トラス橋の斜材損傷検知法(手法1),打撃試験による高次振動数変化を利用した鋼部材の機能性評価法(手法2)の実用化に向けた提案を行った。重大な損傷や欠陥の内在が懸念される既設鋼橋に対し,

詳細調査を行う前段階としての外査ツールとして本手法を適用することによって、客観的で定量的 な健全度評価が可能となり、劣化予測の精度向上にも繋がることから橋梁の長寿命化に有効である。

参考文献:

- 1) 吉岡勉,原田政彦,山口宏樹,伊藤信:斜材の実損傷による鋼トラス橋の振動特性変化に関する一検討,構造工学論文集,Vol.54A, pp.199-208, 2008.3.
- 2) 吉岡勉,伊藤信,山口宏樹,松本泰尚:鋼トラス橋の斜材振動連成とモード減衰変化を利用した構造健全度評価,土木学会論文集 A, Vol. 66, No. 3, pp. 516-534, 2010.8.
- 3) T. Yoshioka, H. Yamaguchi, Y. Matsumoto : Structural health monitoring of steel truss bridges based on modal damping changes in local and global modes, The 5th World Conference on Structural Control and Monitoring, No. 167, 2010.7.

研究事例 3:積層圧電アクチュエータによる局部加振法を用いた鋼橋の損傷評価^{1),2)}

(1) 背景と目的

我が国で現存する橋梁の多くは高度経済成長期に建設されており,建設後数十年が経過しなんら かの損傷が起こっている可能性があると考えられる。これらの構造物に対して,その損傷を初期の 段階で発見して対策を行いながら,構造物の長寿命化を目指すことが必要である。このためには目 視点検以外の簡便かつ容易な方法の確立が急がれている。本研究事例では積層圧電アクチュエータ を使用して,橋梁部材の局部加振を行い,測定した加速度データから振動特性の変化を解析して, 損傷を同定する。

(2) 実験概要

a)対象橋梁

実験対象橋梁は,1987年に竣工した橋長119.4m,全幅9.7mの4径間連続曲線鋼鈑桁橋である。 図 2-77のように4 主桁と中間横桁,対傾構,下横構を有する一般的な多主桁形式である。曲線半径は R=170mで5%の縦断勾配があり,横断方向は6%の片勾配となっている。本橋は路線切り替えに伴い撤去が予定されていた橋梁であり,撤去工事前に第4径間で下横構のガセットプレートの高力ボルトを緩めて模擬的な損傷を導入しながら実験を行った。

b)実験方法

実験対象橋梁に圧電型加速度計と小型加振装置を設置する。小型加振装置は図 2-78 のような, 電圧を加えると変形を生じる小型圧電素子を使ったもので,入力電圧を変化させることで任意の周 波数で橋を振動させることができる。鋼部材には磁石ホルダーで固定が可能であり,総重量は 1.5kg 程度と橋梁本体に対して無視できるほど軽量である³⁰。この小型加振装置を主桁腹板中央に設置し て橋梁を局部的に加振し,加速度計で加速度応答を計測する。実験橋梁の横構の接合部に程度が異 なる損傷を導入し,損傷させていない健全状態と損傷ごとの加速度応答を測定する。

図 2-77 対象橋梁

図 2-78 小型加振装置

実験は図 2-79 で示す第4径間に対して行い,加速度計を16箇所に設置した。加速度計番号をch1 ~ch16としch1~ch12は主桁下フランジに設置し,ch13~ch15までを横桁下フランジに近い主桁腹板に設置した。ch16は主桁腹板に設置した。加速度計の設置方向はアクチュエータによる加振方向と同じ方向になるように設置した。加振波は sweep 波による加振を行い,加振方法は周波数が1~650Hz まで一様に変化する sin 波(sweep 波)として,20sec の加振を行った。サンプリング周波数は8000Hz で実験を行った。振動の発生源には積層圧電アクチュエータ(10×10×20mm)を用いた。このアクチュエータは電圧(0から100V)を印加することで体積が増減し,その体積の増減を利用して振動を起こしている。橋梁に振動を与えるため,アクチュエータに荷重(初期荷重)をかけて起振力を与えている。本実験では初期荷重は30kg とした。設置位置は図2-80の矢印の位置である。

c)損傷

この実験ではボルトの張力開放(弛緩)を損傷とし、本研究では損傷ケースを case1~case2 で表した。損傷位置は実験橋梁の第4径間の横構接合部に注目し、図2-80の丸で囲まれている部分のボルトを張力開放した。この接合部のボルトは合計16本あり、case1 は横構のうち横桁に近い8本のボルトを緩め、case2 は残りの8本のボルトを緩め合計16本のボルトを緩めた。

(3) 損傷評価手法

実験で得られた加速度波形から高速フーリエ変換を用いてパワースペクトル密度(PSD)を算出し、 損傷状態の PSD と損傷させていないとき(健全状態)の PSD の変化率を計算する。

$$D_{i} = \frac{\left|G_{i}(f) - G^{*}_{i}(f)\right|}{1 + \left|G_{i}(f)\right|}$$
(1)

ここで, *D_i*:PSD の変化率 *G_i(f*):健全状態の PSD *G^{*}_i(f)*:損傷状態の PSD

上式を設置加速度計数(n)と加振周波数(m)ごとに算出し、マトリクスDで表す。

$$D = \begin{bmatrix} D_{1}(f_{1}) & D_{1}(f_{2}) & \Lambda & D_{1}(f_{m}) \\ D_{2}(f_{1}) & D_{2}(f_{2}) & \Lambda & D_{2}(f_{m}) \\ M & M & M \\ M & M & M \\ M & M & M \\ D_{n}(f_{1}) & D_{n}(f_{2}) & \Lambda & D_{n}(f_{m}) \end{bmatrix}$$
設置加速度計(ch) (2)
1 4 4 4 5
加振周波数

各周波数で最大のパワースペクトル密度変化(マトリクスDのそれぞれの列の最大値)を選択して、他のパワースペクトル密度変化を最大のパワースペクトル密度変化で除す。計算された結果をマトリクスCで定式化する。例えばマトリクスDでD₃(f₁)の値が1列目の最大値であるなら、C₃(f₁)の値は1となり、列の他の値はより小さい値となる。同様に2列目はD₂(f₂)、m列目はD₅(f_m)が最大値をとったものとすると以下のようになる。

$$C = \begin{bmatrix} C_{1}(f_{1}) = \frac{D_{1}(f_{1})}{D_{3}(f_{1})} & C_{1}(f_{2}) = \frac{D_{1}(f_{2})}{D_{2}(f_{2})} & \Lambda & C_{1}(f_{m}) = \frac{D_{1}(f_{m})}{D_{5}(f_{m})} \\ C_{2}(f_{1}) = \frac{D_{2}(f_{1})}{D_{3}(f_{1})} & C_{2}(f_{2}) = \frac{D_{2}(f_{2})}{D_{2}(f_{2})} & \Lambda & C_{2}(f_{m}) = \frac{D_{2}(f_{m})}{D_{5}(f_{m})} \\ M & M & M \\ M & M & M \\ C_{n}(f_{1}) = \frac{D_{n}(f_{1})}{D_{3}(f_{1})} & C_{n}(f_{2}) = \frac{D_{n}(f_{2})}{D_{2}(f_{2})} & \Lambda & C_{n}(f_{m}) = \frac{D_{n}(f_{m})}{D_{5}(f_{m})} \end{bmatrix}$$
(3)

これらのマトリクス D, C に対して,各行の総和を式(4),式(5)のように求める。

$$SD2 = \begin{cases} \sum_{f} D_{1}(f) - 2\delta \\ \sum_{f} D_{2}(f) - 2\delta \\ M \\ \sum_{f} D_{n}(f) - 2\delta \end{cases}$$
(4)

$$SC2 = \begin{cases} \sum_{f} C_{1}(f) - 2\lambda \\ \sum_{f} C_{2}(f) - 2\lambda \\ M \\ \sum_{f} C_{n}(f) - 2\lambda \end{cases}$$
(5)

ここで、 δ および λ はそれぞれ D_i 、 C_i の標準偏差で、測定結果に含まれるノイズなどの影響を除去 するためのデータ処理上の工夫である。この SD2 と SC2 の各要素の積が式(6)の損傷位置指数であ り、損傷位置指数が大きい加速度計位置周辺に損傷がある可能性が高いことを表している。

	$\left[SD2(1) \times SC2(1) \right]$	
נות	$SD2(2) \times SC2(2)$	$(\cap$
$DIZ = \langle$	M	(6)
	$\left[SD2(n) \times SC2(n)\right]$	

(4) 実験結果

実験結果を図 2-81 に示す。縦軸は損傷位置指数,横軸は加速度計の ch 番号(加速度計の設置位置)を表わしており値が大きいところに損傷がある可能性が高いと判断する。

case0とcase1を比較したグラフ(a)では損傷を加えた主桁に設置した加速度計 ch3~ch6の損傷位 置指数の値が大きいことがわかる。特に損傷を加えた位置に近い ch4, ch6 の損傷位置指数の値が 大きくなっている。したがって(a)からは ch4, ch6 周辺に損傷がある可能性が高いと判断でき,損 傷も ch4, ch6 周辺に加えているため損傷位置の同定ができていると判断できる。case0 と case2 を 比較した(b)では ch4~ch6 の損傷位置指数の値がほかの加速度計よりも大きいことがわかり,(b) からは ch4~ch6 周辺に損傷があると評価できる。実際の損傷は ch4, ch6 に加えているので損傷の 同定ができていると言える。また(a)と(b)を比較すると,(a)より(b)の方が損傷位置指数の値が大 きいので,(a)と(b)の比較から case2 の損傷の方が大きいと評価できる。実際の損傷は case2 の方 が大きな損傷を加えているので損傷の大小の評価ができていると判断できる。次に case1 の損傷状 態を基準として case2 の損傷がた。(c)から ch4~ch6 の損傷位置指数の値が大きく, case1 から case2 の損傷の変化で ch4~ch6 に損傷の影響があると評価できる。

(5) まとめ

今回の実験結果から実橋における微小損傷の評価,および損傷の大小の比較を検討できた。 圧電アクチュエータで鋼構造部材を加振し,得られた応答加速度を用いて損傷の評価を行うとい う本手法は,実橋梁のような鋼構造物の損傷検出に有効であると考えられる。

参考文献:

- 1) 坪川良太,大島俊之,三上修一,宮森保紀,山崎智之:圧電アクチュエータの局部加振による 実橋梁の微小欠陥検出に関する研究,土木学会第65回年次学術講演会講演概要集,vol. 65, I-453, pp.905-906, 2010.
- 2) 坪川良太,大島俊之,山崎智之,三上修一,宮森保紀:積層圧電アクチュエータによる局部加 振法を用いた実橋梁の損傷評価に関する研究,橋梁振動コロキウム 2011 論文集, pp.51-55, 2011.
- Toshiyuki Oshima, Shuichi Mikami, Yasunouri Miyamori, Tomoyuki Yamazaki and Sheriff Beskhyroum: Damage identification of civil infrastructure with array sensing under local excitation, SHMII-4, Zurich, Switzerland, 2009.

2-2. 振動を利用した橋梁健全度評価の海外事例

海外における橋梁健全度評価事例を体系的にまとめられているロスアラモス報告書を抄訳して 整理した。以下に ABSTRACT のみ示す。全文の抄訳は巻末資料に示す。

A SUMMARY REVIEW OF VIBRATION-BASED DAMAGE IDENTIFICATION METHODS

Scott W. Doebling, Charles R. Farrar, and Michael B. Prime Engineering Analysis Group Los Alamos National Laboratory Los Alamos, NM

ABSTRACT

【抄訳】

この論文では、計測した振動応答の変化を調べることによって、構造系と力学系における損傷の特徴 を明らかにし、発生位置を検出する手法の概要を説明する。振動を利用した損傷同定の研究は、過去数 年間で急速に拡大している。この技術の背後にある基本的な考え方は、「モードパラメータ(特に周波数、 モード形状、モード減衰)は、構造体の物理特性(質量、減衰、剛性)の関数である」ということである。 つまり、物理特性の変化により、モード特性に検出可能な変化が生じるのである。この技術を発展させ るための方法が発表されており、モデルベースと非モデルベースによる比較や、線形と非線形の比較に よって与えられる損傷検出のレベル等、様々な基準に従って分類されている。それらの実施方法と正確 さに関する難しさを含めて、一般論として説明する。また、実際のエンジニアリングシステムにおける 技術の歴史と今後の計画の要約を示す。最後に、振動を利用した損傷同定の分野における、今後の研究 のための重要な課題について考察する。

2-3. 各種センサの特徴整理

計測技術名	サーボ型加速度計
技術概要	目標値に追随するように位置制御するサーボ機構を利用した加速度計
	【長所】
	・高精度
	・高分解能
	 ・高感度
	【短所】
特徴	 ・衝撃に弱い
	・静的成分を含めて低周波数成分も検知可能
	・高周波領域では数百 Hz 以下に限られる
	・高コスト
	センサそのものは1軸当たり10万円から30万円程度であるが,電源装置,増幅器,
	シグナルコンディショナなどが必要であり、これらがセンサと同程度かそれ以上の価格
	であることも多い。
	物体の位置を目標値に追従するように自動制御するサーボ機構を利用した加速度計
	である。錘が慣性力を受けて動くとサーボ機構を通じて変位を抑えようと制御する。こ
	の制御に必要な力を加速度として検出する。サーボ機構に流れる電流が制御力に比例す
	るとして電流計測により、あるいはそれを電圧に変換して、慣性力すなわち加速度を検
計測原埋	知している。
	サーボ型速度計も同様の仕組みである。加速度出力を直接検出するのではなく,アナ
	ログ微分回路が組み込まれており、その入力、出力側でそれぞれ速度、加速度が得られ
	る。
	サーボ型加速度計は高精度,高感度という特徴から,地震計測,橋梁振動計測に従来
	 から広く利用されている。長大橋の地震観測(横浜ベイブリッジ,鶴見つばさ橋,レイ
適用事例	ンボーブリッジ) ^{1,2)} ,動態観測(白鳥大橋) ³⁾ に利用されている他,短期間の交通振動
	調査 ⁴⁾ や常時微動計測をはじめ,橋梁振動の調査に利用されている例が多い。
	1) Siringoringo, D., Fujino, Y.: Observed dynamic performance of the Yokohama-Bay Bridge from system
	 identification using seismic records, Structural Control and Health Monitoring, 13(1), pp226-244. 2006. Siringoringo, D., Fujino, Y.; System identification applied to long-span cable-supported bridgesusing
会老女母	seismic records, Earthquake Engineering and Structural Dynamics, 37, pp361-386, 2008 2) 長山知則 阿如雅人 薩堅唱三 油田書二,當時德動計測に其べく非比例演奏系の非反復構造道
<i>参与</i> 久 瞅	3) 及口有则,阿印霍八,藤封陽二,他口恩二:帝時做動計例に塞 5(非比例减袭票の非及復悔道逆 解析と長大吊橋の動特性の理解,土木学会論文集, No.745, pp.155-169, 2003.
	4) Su, D., Fujino, Y., Nagayama, T., Hernandez, Jr. J. Y., and Seki, M.; Vibration of reinforced concrete viaducts under high-speed train passage: measurement and prediction including train-viaduct interaction
	6(5), pp 621-633. 2010.
	近年では MEMS 型のサーボ型加速度計が開発されるなど、小型化、低価格化、省電
今後の展望	力化が進んでいる。これまでは高コストが大きな課題であったものの, 今後はより利用
TATAL	がしやすくなり広く普及する事も考えられる。 一方で、MEMS 型加速度計の精度向
	上も著しいため、用途によって使い分けが必要となる。

計測技術名	無線センサネットワーク
技術概要	MEMS 型加速度計等の小型で安価なセンサと無線通信,信号処理,小型バッテリを備
议附派安	えた計測ノードから構成されるネットワーク
	【長所】
	・安価
	・配線が不要。特に車線をまたぐセンサ配置の場合や、長大構造物を対象とする場合に
	有用
ut dut	・多点計測が容易
	・データ処理も組み込む事が可能
行倒	・加速度、歪、温度等、複数の物理量を計測し、総合的に扱うことが可能
	【短所】
	・信頼性(計測精度、長期安定性、通信安定性)は必ずしも高くない
	・バッテリ切れの恐れがある
	・パーツコストは低いものの, 信頼性を高めるためのソフト・ハード両面でのカスタマ
	イズを行うとシステムコストが高くなる恐れがある
_	無線センサノードによって採用するセンサは異なるが, MEMS 型加速度計, 温度計
	が搭載されることが多い。
	MEMSは、電子回路と機械要素を1つの基板上に集積したデバイスであり、センサ
	を小型化,省電力化,低価格化できると期待される。代表的な MEMS 型加速度計は,
	内部に錘とバネを持ち,バネの変形量を加速度として検知している。変形量検知の方式
	には、ひずみゲージの代わりにピエゾ素子を利用するピエゾ抵抗方式や、錘と固定部の
	間の静電容量が変形量に応じて変わることを利用した静電容量検出方式などがある。ノ
	イズレベルが 200 μ g/√Hz 程度のものであれば 1 個あたり数百円のものも多く販売さ
	 れている。ノイズレベルに有効周波数帯域幅の平方根を乗ずれば,ノイズ RMS 値に換
	算できる。例えば 100Hz の周波数帯域の場合, 2mg (=200 μ g/√Hz x √100Hz)程度
	の RMS 値となる。これは橋梁モニタリング一般には十分とはいえないレベルである。
計測原埋	1 チャンネル当たりコストは高くなるが(1 万円以上), 10 µ g/√Hz 程度のノイズレベ
	ル(0.1mgRMS ノイズ相当)の加速度計も市販されている。なお、サーボ型加速度計
	は 10ng/√Hz 程度(0.1 µ gRMS ノイズ相当)のノイズレベルである。
	近年では多くのスマートフォンにも MEMS 型加速度計が搭載されており、これを利
	用して簡易に振動計測を行うことも試みられているが,上述の通りノイズレベルが比較
	的高く、橋梁振動計測に利用できるケースは限られている。さらに、スマートフォンは
	計測用に設計されたシステムではなく,一定間隔のサンプリングなど,サンプリングタ
	イミングの管理が難しい。有効な周波数帯域は限られるなどの制約が生じるため、計測
	や分析に注意が必要である。
	MEMS 型加速度計を CPU, 無線チップ, メモリ, バッテリと組み合わせた無線セン
	サネットワークは実装するプログラム次第で様々な役割を担うことができ,また機能の

	拡張ができる。 例えば, 無線通信を利用することで, 数マイクロから数十マイクロ秒の
	精度で同期をとる事ができる。複数の中間ノードを経由したマルチホップ通信も実現可
	能である。
	無線センサネットワークを利用して, 米国サンフランシスコのゴールデン・ゲート橋
	の振動計測を数カ月にわたって行った事例が報告されている ¹⁾ 。計 64 ノードを主径間
	および主塔に設置し,加速度計測をしている。データ収集に12時間を要するなど問題
	点も指摘されている。
	韓国 Jindo 島にかかる斜張橋 Jindo 橋に無線センサ 100 ノード以上を設置し, 1 年以
	上に渡り遠隔モニタリングを行った事例も報告されている ^{2,3)} 。ソーラーパネルや小型
適用事例	風力発電を利用し,長期に渡った間欠的なモニタリングを実現している。斜張橋ケーブ
	ルに設置したノードは,計測加速度をデータ処理することでケーブル張力に変換した上
	で,結果を転送する仕組みとなっている。 無線センサネットワークを単なる計測機器と
	して利用するのではなく、データ処理・判断を含めたモニタリングシステムとしての工
	夫が幾つか見られる。
	国内では, 耐震補強前後でアーチ橋の振動特性を密に推定した事例や, レインボーブ
	リッジの桁振動を密に計測した事例が報告されている ^{4,5)} 。
参考文献	 Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., and Turon, M. : Health monitoring of civil infrastructures using wireless sensor networks, Proc. of 6th International Conference on Information Processing in Sensor networks, pp. 254-263, 2007. Jang, S.A., Jo, H., Cho, S., Mechitov, K.A., Rice, J.A., Sim, S.H., Jung, H.J., Yun, C.B., Spencer, Jr., B.F., and Agha, G., "Structural Health Monitoring of a Cable-stayed Bridge using Smart Sensor Technology: Deployment and Evaluation," Journal of Smart Structures and Systems, 6(5), 439-459 (2010). Cho S., Jo, H., Jang, S.A., Park, J., Jung, H.J., Yun, C.B., Spencer, Jr., B.F., and Seo, J.W., "Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses," Journal of Smart Structures and Systems, 6(5), 461-480 (2010). Nagayama, T, Urushima, A., Miyashita, T., Yoshioka, T., and Ieiri, M. "Dense vibration measurement of an arch bridge before and after its seismic retrofit using wireless smart sensors," Proc. SPIE 8345, 834536, San Diego, USA 2012. Nagayama, T., Moinzadeh, P., Mechitov, K., Ushita, M., Makihata, N., Ieiri, M., Agha, G, Spencer, Jr., B. F., Fujino, Y., and Seo, JW.: Reliable multi-hop communication for structural health monitoring. Smart Structures and Systems, Int'l Journal Vol. 6 No. 5, 2010
	一般に利用されている無線センサネットワークはそのほとんどが温度計測などの静
	的計測であり,橋梁加速度応答などの動的計測の利用を想定しているものは極めて少な
	い。サンプリングタイミングの制御が厳密でない、データ転送に長時間を要するなどの
今後の展望	問題があり,無線センサネットワークを利用した橋梁振動モニタリングが本格的に普及
	するには未だ時間を要すると考えられる。一方で静的歪モニタリングや応答最大値のモ
	ニタリングなど,現在の無線センサネットワークの性能に見合う利用であれば既に応用
	も幾つか見られ、今後も普及が進むと考えられる。

計測技術名	マイクロ波干渉計を利用した多点変位計測
	ステップ周波数連続波レーダーを利用して対象物までの距離を計測し,差分鑑賞により
技術概要	対象物の変位を推定するもので,多数のターゲットの変位を非接触で同時に計測する事
	ができる。
	【長所】
	・非接触遠隔多点計測(数十メートルまでは実績あり。数百メートルでも計測できる可
	能性あり)
Hotto Saluto	・変位が計測可能
将倒	・必ずしもターゲットを必要としない
	【短所】
	・センサヘッドからの距離が同じターゲットは互いに区別がつかない
	・計測値のドリフトが小さくない
	ステップ周波数連続波 (Stepped-frequency Continuous Wave) レーダーを利用して,
	対象物までの距離を計測し, 差分干渉により対象物の変位を推定するものである。対象
	物までの距離が異なれば、複数のターゲットを同時に捉え、変位計測できる。長期的な
⇒l Juura nu	計測信号の安定性など検証すべき点も多いが, RMS 値で 0.01mm 程度の測定誤差で変
計測原理	位計測できる,非接触遠隔計測で必ずしもターゲットを必要としない,複数対象物の変
	位を同時に捉えられる,対象物までの距離数十メートル程度までは計測実績がある,な
	ど橋梁計測にとって有利な特徴を備えている。 一方で, センサヘッドからの距離が互い
	に近いターゲットが相互に影響し合うなど、計測原理固有の注意点もある。
这日中间	斜張橋の複数ケーブルの振動を一度に捉えたり,ニューヨークのマンハッタン橋の列
週用事例	車通過時の変位応答を空間的に極めて密に計測したりする事例 1) が報告されている。
参考文献	6) Mayer, L., Yanev, B, Olson, L. D., and Smyth, A.: Monitoring of the Manhattan Bridge for Vertical and Torsional Performance with GPS and Interferometric Radar Systems, Proceedings of Transportation Research Board 89th Annual Meeting, 2010.
	遠隔で変位計測が可能なため,変位管理が重要な橋梁の計測には多く利用される可能
	性がある。一方で, センサヘッドカラの距離が互いに近いターゲットが相互に影響する
ムベの屋胡	などの特性から、利用に当たって注意すべき点も多い。
今後の展望	斜張橋ケーブルの振動計測では,本センサを利用すれば1度に多数ケーブルの振動を
	遠隔で捉えられるため、大幅な計測時間短縮につながる。斜張橋ケーブルの張力推定の
	目的では今後急速に利用が拡大する可能性がある。

封测性发展	レーザードップラー速度計
司 侧 仅 们 石	Laser Doppler Vibrometer (LDV)
技術概要	レーザー光のドップラー効果を利用して速度を計測する光学機器
	【長所】
	・非接触計測
	・長距離計測
	・高分解能
	・高周波数帯域
性恋	・スキャニングによる多点計測
行政	・電気回路の数値積分により変位の動的計測が可能
	・3 台を連動させることで三次元振動計測が可能
	【短所】
	・コスト
	・計測機器本体の振動に対する補正が必要
	・過渡現象の多点同時計測が困難
	LDV とは、ドップラー効果を利用した非接触式の振動計測機器であり、基準となる
	参照レーザービームと計測対象物から反射してきた測定レーザービームの位相差を検
	出する光学的な干渉装置である。位相差は、ドップラー効果により発生するものであり、
	検出された位相差からレーザー光軸方向の速度の絶対値が決定される。速度の方向に関
	しては、ヘテロダイン方式により、方向情報を与える FM 搬送波を利用して決定され
	る。
	レーザー光の周波数Ωは非常に高い(約 4.74×10 ¹⁴ Hz)ので,光を直接復調すること
計測原理	は不可能である。そのため,光学的干渉計を利用して計測対象物から反射した測定ビー
TRANKE	ムと参照ビームを干渉させる。干渉した混合ビームの周波数は、参照ビームと測定ビー
	ムとの間の差の周波数に等しくなり、この混合光の強度を光検出器で測定する。
	具体的には,図2-82に示すマイケルソン干渉計を利用して実現している。まず,
	He-Ne レーザーが, ビームスプリッタ(以下 BS)1 により, 参照用のビームと計測用の
	ビームに分離される。次に、BS2 により、計測対象物に照射された計測用のビームは
	反射する。最後に、対象物から反射したビームは、BS2の下面で反射して BS3 で参照
	用のビームと干渉が生じ,検出器において式(1)で表される時間 t に依存する光強度 $I(t)$
	が検出される。

速度の符号は検出されない。そこで、LDV では、振動の方向を区別するために、ブラ ッグセル(音響光学式変調器)と呼ばれる光ヘテロダイン方式を使用している。ブラッグ セルは、光の周波数をシフトさせる光学変調器で、リファレンスドライバーからの信号 で決定される周波数 f_Bのシフトを行う。この方式では、ブラッグセルにより一定の周 波数シフトを与えられたレーザーが参照ビームとして使用され、計測対象物からの計測 ビームと受光素子上で光干渉を起こす。そのとき、反射ビームは計測対象の振動による ドップラーシフトを受けているので、その干渉光のビート周波数は、ブラッグセルによ るシフト周波数を中心とする FM 変調波となる。これを受光素子で電気信号に変換し て FM 復調することにより、計測対象の振動速度に比例した電圧信号が得られ、正負 の符号を持った速度信号が出力されることになる。

従来,LDV は、薄肉部材から構成される自動車や固定式センサの設置が困難なハー ドディスクの振動計測など、屋内での使用に限定されていた。しかし、LDV は非接触 で長距離振動計測を実現することから、空間スケールの大きな社会基盤構造物に対して 適用することが検討された。その先駆的な研究として、文献 1)~3)が挙げられる。その 後、主として橋梁を対象とした社会基盤構造物にLDV を適用する研究が進められた。 以下に一例を示す。

・新幹線鋼箱桁橋の振動計測⁴⁾

対象橋梁では、主桁ウェブの垂直補剛材下端回し溶接部に変状が見られた。この 原因として、列車走行に伴う振動現象が推察された。そのため、複数台の LDV を用 いた常時微動計測と列車走行時の振動計測が実施された(図 2-83)。その結果、主桁 の一次卓越振動数 f_b は列車速度に比例し、主桁下フランジパネルには f_b の整数倍の 局部振動が発生すること、そして、この整数倍の振動数が下フランジパネルの固有 振動数に接近するとパネルの振動が大きくなることが明らかとなった、

適用事例

・新幹線コンクリート高架橋の振動計測 5)

鉄道のコンクリート高架橋では、振動を利用した健全性診断が実施されている⁶。 具体的には、高架橋を重錘で加振し、全体系と柱の局所系の固有振動数を同定する。 そして、予め数値計算に基づいて作成された剛性と固有振動数の関係図と比較して 健全性を評価する。

本研究では、地震などの災害発生時に、高架橋を重錘で加振することが難しい場合を想定して、LDVを用いた非接触常時微動計測の適用性を検討することとした(図2-84)。その結果、常時微動でも従来手法と同様に固有振動数の同定が可能であり、さらに振動モード形の同定を可能とすることから、健全性評価手法の精度向上に結び付く可能性が示唆された。しかし、コンクリート高架橋の常時微動の振動レベルは小さく、風などの外乱による LDV 本体の振動が問題となった。そこで、文献 7)を参考にして、LDV 本体の振動を別のセンサで計測して、LDV の計測結果を補正する必要があった。

ケーブルの張力計測⁸⁾

斜張橋ケーブルなどの張力は,振動法⁹と呼ばれる手法に基づき,振動計測から 同定される。これは、ケーブルを張力を受ける弦と仮定すると、固有振動数と張力 が簡易な関係式で表現されることを利用するものである。

従来は、各ケーブルに固定式の加速度計を取り付けて振動計測が実施されている。 ここでは、高所での作業や配線の取り回しが必要となるため、作業の安全性や効率 性を向上させることが求められている。そこで、本研究では、これらのニーズの実 現を目的として、LDV を用いたケーブルの張力計測の適用性について検討した(図 2-85)。

その結果,LDV は非接触計測を可能とすることから,効率良く多数のケーブルの 振動計測を実現することができた。また,LDV は加速度計と比較して,低周波数領 域の応答特性が良い。そのことから,固有振動数が1Hz 以下となる長いケーブルの 固有振動数を常時微動から同定することが可能となった。さらに,測量用のプリズ ムを使用してレーザーの反射率を向上させることで,仕様の計測可能距離を超えた 長距離計測が実現できることが確認された。これにより,ケーブルの振動計測のさ らなる効率化が可能となる。ただし,計測距離が仕様を超える場合は,時刻歴波形 にノイズが多く含まれるため,適切な信号処理を行う必要がある。

図 2-83 鋼箱桁橋への適用 図 2-84 高架橋への適用 図 2-85 ケーブルの計測

	5) 貝戸清之,阿部雅人,藤野陽三,依田秀則:レーザー常時微動計測手法の構築と構造物の損傷
	出への応用, 土木学会論文集, No.689/I-57, pp.183-199, 2001.
	6) 貝戸清之、阿部雅人、藤野陽三、熊坂和宏:局所的な振動特性変化に着目したコンクリート構
	物の空隙検出,土木学会論文集,No.690/V-53,pp.121-132,2001.
	7) 貝戸清之,阿部雅人,藤野陽三,本村均:実構造物の非接触スキャニング振動計測システムの
	発,土木学会論文集,No.693/VI-53,pp.173-186,2001.
(s dat 1 dat	3) 宮下剛,石井博典,藤野陽三,庄司朋宏,関雅樹:レーザー計測を用いた鋼鉄道橋の高速走行
参考文献	より発生する局部振動の把握と列車速度の影響,土木学会論文集A, Vol.63, No.2, pp.277-296
	2007.
	9) J. Hernandez Jr., T. Miyashita, V. Phouthaphone and Y. Fujino: Understanding the Dynamic Behavior
	Shinkansen RC Viaducts, Proc. of the 25th International Modal Analysis Conference (IMAC XXV), (F
	paper is enclosed in CD-ROM), Orland, Florida, USA, 2007.
	10) 関正樹 : 固有振動数に着目した構造物の健全度評価および動的応答に関する各種提案, JR 東海
	法, Vol.6, pp.7-14, 2006.
	1) 上半文昭、月里公郎・鉄道構造物の振動診断を目的とした非接触微動測定法の開発 地震工学

	 文集, Vol.27, pp.1-8, 2003. 12) K. Kubota, T. Miyashita, Y. Fujino, N. Miyamoto, S. Umemoto, H. Suehiro: Development of a Super Remote Laser Sensing System for Monitoring of Cable-Supported Bridges, <i>Proc. of the 6th International Cable Supported Bridge Operators' Conference (6th ICSBOC)</i>, Vol.6, pp.77-84, Takamatsu, Japan, 2008.5. 13) 新家徹, 広中邦汎, 頭井洋, 西村春久: 振動法によるケーブル張力の実用算定式について, 土木 学会論文集, Vol.294, pp.25-32, 1975.
今後の展望	十分な反射光が必要であるため,計測対象との距離が短く反射ターゲットが設置可能な
	計測事例(例えば,自動車などの工業製品を室内試験)が多かったが,次第に計測可能
	な距離が延び,反射ターゲットが不要なタイプの LDV も利用可能になってきている。
	100m を超える距離からターゲットなしで計測をすることも可能である。遠隔から効率
	的に振動を高精度に、広周波数帯域に渡り把握できる可能性を持っている。一方で、レ
	ーザー照射の性質上,照射経路上のちり,埃によりノイズが生じることもある。霧の生
	じやすい地域, 粉塵の発生しやすい現場などでは, チリ, 埃によるノイズの影響を受け
	ないで安定して計測を行うことは現状では難しい。

11111111111111111111111111111111111111	圧電型加速度計
司 侧 仅 附 名	Piezoelectric accelerometer
技術概要	圧電素子にひずみが加わると電圧が発生する圧電効果を利用する
	【長所】
	・安価で軽量,小型,3軸測定も可能
	・適用可能な振動数や容量の選択肢が広い
	【短所】
	・感度はそれほど高くない
	・温度変化により雑音が発生する場合がある
	・重力加速度など静的加速度の測定は不可能
	・ 空量
	最大使用加速度は,300-100,000m/s ² 程度までの製品がある。耐衝撃加速度は最大使
	用加速度と同程度から1桁多いものまでがあり、耐衝撃性に優れている。
	• 感度
4+ /11L	圧電型加速度計はプリアンプを内蔵しない電荷出力型とアンプ内蔵型がある。電荷出
行倒	力型では電荷感度で表示され,0.1-40 pC/(m/s ²)程度までの製品がある。アンプ内蔵
	型では 0.5-10 mV/(m/s ²)の製品が多い。
	・適用周波数帯
	1Hz-20kHz 程度以上
	費用
	センサそのものは数万円から 10 数万円程度であるが,以下に述べる装置が必要であ
	る。アンプ内蔵型のものは相応に高価となる。
	他に必要な機器
	アンプ内蔵型でない電荷感度を出力する場合はチャージアンプによって電圧に変換
	する。データを記録するデータロガーなどの記録器やコンピュータを接続して使用する
	が、コンピュータに取り込む際にはアナログな電圧変化をデジタルデータに変換する
	A/D 変換ボードが必要になる。
	センサ内のおもりに圧電素子を接続し,質点の振動により圧電素子にひずみが加わる
	と電圧が発生する圧電効果を利用したセンサである。圧電素子に作用させる力のかかり
	方によってせん断型と圧縮型がある。圧縮型は機械的強度が大きく衝突・衝撃測定に適
計測百冊	しており, せん断型は出力感度が大きいとされており, 振動測定用の加速度計はせん断
	型が多い。
	小型,軽量であり質量は1g未満~100g程度である。2軸や3軸の測定に対応した製
	品もありラインナップが多い。対応振動数範囲や測定できる加速度の幅(ダイナミック
	レンジ)が広いが,静的加速度の測定はできない。温度変化により雑音が発生する。

	橋梁や建築構造物での振動応答計測、模型実験などにおける振動応答計測
適用事例	【代表例】 リオン PV シリーズ, 小野測器 NP-2000 シリーズ, 富士セラミクス SSG シリー
	ズ、昭和測器など多数
	1) リオン:リオン音響・振動計測器 総合カタログ 2011~2012,
参考文献	http://svmeas.rion.co.jp/catalog.aspx 2) 昭和測器:製品案内 http://www.showasokki.co.jp/product/04/ssenser.html 3) 西原主計,山藤和男:計測システム工学の基礎 第2版,森北出版,2005.
	小型化、低価格化を進める事例が増えつつある。安価でかつ高精度の加速度計として利
今後の展望	用可能になる可能性がある。ただし、橋梁振動の計測に利用するにあたっては、低周波
	数帯域の計測も必要なケースもあり,適用周波数帯に配慮する必要がある。

⇒↓泪□┼┼ン/ミ友	ひずみゲージ型加速度計
訂側仅附名	Strain gage accelerometer
技術概要	板ばねに貼りつけたひずみゲージの抵抗値の変化を加速度に変換する
特	 【長所】 ・安価で軽量,小型,3軸測定も可能 ・適用可能な振動数や容量の選択肢が広い ・重力加速度など静的加速度の計測が可能 【短所】 ・感度はそれほど高くない ・温度により周波数特性が変わる場合がある ・容量 一般的な振動測定用:10m/s²-500m/s² 高応答(高振動数)の測定用:50m/s²-2,000m/s² ・感度 ひずみゲージ型のため製品カタログでは定格出力を等価ひずみであらわすことが多い。一般的な製品の定格出力は1,000×10% (0.5mV/V)であり,高容量型だと相対的に 感度が低く,低容量だと感度が高くなる。また,定格出力が30,000×10%の高感度型のものもある。 ・適用周波数帯 一般的な振動測定用:50Hz-500Hz まで 高応答(高振動数)の測定用:150Hz-2,000Hz まで
	費用 センサそのものは数万円から10数万円程度であるが、以下に述べる装置がセンサよ り高価な場合が多い。 他に必要な機器 このセンサはひずみゲージの微小な抵抗値の変化を電圧の変化として取り出すもの だが、センサから出力される電圧変化も微小なのでこれを増幅する増幅器(アンプ、シ グナルコンディショナとも呼ばれる場合がある)や、ナイキスト振動数以上の振動数成 分を遮断するローパスフィルタが必要となる。フィルタ回路が内蔵された増幅器もあ る。また、データを記録するデータロガーなどの記録器やコンピュータを接続して使用 するが、コンピュータに取り込む際にはアナログな電圧変化をデジタルデータに変換す る ADD 変換ボードが必要になる

	ひずみゲージ型加速度計は、検出部にひずみゲージを利用したセンサである。図 2-86
	のようにおもりと板ばねからなる振動系が本体内部に封入されていて,板ばねにひずみ
	ゲージが貼り付けられている。 振動によりおもりに慣性力が作用して,板ばねがたわむ
	とそれに応じたひずみが発生する。ひずみゲージと同様にひずみゲージの抵抗値の変化
	をホイートストンブリッジ回路における電圧の変化として検出する。
	構造が簡単であるため小型で軽量であり、質量は10数g程度である。2軸や3軸の
計測原理	測定に対応した製品もある。製品としてのラインナップが多い。感度はサーボ型加速度
	計などと比較すると低く,内部に封入したオ
	イルの特性によって温度によって周波数特
	性が変わる場合もある。
	した ひずみ ひずみ ゲージ
	図 2-86 ひずみゲージ型加速度計
	橋梁や建築構造物の振動応答測定、模型実験などにおける振動応答測定、斜張橋にお
	橋梁や建築構造物の振動応答測定,模型実験などにおける振動応答測定,斜張橋にお ける振動応答からのケーブル張力測定
適用事例	橋梁や建築構造物の振動応答測定,模型実験などにおける振動応答測定,斜張橋にお ける振動応答からのケーブル張力測定
適用事例	橋梁や建築構造物の振動応答測定,模型実験などにおける振動応答測定,斜張橋にお ける振動応答からのケーブル張力測定 【代表例】
適用事例	橋梁や建築構造物の振動応答測定,模型実験などにおける振動応答測定,斜張橋にお ける振動応答からのケーブル張力測定 【代表例】 東京測器研究所(TML) ARF-A シリーズ,共和電業 AS-GB, GA シリーズ など
適用事例	橋梁や建築構造物の振動応答測定,模型実験などにおける振動応答測定,斜張橋にお ける振動応答からのケーブル張力測定 【代表例】 東京測器研究所(TML) ARF-A シリーズ,共和電業 AS-GB, GA シリーズ など 14) 東京測器研究所: 2009-2010 総合製品カタログ
適用事例 参考文献	橋梁や建築構造物の振動応答測定, 模型実験などにおける振動応答測定, 斜張橋にお ける振動応答からのケーブル張力測定 【代表例】 東京測器研究所(TML) ARF-A シリーズ, 共和電業 AS-GB, GA シリーズ など 14) 東京測器研究所: 2009-2010 総合製品カタログ 15) 共和電業: 2004-2005 KYOWA ひずみゲージ センサ 計測機器 総合カタログ 16) 西原主計, 山藤和男:計測システム工学の基礎 第2版, 森北出版, 2005
適用事例 参考文献	 橋梁や建築構造物の振動応答測定,模型実験などにおける振動応答測定,斜張橋における振動応答からのケーブル張力測定 【代表例】 東京測器研究所(TML) ARF-A シリーズ,共和電業 AS-GB, GA シリーズ など 14)東京測器研究所: 2009-2010 総合製品カタログ 15) 共和電業: 2004-2005 KYOWA ひずみゲージ センサ 計測機器 総合カタログ 16)西原主計,山藤和男:計測システム工学の基礎 第2版,森北出版,2005. 17) 井口征士編: センシング工学,オーム社,1999.
適用事例 参考文献	 橋梁や建築構造物の振動応答測定,模型実験などにおける振動応答測定,斜張橋における振動応答からのケーブル張力測定 【代表例】 東京測器研究所(TML) ARF-A シリーズ,共和電業 AS-GB, GA シリーズ など 14)東京測器研究所: 2009-2010 総合製品カタログ 15)共和電業: 2004-2005 KYOWA ひずみゲージ センサ 計測機器 総合カタログ 16)西原主計,山藤和男:計測システム工学の基礎 第2版,森北出版,2005. 17)井口征士編:センシング工学,オーム社,1999. ひずみゲージ型加速度計は原理が簡易で堅牢,出力が安定している。直流(0Hz)から計
適用事例 参考文献 今後の展望	橋梁や建築構造物の振動応答測定, 模型実験などにおける振動応答測定, 斜張橋にお ける振動応答からのケーブル張力測定 【代表例】 東京測器研究所(TML) ARF-A シリーズ, 共和電業 AS-GB, GA シリーズ など 14) 東京測器研究所: 2009-2010 総合製品カタログ 15) 共和電業: 2004-2005 KYOWA ひずみゲージ センサ 計測機器 総合カタログ 16) 西原主計, 山藤和男:計測システム工学の基礎 第2版, 森北出版, 2005. 17) 井口征士編:センシング工学, オーム社, 1999. ひずみゲージ型加速度計は原理が簡易で堅牢, 出力が安定している。直流(0Hz)から計 測が可能。成熟した技術であり信頼性も高い。小型, 堅牢, 軽量, 高信頼性, といった

計測技術名	振動レベル計					
技術概要	主として公害振動の測定に使用され、振動ピックアップにより測定した振動加速度に					
这时两女	波数領域の重み付けを行った測定器。					
	【長所】					
	・比較的安価で、小型、3軸測定も可能					
	・公害振動を評価するためのLv10値や時間率レベル等の自動演算が可能					
	【短所】					
	・感度はそれほど高くない					
	・測定周波数範囲が限られる(1~80Hz)					
特徴						
	幅広い測定用途や種々の振動源に対する振動レベルの評価量を測定するため,振動レ					
	ベルまたは振動加速度レベルの時間率レベル、パワー平均値、パワー合計値、最大値、					
	最小値,波形ピーク値などの多様な評価量を3軸分をまとめて演算することができる。					
	価格は、ピックアップとセットで 30~40 万円程度であり、計測計測点が少ない場合					
	は計測が容易であるが、多い場合はコストがかかる。					
	振動レベルとは、周波数 1~80Hz の振動加速度に鉛直または水平方向の振動に対する					
	全身の振動感覚補正を実効値変換した量と基準の加速度の比の対数を20倍した量であ					
	り,次式で表される。単位はデシベル(dB)。					
	振動レベル: $Lv(dB) = 20\log_{10} \frac{a}{a}$ (1)					
	$a_0: 基準の加速度(10^{-5}m/s^2)$					
	a_0 :周波数補正された加速度の実効値で、次式で表される					
計測原理	$a = \left(\sum a_n^2 \cdot 10^{Cn/10}\right)^{1/2}$					
	C_n :周波数 n(Hz)における補正値					
	・振動ピックアップ					
	一般に振動レベル計の振動ピックアップは鉛直(Z 軸),水平(X および Y 軸)方向の 3					
	つの加速度ピックアップが組み込まれ,地盤に設置できる構造になっている。それぞれ					
	の加速度ピックアップには圧電素子に圧縮型が使用されるものが多かったが,温度変化					
	によるパイロ電圧の発生 (風雑音の影響として報告されている) が顕著でその対策が難					
	しいことなどにより、現在はせん断型が多い。					
	・指示計器の動特性					
	人の振動感覚は、振動発生と同時に生じるものではなく、振動発生と振動感覚の間に					
	は時間遅れがあり、この時間遅れより短い継続時間の振動は同じ振幅であっても小さく					

	感じる。この振動感覚の時間依存性を表すのが動特性で,0.63秒の値に決められている						
	振動レベル計は振動加速度の実効値をデシベル表示するが,実効値を求める回路の平均						
	化時定数 0.63 秒が動特性である。						
	・振動レベル計の測定範囲						
	振動レベルの測定において,対象とする振動の大きさにより測定値が指示計の指示範						
	囲になるよう減衰器 (レベルレンジ切換器)を選択する。対象とする振動が小さい場合,						
	測定器から発生する雑音(電気回路から発生する雑音または加速度ピックアップの自己						
	雑音)の影響を受ける。JISC 1510 では、測定範囲の下限値をこの雑音レベルより 6dB						
	以上高い値とすることを定めている。振動レベル計の自己雑音は広い周波数範囲に分布						
	しており, 振動レベル計に分析器を接続して特定の周波数のみを測定するとき, 分析周						
	波数のバンド幅以外の雑音周波数成分は除去される。						
適用事例	騒音・低周波音等の公害振動の計測に使用される。						
	1) (社)日本騒音制御工学会編 振動法令研究会著:振動規則の手引き一振動規制法逐						
参考文献	条解説/ 関連法令・貸科集一, 技報室出版, 2003 2) (社)日本騒音制御工学会編・地域の環境振動 技報党出版 2001						
	 3) リオン:リオン音響・振動計測器 総合カタログ 2011~2012 						
	http://svmeas.rion.co.jp/catalog.aspx 小 小野測哭・現行制品カタログ						
	4) 小学校語・死日来ロスクロク http://www.onosokki.co.jp/HP-WK/whats_new/catalogs/pdftop.html						
今後の展望							

各種加速度計,速度計,変位計の特性比較を表 2-1,表 2-2 に示す。

対象物理量	加速度		速度				
センサの種類	[[]] [] [] [] [] [] [] [] [] [] [] [] []	ひずみゲー	サーボ型	MEMS 型	レーザード	サーボ型	
		ジ型	· ····	※方式複数あり	ップラー型		
最大計測範囲	0	Δ	0	Δ	0	0	
	300-100, 000m/s ²	10-10, 000m/s ²					
振動数範囲	0	0	Δ	Δ	Ø	Δ	
	1Hz-20kHz	0–5kHz			広周波数帯		
感度	Δ	Δ	Ø	Δ	Ø	Ø	
	0. 1–40	1,000 x 10 ⁻⁶ e					
	pC/ (m/s ²)	(0.5m)//(1)			百八ि四代		
	0. 5–10	(0.0011/1/1/			同刀府用		
	$mV/(m/s^2)$	同恋反主 0 円					
静的応答	×	0	0	0	0	0	
ノイズレベル	\bigcirc	0	Ø	Δ	0	0	
分解能	Ø	Ø	Ø	Δ	Ø	Ø	
測定対象との距離	-	-	-	-	Ø	-	
	按曲	控曲	按舳	按舳	非接触	按価	
	<u>ل</u> تر <i>ا</i> كور	אמעאנ	דעאנ	ערענ	長距離計測	1274	
同時測空占数	1	1	1	1	スキャニング	1	
问时例足示奴	1	1	1	1	可	1	
対応軸数	1~3	1~3	1~3	1~3	1	1~3	
					3台連動で3軸		
温度特性	Δ	Δ	\bigcirc	Δ	0	0	
	雑音発生	周波数特性					
質量	Ø	Ø	0	Ø	Δ	\bigcirc	
			加速度計と	甘般に生きした			
	1~100g	10 数 g 程度	しては比較	本金に未慎した 			
			的大	场首は別			
価格	Ø	Ø	0	Ø	Δ	0	
	*** - 10 **	数万~10 数万			高価.数百万		
	致力~10致力円	円			から数千万円		
心西楼史	アンプ(内蔵型	アンプ, A/D 変	アンプ, A/D	通常は専用基盤	アンプ, A/D 変	アンプ, A/D 変	
必安悈岙	あり), A/D	換器	変換器	に組み込み	換機, 三脚	換器	
· 油田車例			橋梁振動,地	無線センサ、ス	ケーブル,局	橋梁振動,地	
迎 府 尹附			震計	マートフォン	部振動	震計	
この曲					本体の振動補		
ての世					正が必要		

表 2-1 振動計測センサの比較表

対象物理量	変位						その他	
センサーの種 類	レーザ ―ドッ プラ型	レーダー 型	レーザー 型	LVDT	ワイヤ型	ダイヤル ゲージ	高速カメ ラ	振動レベ ル計
最大計測範囲	O	\bigcirc	\bigcirc	0	\bigcirc	Δ	0	
振動数範囲	O	\bigcirc	Ø	Δ	\bigcirc	Δ	Δ	
	数 k−数 10kHz	数百 Hz						
感度	Ø	Ø	Ø	0	\bigcirc	Δ	Δ	
静的応答	Δ	Δ	0	0	\bigcirc	0	0	
ノイズレベル	\bigcirc	\bigcirc	Ø	O	Ø	O	0	
分解能	\bigcirc	0	Ø	0	0	0	0	
測定対象との 距離	0	Ø	0	_	0	Δ	Ø	
	100m 超	100m 超				ワイヤーで 延長する方 法		
同時測定点数	スキャニ ング可	多点	1	1	1	1	0	
対応軸数	1	1	1	1	1	1	2	
温度特性	\bigcirc	Δ	0	0	Δ	0	0	
質量	Δ	Δ	0	Δ	0	0	Δ	
価格	Δ	Δ	0	0	\bigcirc	0	Δ	
必要機器	アンプ, A/D 変換 器, 三脚	三脚	アンプ,A/D 変換器	アンプ,A/D 変換器	アンプ,A/D 変換器	アンプ,A/D 変換器	三脚	
適用事例 その他	本体の振 動補正が 望ましい	本体の振動 補正が望ま しい					本体の振動 補正が必要	

表 2-2 振動計測センサの比較表

2-4. 振動データの分析方法の整理

2-4-1. ピークピッキング法によるモード同定

モード形の基準となる位置での,固有振動数 ω における複素応答スペクトルを $X_{ref}(\omega) = a + bi$, 質点kでの,固有振動数 ω における複素応答スペクトルを $X_k(\omega) = c + di$ とすると位置kの固有振動数 ω におけるクロススペクトルは.

$$Y_k(\omega) = X_k(\omega) X_{ref}(\omega) = (c+di)(a+bi)$$

で表わされる。

 $X_{ref}(\omega), X_k(\omega)$ の両方の応答スペクトルが卓越する振動数成分において $Y_k(\omega)$ が卓越する。クロ ススペクトルの基準点を、同定する次数のモード形の節でない点に選べば、質点間で相関のある固 有振動数成分が卓越する。したがって、測定誤差のような、測定点間で相関のないと考えられる誤 差によるピークの卓越を抑制することができる。

次にモード形についてだが、伝達関数によるモード振幅比は

$$Z_{k}(\omega) = \frac{X_{k}(\omega)}{X_{ref}(\omega)}$$

であるから, クロススペクトルと伝達関数は,

$$Y_{k}(\omega) = \left|X_{ref}(\omega)\right|^{2} Z_{k}(\omega)$$

と比例関係にある。したがってクロススペクトルからモード形を同定する事が出来る。

2-4-2.Eigensystem Realization Algorithm を利用したモード同定

ERA(Eigensystem Realization Algorithm)は構造物をシステムとしてとらえ、そのシステムを表す 状態マトリクスを決定する手法である。以下に ERA の理論と同定手順について述べる。

離散時間における線形時不変系のシステムの状態方程式は以下のように表すことができる。

$$\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k)$$
(2.1)

$$\mathbf{y}(k) = \mathbf{C}\mathbf{x}(k) \tag{2.2}$$

ここで, **x,u,y** はそれぞれ状態ベクトル(n 次元),入力ベクトル(m次元),出力ベクトル(p 次元)であり,**A,B,C** はそれぞれ n×n 次元, n×m 次元, n×p 次元の行列である。また,*k* は時間ステップを表している。

この系のインパルス応答による(1), (2)のシステムはマルコフパラメーターと呼ばれる次の式で

あらわされる。

$$\mathbf{Y}(k) = \mathbf{C}\mathbf{A}^{k-1}\mathbf{B}$$

Y(k) は計測から得られるため,(2.3)式よりA,B,Cを求めることで,システムを同定する。 ERA はインパルス応答を時間ステップごとに並べたハンケルマトリクスを作成することから始める。

$$\mathbf{H}_{rs}(k-1) = \begin{bmatrix} y\mathbf{Y}(k) & y\mathbf{Y}(k+t_{1}) & \Lambda & y\mathbf{Y}(k+t_{s-1}) \\ y(j_{1}+k) & y\mathbf{Y}(j_{1}+k+t_{1}) & \Lambda & \mathbf{Y}(j_{1}+k+t_{s-1}) \\ \mathbf{M} & \mathbf{M} & \mathbf{O} & \mathbf{M} \\ y\mathbf{Y}(j_{r-1}+k) & y\mathbf{Y}(j_{r-1}+k+t_{1}) & \Lambda & y\mathbf{Y}(j_{r-1}+k+t_{s-1}) \end{bmatrix}$$
(2.4)

ここで, j_i (i=1,K,r-1)と t_i (i=1,K,s-1)は任意の整数である。 また, kステップでのハンケルマトリクスは

$$\mathbf{H}_{rs}(k) = \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A}^{j_1} \\ \mathbf{M} \\ \mathbf{C}\mathbf{A}^{j_{r-1}} \end{bmatrix} \mathbf{A}^k \begin{bmatrix} \mathbf{x}_1(0) & \mathbf{A}^{t_1}\mathbf{x}(0) & \Lambda & \mathbf{A}^{t_{s-1}}\mathbf{x}(0) \end{bmatrix} = \mathbf{V}_r \mathbf{A}^k \mathbf{W}_s$$
(2.5)

ここで、 V_r , W_s はそれぞれ可観測行列($rp \times n$)、可制御行列($n \times s$)である。

次に、式(2.3)を最小の次元で満たす行列 A, B, C を求めるために、時間ステップ 0 でのハンケル マトリクス $\mathbf{H}_{rs}(\mathbf{0})$ の特異値分解を行う。特異値分解により、 $\mathbf{H}_{rs}(\mathbf{0})$ は、

$$\mathbf{H}_{rs}(0) = \mathbf{P} \mathbf{D} \mathbf{Q}^{T} \tag{2.6}$$

と表せる。

ここで、**P**(rp×n)、**Q**(n×s)はどちらも列が互いに直行なマトリクスであり、**D**(n×n)の対角要素 に**H**_{rs}(0)の特異値 d_1, d_2, K, d_c を大きい順に持つ対角行列である。

これを用いて,擬似対角行列を作成し,数学的に式を変形することにより,最小実現されたシス テムの状態を表す数学モデルは最終的に次のようになる。

$$\overline{\mathbf{A}} = \mathbf{D}^{-1/2} \mathbf{p}^T \mathbf{H}_{rs} (1) \mathbf{Q} \mathbf{D}^{-1/2}$$

$$\overline{\mathbf{B}} = \mathbf{D}^{1/2} \mathbf{p}^T \mathbf{E}_m$$
(2.7)

 $\overline{\mathbf{C}} = \mathbf{E}_{p}^{T} \mathbf{p} \mathbf{D}^{1/2}$

 $\mathbf{E}_{p}^{T} = \begin{bmatrix} I_{p} & 0_{p} & \Lambda & 0_{p} \end{bmatrix}$

$$\mathbf{E}_m^T = \begin{bmatrix} I_m & \mathbf{0}_m & \Lambda & \mathbf{0}_m \end{bmatrix}$$

(2.3)

0_n:p次元の正方ゼロ行列である。また、()は等価な行列を意味する。

以上のように最小実現された状態マトリクスAを複素固有値解析することでモード特性を同定する。

$$\boldsymbol{\psi}^{-1} \overline{\mathbf{A}} \boldsymbol{\psi} = \mathbf{z} \tag{2.8}$$

ここで、z は離散時間における共役複素固有値、ψ は固有ベクトルである。これより、式(2.3)の状態方程式はモードごとに分解され、以下のように表される。

$$\mathbf{q}(k+1) = \mathbf{z}\mathbf{q}(k) = \mathbf{z}^{k}\mathbf{q}(0)$$

$$\mathbf{y}(k) = \mathbf{\Phi}\mathbf{q}(k)$$

$$\mathbf{q}(0) = \mathbf{\Phi}^{-1}\mathbf{x}(0)$$
(2.9)

$\Phi = \overline{C\psi}$

ここで、q(k)はモード座標、 Φ は複素固有ベクトルである。これにより、共役複素固有値zおよび共役複素固有ベクトル Φ が求められたので、計測データから固有振動数に対応した固有振動数、 モード減衰比および複素振動モードが同定できる。複素固有値zは離散時間におけるものであるため、次式の関係より、連続時間の固有値に変換する。

$$z = e^{s\Delta t}$$
(2.10)
ln(z)

$$s = \frac{m(2)}{\Delta t} \tag{2.11}$$

よって、固有振動数とモード減衰比は連続時間の固有値sから次式より同定できる。

$$s_j = -\zeta_j \omega_j \pm \sqrt{1 - \zeta_j^2} \omega_j \tag{2.12}$$

2-4-3. Octave を用いた Web サービスの構築

ピークピッキング法によるモード同定の原理は2-4-1に述べたが、エクセル等一般に利用が容易なソフトウェア環境ではこのモード同定の実装も容易ではない。そこで、だれでも利用できるウェブインターフェースを通じてサーバー上のプログラムを実行することで、ピークピッキング法によるモード解析を行う方法を提案した。

(1)構築の目的

通常, Octave を用いた数値計算を行うには, 以下の準備作業が必要である。

- 1) Windows や Mac OS X 等への Octave のインストール
- 2) Octave の動作方法の習得
- 3) 計算処理用スクリプト,結果出力用スクリプト等の作成

しかし,複数人が数値計算を行うことを考えた場合,各人が実行環境を用意する必要,ならび に,動作方法を習得する必要がなる。このことから,Octaveの実行環境とスクリプトを Web
サービス配下で動作させることにより、定型的な処理を手軽に、簡単に動かすことができる仕組 みを実装した。また、計算処理用スクリプトについて、一部のパラメータ値の変更を簡単に行え るようにした。

(2) Web サービスの流れ

実装した Web サービスは,特定の波形データに対し,ピークピッキング法を用いて振動モー ド形を表示するもので,処理の流れは下図の通りである。

図 2-87 Web サービスの処理の流れ

1) データ入力

計算処理用のスクリプトは、Web サービス配下に配置されている。スクリプト内のい くつかのパラメータの値は変更可能としており、データ入力用のWebページで設定する ことができる。

図 2-88 データ (パラメータ値)の入力ページ

2) 実行指示

入力用の Web ページでの実行指示により, CGI スクリプトが Web サービス配下の Octave を起動する。その際,計算処理用の Octave スクリプトにパラメータを設定する。 Octave による計算結果は, XML データとして XSLT に渡され, 出力用のグラフ画像 (時刻歴波形, クロススペクトル, 振動モード形等)のファイルは, サーバーに保存さ

れる。

図 2-89 CGI スクリプト(抜粋)

図 2-90 Octave スクリプト(抜粋)

3) 結果確認

前述の XSLT により,計算結果の HTML ページが生成される。生成された HTML ページは,Web ブラウザにより参照することができる。

図 2-91 計算結果の HTML ページ (抜粋)

- (3) 今回の実装における課題
 - 表示されるグラフが画像ファイルであるため、動的に表示範囲を切り替えたり、プロット 点の値を取得したりすることができない。
 - ・ 任意の振動データを対象とした場合,計算実行に支障を与えないような初期パラメータの 設定が行えない。
 - ・ 定型的な処理を対象としているため、計算用のスクリプトの編集が手軽でない。

(4) Web サービス化のメリット

- ・ クライアント側への実行環境の導入が必要ないため、OS や端末環境(PC, タブレット, スマートフォン)によらず、Web ブラウザで処理を行うことができる。
- 定型的な処理については、計算スクリプトを加工することなく、パラメータの調整程度の 操作で、手軽に処理を行うことができる。
- ・ Web サービス側で計測データや計算結果を管理することができれば、点在するデータを集めて、それらを関連付けた統計や集計等の処理を行うことができる。

(4) Octave を利用したウェブサービスの調査結果

1) ワルシャワ大学: Web Interface to Octave

URL: http://weboctave.mimuw.edu.pl/weboctave/web/, (参照 2012.08.09).

·Octave のコマンドを入力すると、実行結果が同一画面に表示される。

図 2-92 入力, および, 実行結果 1

2) Math Cloud

URL:http://www.mathcloud.se/index.jsp,(参照 2012.08.09).

- ・Octave のコマンドを入力すると、実行結果が別画面に表示される。
- ・Script ファイルをアップロードし、それを用いて計算実行できる。
- ・前述の「Web Interface to Octave」と同じスクリプトを実行したが、mesh 作図は行え なかった。

🖉 MathGloud – Share Matlab / Octave scripts and data here and do your computing in t	the cloud – Windows Internet Explorer 💭 🗖 🔀
G + H X A Http://www.mathcloudse/index.jsp	Coocle
ファイル(の) 編集(D) 表示(A) お列に入り(会) ツール(D) ヘルプ(合)	
× 😰 😝 ar0100; bran(a); plot(ab) 🛛 🖾 👂 🗉 🖾 🖾 🖓 🖷 🎽	
★ 初知に入り 愛 MathCloud - Share Matlab / Octave scripts and ds. 白 ホーム出 ・ 図 ス	7/-ドジ - ロメール相称 (※印報日) - "
Math Cloud	①「a=0:100; b=sin(a); plot(a,b)」を入力して実行
Welcome to Math Cloud! • <u>Command ling</u> >> Welcome • <u>Stript Edator</u> >> Welcome • <u>Overset Directory</u> >> • <u>About</u> >> a=0.100; b=sin(a); plot(a,b) • <u>Forum</u> Logged in user:	Orged in Octave Documentation Related Results 1. Matholicula - Share Top answers for MateOl Computing in the Cloud Www.Aswersd-Outstone
102	Chatter // more mathematics/alat - Windows Internet Fundarer
Logout	
	GG 17 K Tubu and Course M 4 Groups
Upload file, data or	
script. 後初	
Upload	★ お気に入り
Load shared data fire here V Chose shared data fire here V Load	
webmaster@mathcloud.se	
②計算結果のグラフが表示され	13
	45
	0 (1,b=2,a) (1,b=2,a)
	122-471 94 • 100 ·

図 2-93 入力, および, 実行結果 2

§3. 実橋振動計測

3-1. 概要

前章の文献調査結果を踏まえ、無線センシング技術とレーザードップラー速度計(LDV)の振動 計測性能や利点、改善点を明らかにすること、耐震補強や損傷による振動特性変化を検知できるか 否かを明確にすることを目的として、3橋の実橋振動計測および解析的検討を行った。

まず,鋼逆ランガー橋の槇木沢橋では,無線センサにより耐震補強前後の多点振動計測を行い, 振動計測性能や耐震補強による特性変化を分析した。立体曲線ラーメン橋である首都高大橋 JCT ラ ンプ橋では,複雑な構造系における有線センサに対する無線センサの優位性の差を明らかにした。 2 径間連続鋼斜張橋である幸魂大橋では,LDV によるケーブル振動計測の精度および有効性を示す とともに,立体骨組み解析によりケーブルに変状が生じた場合のケーブル張力の変化量や閾値の検 討を行った。

3-2. 槇木沢橋-耐震補強前後の振動特性比較

3-2-1. 概要

無線センサシステムを利用して橋梁の動的挙動を詳細に計測し,有限要素モデルと比較すること で,構造特性を推定する方法を検討した。補強工事が行われる橋梁は構造が変化し,それによる動 特性変化も想定されるため,耐震補強橋梁の工事前後でそれぞれ無線センサを使って詳細に多点同 期計測を行なった。密なセンサ配置による同期計測を行なったため,固有振動数のみならず,詳細 モード形状とそれらの変化が得られた。一方で,有限要素モデルを作成し,モデルと実橋梁の違い を,主にモード形状の観点から比較した。これらが互いに整合的となるようにモデル更新すること で支承条件を推定した。

3-2-2. 無線センサによる耐震補強前後の振動計測

3-2-2-1. 同期振動計測システムの概要

ここで用いるスマートセンサは MEMSIC 社が販売している研究用無線センサ端末 Imote2(図 3-1)に基づくものである。Imote2 の起動時作動周波数を 13MH z から 416MHz まで設定可能な CPU と 32MB の SDRAM を搭載している。無線通信には IEEE802。15.4 規格の CC2420 を利用 している。

図 3-1 MEMSIC 社製 Imote2

これらハードウェア上に、イリノイ大学が中心となり開発が進む計測用オープンソフトウェア ISHMP⁴⁾を組み込み、また独自に開発を進めているマルチホップ通信、データ収集プログラムを 実装した。経路作成には AODV プロトコル、同期には FTSP プロトコルをそれぞれカスタマイズ している。3 成分加速度を計測後、基地局に高速マルチホップ転送する仕組みである。加速度計測 には STMicroelectornics 社 LIS344 を搭載したセンサボードを使用しており、0.2mg 程度の振動ま で捉えられる性能である。

Imote2自体は研究開発用端末であり,必ずしも屋外での使用を想定したハードウェアではない。 そこでプラスチックケース,アンテナ,アンテナ用延長同軸ケーブル,ソーラーパネル式充電池を 利用して図 3-2 のような計測端末を用意した。無線センサではアンテナを端末に直接接続するケー スが多いが,橋梁では多数の部材や車両などにより見通しの効かない場所に端末を設置することが 多いと考えられる。そこで,同軸ケーブルを介してアンテナの設置位置に自由度を持たせる設計に している。

図 3-2 Imote2 設置状況

3-2-2-2. 同期振動計測システムの概要

岩手県内国道 45 号線に架かる逆ランガー橋の槇木沢橋 (図 3-3) において耐震補強として, アー チリブや垂直材,下横構に当て板補強がなされた。本耐震補強の前後において,路面とアーチリブ 上に計 48 個の imote2 を設置し,交通振動を詳細に計測し(図 3-4),モード振動数,モード形など 動特性の観点から耐震補強前後の変化を調べた。サンプリング周波数は 50Hz,1 回あたり計測時 間は 6 分である。計測日にはそれぞれセンサ設置に1時間余り,計測に4時間程,撤去に1時間弱 を要している。 なお,Imote2 の計測加速度と比較する目的で,有線サーボ型加速度計(東京測 振 CV373)を計 6 台橋面上に設置している。

図 3-3 槇木沢橋外観

図 3-4 センサ設置位置

3-2-2-3. 計測振動特性

まず,計測精度を分解能の観点から有線加速度計と比較し評価した。振動レベルが小さい場合は 計測信号がノイズに埋もれるが,車両走行時の 5mg 程度の加速度応答は有線センサと無線センサ の計測値がほぼ一致する事が確認された(図 3-5)。図 3-6 に示すようにパワースペクトルを比較す ると卓越周波数の近傍では有線・無線加速度計の値が互いに一致している事がわかる。鉛直方向は 6 次モードまで,橋軸直角方向では 5 次モードまでの振動モードが推定できた。有線加速度計は imote2 設置位置に合わせて計 6 台設置しているが,これら 6 点の計測結果から求めたモード形は, 無線計測のモード形に一致している。

実計測による補強前後での比較では、橋軸直角方向の固有振動数の増加、鉛直方向では固有振動数の減少が確認出来た(表 3-1)。前者は耐震補強による剛性の増加、後者は、重量増化に起因していると推測される。また、橋軸直角方向・鉛直方向それぞれでモード形状を比較したところ、推定 誤差もあるものの有意な変化を確認出来た(図 3-7)。

表 3-1	FEM と詞	EM と計測から推定された固有振動数(Hz)							
		FEM		実測					
	補強前	補強後	変化(%)	補強前	補強後	変化(%)			
鉛直1次	1.459	1.385	-5.07	1.44	1.44	0			
鉛直 2 次	1.566	1.448	-7.53	1.57	1.51	-3.82			
橋直1次	0.923	1.026	11.2	0.93	1.03	10.8			
橋直2次	1.616	1.669	3.3	1.58	1.66	5.1			

(計測値とFEM 解析値)

3-2-2-4. FEM と計測データの比較

設計図面を元に対象橋梁を耐震補強前後で有限要素解析し、モード特性の観点から計測値と比較 した。図 3-4 は有限要素モデル上に計測ノードの位置を示したものである。橋軸直角方向は振動数 とモード形状およびそれらの変化が実測データとほぼ整合的である事を確認した。一方で、鉛直方 向では重量増加により実測同様、FE M においても固有振動数が低下したが、FEM において振動 数低下がより顕著であった(表 3-1)また、モード形の変化では実測と FEM で定量的に一致する 変化と一致しないものが確認できた。例えば、鉛直 1 次モードは、左端(宮古側)からの距離 70-100m 付近のモード形が耐震補強後に右側(久慈側)に移動しているが、FEM でもこの移動が確認され た。一方で、130-170m 付近のモード形の移動は FEM でのみ確認された。なお、これらモード形 の変化は密に計測を行ったために観測ができた変化と言える。仮に計測点数が数点の場合は、モー ド形ピークの橋軸方向への移動と鉛直方向の変化を明確に区別できない、といったことが考えられ る。

図 3-8 槇木沢橋有限要素モデル

3-2-2-5. FEM アップデート

実測に比べ補強後 FEM の鉛直振動数が低い事から実構造物の剛性が高いと考えられる。ここで は FEM と実橋梁の違いを、支承における境界条件の違いに起因するものと考え、様々な境界条件 のもとで再解析した。特に、モード形の変化が、実計測と FEM とで整合的であるように、境界条 件を分析した。その結果、宮古側脚下部の支承の回転のみ固定として場合に、固有振動数は計測値 に近づき(表 3-2)、モード形状の詳細変化も一部再現できた(図 3-4)。

補強後	FEM 改良前	FEM 改良後	実測
鉛直1次	1. 385	1. 402	1. 44
鉛直2次	1. 448	1. 5326	1.51

表 3-2	モデル更新後の固有振動数
10 2	

3-2-2-6. まとめ

スマートセンサを利用して、実橋梁を耐震補強前後で密に振動計測し、振動挙動を詳細に把握した。さらに、計測値と FEM と比較することで違いを明らかにし、振動数に加えて詳細モード形も

基準としてモデルアップデートを試みた。FEM のより詳細な検討と計測誤差の分析が必要である ものの,密な計測を利用することで,構造物のより精緻なモデル化ができることを示した。

3-2-3. 振動特性変化の解析的検討

3-2-3-1. 概要

全項では,鋼逆ランガー橋の耐震補強前後により,橋全体系の鉛直振動モードにおいて固有振動 数には有意な差が見られないものの,多点同時計測により得られたモード形には変化が生じている ことが確認された。また,支点条件をパラメータとした FEM モデルアップデーティングにより,固 有振動数,モード形ともに実挙動を大まかに捉えた。

本項では,FEM モデルを用いて支承部の拘束条件や部材に損傷が生じた場合の振動特性変化の感 度解析をより精緻に行い,密な多点モード計測による損傷検知の可能性について考察を加える。

3-2-3-2. 基本モデル

(1) モデル概要

前項では ABAQUS を用いて解析したが、本項では耐震補強設計で用いた SeanFEM に戻して感度解 析を行う。その際、RC 床版のモデル化は、上部工の振動特性をより精緻に評価するため ABAQUS の モデルと同様にファイバー要素からシェル要素に変更した。また、床版を支持する鉛直材の回転成 分を全方向フリーとし、力の並進成分のみ伝達するモデル化とした。

図 3-9 RC 床版モデルのファイバー要素からシェル要素への変更

図 3-10 RC 床版モデルの支持条件の変更

(2)予備解析

補強前の現況モデルおよび補強モデルにおいて,固有値解析による ABAQUS と SeanFEM の固有振動数を以下に比較する。どちらも SeanFEM は死荷重状態を初期状態として固有値解析を行った結果である。

現況モデルにおける橋軸直角方向では ABAQUS と SeanFEM で比較的近い結果であるが,鉛直方向 および補強モデルの橋直・鉛直方向では 5%以上の相違が生じているモードがおり,十分に近似する 結果ではないものの,計測値に対する支点条件の変化や損傷の有無の感度を確認する上においては, この SeanFEM の現況モデルで十分と考え,以降の検討に使用することとした。

		Before		D;ff(%)	Bef	ore	D:ff (%)
11次 里川 3	X (IIZ)	計測	SeanFEM	DIII (%)	ABAQUS	SeanFEM	
场古	1次	0. 93	0.96	3%	0. 92	0.96	4%
倘但	2次	1. 58	1. 57	-1%	1. 62	1. 57	-3%
公古	1次	1.44	1.34	-7%	1.46	1.34	-8%
三日国	2次	1. 57	1.48	-6%	1. 57	1. 48	-6%

表 3-3 現況モデルにおける固有振動数比較

表 3-4 補強モデルにおける固有振動数比較

l		٨.٢	L		٨.٢.		
七手	₩ <i>┳</i> (μ _γ)	AT	ter	\mathbf{D} ; ff (0()	AT	ter	\mathbf{D} ; ff (0()
派到多		計測	SeanFEM	DTTT (%)	ABAQUS	SeanFEM	
场古	1次	1. 03	1.11	7%	1. 03	1.11	7%
们同旦	2次	1.66	1.64	-1%	1. 67	1. 64	-2%
公古	1次	1. 44	1.35	-6%	1. 39	1.35	-3%
四世	2次	1.51	1.59	5%	1.45	1.59	9%

図 3-11 主要な固有振動モード (SeanFEM 現況モデル)

3-2-3-3. 支点条件のモデルアップデーティング

(1) アップデート方法

対象橋梁の支点条件の変化が固有振動数に及ぼす影響を確認する。検討に使用するモデルは,現 況モデルの死荷重載荷有りとした。着目した支点条件は,アーチ基部および桁端支承部の直角方向 軸回りおよび A2 支点の橋軸方向とした。アップデーティングの方法は,支点部弾性バネのバネ定 数を自由の0から1.0E+03kN/m→1.0E+05kN/m→1.0E+07kN/m→1.0E+10kN/mと段階的に増加 させた。

A1橋台	固定支承	固定	固定	固定	自由	自由	自由
A2橋台	可動支承	自由	固定	固定	自由	自由	自由
アーチ基部	ピン支承	固定	固定	固定	固定	自由	固定

図 3-12 モデルアップデーティングにおける着目支点条件

(2) アップデート結果

支点条件のアップデーティングによる固有振動数の変化率をグラフ化したものを図 3-11 に示す。 鉛直モードにおいて最も感度が大きかったのは A2 桁端の水平拘束であり、次いで A1・A2 桁端部の 直角軸回りの回転拘束であった。また、橋軸直角モードにおいては支点条件が固有振動数に及ぼす 影響は小さく、支承部に加えて部材に損傷が生じた場合に変化を捉えるモードとして有意となる可 能性が示唆される。

また,計測振動数に最も近似する場合のアップデート後の支点条件を表 3-5 に,振動数の比較結 果を表 3-6 にそれぞれ示す。アップデートにより±3%の誤差で計測値に近似できていることがわか る。

(b) 桁端部:回転拘束

図 3-13 支点条件のアップデーティングによる固有振動数の変化率

表 3-5 アップデート後の支点条件

<u>アップデート後</u>

箇所	支承条件	橋軸	直角	鉛直	橋軸回り	直角軸回り	鉛直軸回り
A1橋台	固定支承	固定	固定	固定	1. 0E+05	1.0E+05	1. 0E+05
A2橋台	可動支承	3. 5E+04	固定	固定	1. 0E+05	1. 0E+05	1.0E+05
アーチ基部	ピン支承	固定	固定	固定	固定	1.0E+07	固定

表 3-6 アップデート後の固有振動数(現況モデル)

垢勈物	₩ <i>τ</i> (H ₇)	Before		Diff(%)	Bef	Diff(%)	
1111 王/1 5		計測	SeanFEM		ABAQUS	SeanFEM	
香古	1次	0. 93	0.96	3%	0. 92	0.96	4%
倚旦	2次	1. 58	1. 58	0%	1. 62	1. 58	-3%
公古	1次	1.44	1.44	0%	1. 46	1. 44	-2%
ᄢᆈ	2次	1. 57	1. 52	-3%	1. 57	1. 52	-3%

3-2-3-4. 部材損傷が生じた場合の感度解析

(1) 解析ケース

支点条件のアップデートを行ったモデルを使用し,部材損傷が生じた場合を想定した感度解析を 行う。表 3-7 に解析ケースを示す。解析ケースSでは,支承の機能不全を想定し,A2 可動支承の水 平方向が腐食等により固着化した状態や,両桁端の回転やアーチ基部が固定された状態などを実施 する。ケース AC, AR では,アーチクラウン部が疲労により破断したケースや,アーチ基部に水溜 まりによる断面欠損を想定したケースを実施する。また,ケースDでは床版上面の土砂化およびジ ョイント近傍の床版の疲労損傷を想定したケースを実施する。

ケース数	損傷状況	ケース名	内	容
1		S1	桁端部の可動支承の水平方向固定	(A2橋台)
2	古承の機能不会	S2	桁端部の回転方向固定	(A1, A2橋台)
3	文本の成能作主	S3	アーチ基部の回転方向固定	(P1, P2)
4		S4	全支承の全方向固定	
5	アーチクラウン部 の疲労による破断	AC1	アーチリブと上部工の結合部材削除	(R側のみ)
6	マーエルゴの広会	AR1	アーチリブ基部の断面を減厚	(-25%減 1ヵ所 P1のR側)
7	アーナリブの腐良	AR2	アーチリブ基部の断面を減厚	(−25%減 4ヵ所)
8	「「」」である。	AR3	アーチリブ基部の断面を減厚	(−75%減 4ヵ所)
9	庄坂の揖復	D1	床版上面の土砂化	(全板厚-1/3減)
10	ふぶの頂笏	D2	ジョイント近傍の床版の疲労亀裂	(端部想定区間剛性ゼロ)

表 3-7 解析ケース

(2) 支承の機能不全

1)損傷のモデル化

ケース S1~S4 における支点条件を表 3-8 に示す。健全状態の表 3-6 に対してピンク網掛け部が 支点条件を変更した箇所である。

	表 3-8	-ス S1~S4 における	る支点条件
--	-------	---------------	-------

S1:桁端部	(A2橋台)の可動	支承の水平	方向固定	
笛所	支承条件	橋軸	直 伯	鉛直

箇所	支承条件	橋軸	直角	鉛直	橋軸回り	直角軸回り	鉛直軸回り
A1橋台	固定支承	固定	固定	固定	1.0E+05	1. 0E+05	1. 0E+05
A2橋台	可動支承	1.0E+10	固定	固定	1.0E+05	1. 0E+05	1. 0E+05
アーチ基部	ピン支承	固定	固定	固定	固定	1.0E+07	固定

S2:桁端部(A1, A2橋台)の回転方向固定

箇所	支承条件	橋軸	直角	鉛直	橋軸回り	直角軸回り	鉛直軸回り
A1橋台	固定支承	固定	固定	固定	1.0E+10	1. 0E+10	1. 0E+10
A2橋台	可動支承	3. 5E+04	固定	固定	1.0E+10	1.0E+10	1.0E+10
アーチ基部	ピン支承	固定	固定	固定	固定	1.0E+07	固定

S3: P1, P2アーチ基部の回転方向固定

箇所	支承条件	橋軸	直角	鉛直	橋軸回り	直角軸回り	鉛直軸回り
A1橋台	固定支承	固定	固定	固定	1. 0E+05	1. 0E+05	1.0E+05
A2橋台	可動支承	3. 5E+04	固定	固定	1.0E+05	1. 0E+05	1. 0E+05
アーチ基部	ピン支承	固定	固定	固定	固定	1. 0E+10	固定

全支承の全方向固定

箇所	支承条件	橋軸	直角	鉛直	橋軸回り	直角軸回り	鉛直軸回り
A1橋台	固定支承	固定	固定	固定	1. 0E+10	1. 0E+10	1.0E+10
A2橋台	可動支承	1.0E+10	固定	固定	1.0E+10	1. 0E+10	1. 0E+10
アーチ基部	ピン支承	固定	固定	固定	固定	1.0E+10	固定

2) 振動数変化

ケース S3 は、前項で設定したアップデートの設定値が剛に近い値のため変化が小さい。ケース S4 の場合よりもケース S1 の方が、鉛直1次モードへの影響が大きい。拘束条件が異なることで死 荷重載荷時の受け持つ荷重バランスの影響が原因と考えられる。よって、対象橋梁では、桁端部可 動支承の水平方向の拘束条件の感度が高いことがわかった。

図 3-14 支承の機能不全による固有振動数の変化率

3) モード変化

各振動モードの主方向のモード形変化を図 3-15~18 に示す。鉛直振動の振動数変化の感度が最 も大きかった桁端部水平拘束のケース S1 では、モード形変化においても鉛直モード形の変化が全 ケースの中で最も大きく、アーチリブ、補剛桁ともに同程度の変化を呈している。桁端部の回転が 拘束されたケース S2 では、鉛直 2 次モードの振動数は 1%の変化しかないが、鉛直モード形では有 意な変化が見られる。また、アーチ基部の回転が拘束されたケース S3 では、鉛直モード形のアー チ基部で僅かに変化する程度でほとんどモード形の変化を示さなかった。

したがって,桁端部の支承の機能不全であれば,加速度計を設置しやすい補剛桁の鉛直モード形 変化によって検知できる可能性が示唆される。

図 3-15 ケース S1:桁端部水平拘束のモード変化

図 3-16 ケース S2:桁端部回転拘束のモード変化

図 3-17 ケース S3:アーチ基部回転拘束のモード変化

(3) アーチクラウン部の疲労破断

1)損傷のモデル化

アーチクラウン部の疲労破断を想定したケース AC1 のモデル化を図 3-19 に示す。

図 3-19 アーチクラウン部疲労破断のケース AC1 のモデル化

2) 振動数変化

表3-9に示すとおり,クラウン部の片側破断による振動数変化率は鉛直振動で1~2%程度であり, 有意な変化ではない。

表 3-9	固有振動数の変化率
100	四日瓜奶及** 久旧十

		Sear	D: ff (%)			
派到支		変更後	破断			
香古	1次	0.96	0.96	0%		
作旧	2次	1. 58	1. 58	0%		
公古	1次	1.44	1. 44	1%		
亚巴	2次	1. 52	1. 56	2%		

AC1: クラウン部片側破断

3) モード変化

アーチクラウン部の片側破断前後の各振動モードの主方向のモード形変化を図 3-20 に示す。鉛 直モードのアーチリブおよび補剛桁で変化が生じているほか,橋軸直角方向2次モードのアーチリ ブにおいてもモード形の変化が認められる。

したがって、クラウン部の疲労破断は、橋全体モードの振動数変化は僅かであるものの、モード 形に着目すれば検知できる可能性が考えられる。

図 3-20 ケース AC1:アーチクラウン部疲労破断のモード変化

(4) アーチリブの腐食による断面欠損

1)損傷のモデル化

アーチリブ基部の腐食による断面欠損を想定したケース AR1~AR3 のモデル化を図 3-21 に示す。 アーチ基部の約 2m の範囲を腐食対象範囲として、ウェブとフランジの板厚を減厚させ、さらに同 位置の質量も減厚分だけ減らしたモデルとした。

図 3-21 アーチ基部腐食のケース AR1~3 のモデル化

2) 振動数変化

図 3-22 に示すとおり,腐食率-25%のケース AR1, AR2 では振動数変化は 2%未満と小さいが,腐食率-75%@4 箇所では,橋直1次モードの振動数が 12%低下した。また,腐食率-25%@1 箇所において 鉛直モードの振動数が僅かに増加する傾向を示したが,剛性低下より質量低下が影響したものと考 えられる。

図 3-22 アーチ基部が腐食した場合の固有振動数の変化率

3) モード変化

各振動モードの主方向のモード形変化を図 3-23~25 に示す。腐食率-25%@4 箇所のケース AR2 に 比べて,腐食率-25%@1 箇所のケース AR1 の方が鉛直振動の鉛直モード形の変化が大きいことが特 徴的であり、1箇所の腐食という非対称性の損傷の方がモード形での損傷検知が有効となることを 示唆している。また、橋軸直角2次モードにおいてもアーチリブの鉛直モード形では有意な変化が 生じている(図 3-26)。実際、橋面排水における鉛直垂れ流し排水管の位置関係や日照方向の関係 などにより、アーチ基部4箇所が非対称に腐食が進行することが良く起こりうるものと考えられる。

また、ケース AR3 のモード形(図 3-25)より腐食率が-75%まで進行すれば4箇所が同程度進行した場合でもモード形の変化が見て取れる。

図 3-23 ケース AR1: 腐食率-25%@1 箇所(P1R)のモード変化

図 3-24 ケース AR2: 腐食率-25%@4 箇所のモード変化

図 3-25 ケース AR3: 腐食率-75%@4 箇所のモード変化

(a) ケース AR1: 腐食率-25%@1 箇所

(b) ケース AR2: 腐食率-25%@4 箇所

(c) ケース AR2: 腐食率-25%@4 箇所 図 3-26 橋軸直角2次モードの鉛直モード形の変化

(5) 床版の損傷

1) 損傷のモデル化

床版の損傷を想定したケース D1, D2 のモデル化を図 3-21 に示す。床版上面の土砂化を想定した ケース D1 では,床版シェル要素の板厚を一律-1/3 減とした。ジョイント近傍の床版の疲労亀裂を 想定したケース D2 では,青色着色部のシェル要素を削除して剛性を 0 とした。なお,質量は残し た。

図 3-27 床版損傷のケース D1, D2 のモデル化

2) 振動数変化

図 3-28 に示すとおり、端部床版が局所的に疲労損傷したケース D2 では振動数は全く変化しない が、床版全板厚が一律-1/3 減となったケース D1 では橋軸直角モードの振動数が 3~4%減となった。 これは、本ランガー橋における床版剛性の寄与が鉛直モードより橋直モードの方が大きいために橋 直振動数の変化が顕著となったものと考えられる。

3) モード変化

各振動モードの主方向のモード形変化を図 3-29~30 に示す。床版全板厚-1/3 減のケース D1 では 橋軸直角モードの振動数変化が大きかったが、モード形では鉛直モードの変化が大きい傾向にある。 また、端部床版が局所的に疲労損傷したケース D2 では振動数変化と同様にモード形変化はほとん ど見られないが、鉛直 1 次モードの端支間の補剛桁において僅かな変化が見て取れる。

図 3-29 ケース D1: 床版全板厚-1/3 減のモード変化

図 3-30 ケース D2:端部床版剛性ゼロのモード変化

3-2-3-5. 鋼材腐食による耐荷力変化と振動特性変化の比較分析

(1)分析方法

アーチ基部の腐食を模擬したケース AR1~3 のモデルを用いて弾塑性有限変位プッシュオーバー 解析を行い,荷重変位曲線の比較から腐食による橋全体系の耐荷力変化を確認する。載荷方法は図 3-31 に示すとおり,鉛直方向,直角方向それぞれに自重を漸増させる方法とする。

図 3-31 漸増載荷する荷重の載荷点と方向

(2) 鉛直方向載荷解析結果

図 3-32 鉛直方向載荷による荷重変位曲線

図 3-33 ケース AR3: 腐食率-75%@4 箇所のひずみコンター図(荷重倍率 V=1.01 倍)

(3) 直角方向載荷解析結果

図 3-35 ケース AR3: 腐食率-75%@4 箇所のひずみコンター図(荷重倍率 H=0.36 倍)

(4) 腐食による振動数変化と降伏荷重倍率変化の比較

表 3-10 に示すとおり, アーチ基部 4 箇所の腐食率が-75%の場合, 橋全体系の降伏耐力が 40~50% 程度減となり, 振動数が 3~12%の変化率となっている。しかし, 耐荷力が半分程度にまで下がった 状態の検知では安全性上遅いと考えられ, 耐荷力に影響を及ぼさない腐食率-25%の段階で検知でき ると有用である。

1箇所の腐食率を-25%としたケース AR1 では、振動数の変化は限定的であり、環境変化による振動数のばらつきに埋もれる可能性があるが、先に述べたとおり、鉛直モード形の変化が大きく、モード形の計測により耐荷力低下前の鋼材腐食を検知できる可能性がある。

表 3-10 腐食による振動数変化と降伏荷重倍率変化

AD1	命本本帝	9504	1 上部
	滿 艮 有 順	-20%0	1 73 19

±三重51米/5 (凵っ)		Sear	D;ff(%)	
抓到す		変更後	腐食後	D 111 (%)
场古	1次	0.96	0. 96	-0.1%
作旦	2次	1. 58	1. 58	0.0%
公古	1次	1. 44	1. 46	1.4%
亚旦	2次	1. 52	1. 54	1.2%

AR2 : 腐食考慮 -25% 4ヵ所

振動粉(日7)		Sear	Diff(%)	
加到了		変更後	腐食後	
场古	1次	0.96	0.96	-0.4%
作旦	2次	1.58	1. 58	-0.2%
公古	1次	1. 44	1. 43	-0. 2%
亚旦	2次	1. 52	1. 52	-0.3%

AR3: 腐食考慮 -75% 4ヵ所

		Sear	Diff(%)	
加到多		変更後	腐食後	
场古	1次	0.96	0. 85	-12%
作旦	2次	1. 58	1. 52	-4%
公古	1次	1. 44	1. 39	-3%
如臣	2次	1. 52	1. 45	-5%

AR1	1	腐1	<u> (</u>) () () () () () () () () ()	-25	% 1	カ P	斤
							-

防止共手 (広)	Sear	Diff(%)	
年1人1月里(1日)	変更後	腐食後	D 111(%)
橋直	0. 70	0. 70	0%
鉛直	1 75	1 75	0%

AR2: 腐食考慮 -25% 4ヵ所

降伏荷重(倍)	SeanFEM		D;ff(0/)
	変更後	腐食後	D 111(%)
橋直	0. 70	0.69	-1%
鉛直	1. 75	1. 75	0%

<u>AR3 : 腐食考慮 -75% 4ヵ所</u>

降伏荷重(倍)	SeanFEM		Diff (%)
	変更後	腐食後	DIII (%)
橋直	0. 70	0.36	-49%
鉛直	1.75	1.01	-42%

3-2-3-6. まとめ

鋼逆ランガー橋を対象とした本検討により、得られた結果を以下にまとめる。

- 桁端部の支承の機能不全では、振動数の変化が比較的大きいが、加速度計を設置しやすい補 剛桁の鉛直モード形変化によって明確に検知できる可能性がある。
- アーチクラウン部の疲労破断では、橋全体モードの振動数変化は僅かであるものの、補剛桁の鉛直モード形に着目すれば検知できる可能性がある。
- 3)アーチ基部の断面欠損では、1箇所の25%腐食という非対称性の損傷の方が全箇所同程度の損傷の場合より鉛直モード形の変化が大きく、損傷検知ができうる。また、腐食による橋全体系の耐荷力変化を検討した結果、1箇所の25%腐食では耐荷力の低下は認められず、モード形の計測により、致命的な状態となる前の橋の状態変化を検知できると考えられる。
- 4)床版のジョイント近傍の疲労損傷をモード形変化により検知することは困難であるが、床版 上面の一様な土砂化により鉛直モード形は明確に変化した。

3-3. 首都高大橋 JCT-ランプ橋の振動特性の同定

3-3-1. 概要

首都高速大橋ジャンクションランプ橋は、ループ状の二層立体ラーメン構造であり、その動的特 性は極めて複雑であると考えられる。動的挙動の解明には実測が不可欠である。加えて、三次元的 で複雑な挙動は多点で密に計測することで始めて明らかとなる。そこで、詳細な動的挙動を明らか にすることを目的として、常時微動、衝撃振動、車両通過時(20トン荷重車)の加速度応答を計測 する。また、構造物の経年変化を把握するうえで、動特性変化を追跡することが有効な手段となる が、本計測は対象構造物の動特性の初期値を与えるものでもある。

3-3-2. 計測概要

(1) 対象橋梁

本研究で、計測対象としたのは、首都高速3号渋谷線と中央環状新宿線および中央環状品川線を 接続する「大橋ジャンクション」の一部であるランプ橋であり、地下トンネル部から高低差約70m を上がるループ状の RC 躯体と高速3号渋谷線の都心方向とを結ぶ。本ランプ橋は鋼床版箱桁によ る二層立体ラーメン構造であり(図3-36),特徴として、①曲率が非常に大きな線形条件であるこ と、②都市市街地における橋脚の断面制約から、全体として非常に変形量の大きい構造系であるこ とが挙げられる。

図 3-36 大橋ジャンクションランプ橋

(2) 計測方法

①有線センサ

有線センサであるサーボ型加速度計をBランプ橋の路面上に15個設置して動的挙動を計測する。 計測方向は鉛直方向とし、サンプリング周波数200Hzで時刻歴波形を記録する。周波数解析から固 有振動数,さらにピークピッキング法を用いて振動モード形を同定する。解析対象とする振動は、 試験用の荷重車が単独走行する時の振動、常時微動とする。Bランプ橋におけるサーボ型加速度計 の配置図を図 3-37 に、設置状況を図 3-38 に示す。振動計測の実施日は、2010 年 3 月 22 日である。

②無線センサ

無線センサノード Imote2 を計 49 個利用して動的挙動を計測する。Imote2 は MEMS 型の無線セン
サであり、センサノードが取得したデータをマルチホップ通信によって他のノードを中継すること でデータ収集を行うことができる。B1 橋、D1 橋の加速度計の設置位置を図 3-37 に、加速度計の 設置状況を図 3-38 に示す。 B1 橋、D1 橋の車線の両側の路肩上に無線センサを 49 点設置してい る。また、センサはいずれも路面上に設置してあるが、脚の真上に位置するものを図 3-37 中では「S」、 それ以外は「C」で表している。無線センサのサンプリング周波数は 50Hz とし 6 分間の計測を 5 回行っている。無線センサ同士で同期のとれた計測を行っている。

a) B1 橋

b) D1 橋 図 3-37 センサ配置

(a) 有線センサ

(b) 無線センサ

図 3-38 センサ設置状況

3-3-3. 計測結果

(1) 荷重車がDランプ橋を走行する場合

各加速度計で計測された時刻歴波形ならびに参照点を計測点4として算出した平均化クロススペクトルを図 3-39 に示す。平均化クロススペクトルの平均化の時間間隔は10 s であり,804 個のデータを平均化した。周波数分解能は0.1 Hz となる。また、平均化クロススペクトルを用いてピークピッキング法から同定された振動モード形を図 3-40 に示す。

(2) 荷重車がBランプ橋を走行する場合

各加速度計で計測された時刻歴波形と平均化クロススペクトルを図 3-41 に示す。平均化クロス スペクトルの算出方法は前節と同様である。また、平均化クロススペクトルから同定された振動モ ード形を図 3-42 に示す。

(3) 結果の比較

前節(1),(2)の振動モード形の同定結果である図 3-39,図 3-41 を比較すると,固有振動数の差は 0.1 Hz となっており,これは計測,計算誤差の範囲である。また,振動モード形の形状も両者で概 ね一致していることが確認される。このことから,振動モード形ならびに同定手法は問題ないと言 える。

(4) 無線センサを利用した計測結果

図 3-43 に無線センサノードを利用して計測した交通振動から ERA 法により同定した D1 橋 1 次 振動モード形を示す。無線センサは計測に失敗するノードも有り,設置したセンサ数よりも少ない 点でのモード形同定となっている。また,ERA 法では 2 次モードより高次のモードは同定された振 動モード形に,繰り返し再現性が確認できなかったことから,1 次モードのみを示す。

(a) 1.3 Hz

(b) 1.8 Hz

(c) 3.6 Hz

(d) 4.1 Hz

(e) 4.6 Hz図 3-40 同定された振動モード形

(a) 時刻歴波形

(a) 1.3 Hz

(c) 3.5 Hz

(d) 4.1 Hz

(e) 4.4 Hz図 3-42 同定された振動モード形

図 3-43 無線センサ計測から得られた D1 橋振動モード形(実線は骨組みモデル)

3-3-4. 解析モデルとの比較

設計時に用いられた解析モデルを用いて固有振動解析を行い,対象橋梁の振動特性を調べた。解 析モデルを図3-44に示す。解析モデルの詳細を以下に列挙する。

- 1) 対象橋梁は主桁,橋脚およびフーチングまでをモデル化し,主桁は B1橋, D1橋をそれぞれ 4 径間,3径間を 3次元立体骨組み構造としてモデル化している。
- 2) 剛性および重量の算出には2次部材を無視して主要な部材のみを考慮している。
- 3) 隣接橋の反力は接点重量としてモデル化している。
- 4) 上部工の剛性は鋼床版箱桁を全断面有効とみなして算出している。
- 5) 上部工の慣性力の作用位置は上部工の骨組み中心としている。
- 6) 橋脚は図 3-45 のように端部を剛部材とし、中間部材を非線形梁要素でモデル化している。
- 7) 桁端支承のモデル化については、可動沓の場合は摩擦力に伴う橋軸方向水平力の影響は微小であるとして、支承部を摩擦のない完全な可動支承としてモデル化している。
- 8) 質量は桁,舗装,壁高欄,遮音壁,裏面吸音版,付加荷重を考慮している。
- 9) 設計モデルでは壁高欄と遮音壁による慣性モーメントは考慮しない。
- 10) 鋼材のヤング係数は 200GPa とし、ポアソン比を 0.3 としている。
- 11) 橋脚下端の地盤の支持条件は,各橋脚に図 3-45 のように動的地盤ばねを配置することでモデル化している。ばね定数の値は設計時に用いられた動的解析計算書を参考に表 3-11 に示す値を用いた。

図 3-44 解析モデル

図 3-45 動的地盤バネ

橋軸方向		水亚げわ	鉛直げわ	回転ばね	回転ばね	連成げわ	
		11 1040	町匠はなれる	(鉛直軸)	(水平軸)		
简粗巨)	円刀回	kN/m	kN/m	kN/m	kN/m	kN/m	
Pbd-1		4188032	7598794	1E+12	357940100	30507500	
DI 1 0	角柱	2413061	6320034	1E+12	166657300	16624640	
r bu-2	円柱	2070227	4476725	1E+12	202699600	16666760	
Pbd-3		3033877	7635438	1E+12	321560300	24339780	
	下り	2521300	1E+12	1E+12	93406000	11212000	
NP27	上り	4018200	1E+12	1E+12	270950000	25634000	
	中央	2521300	1E+12	1E+12	93406000	11212000	
	下り	3031000	1E+12	1E+12	98632000	12881000	
NP29	上り	4815100	1E+12	1E+12	268700000	28785000	
	中央	3031000	1E+12	1E+12	98632000	12881000	

計測結果との比較によるモデルの妥当性の検証

解析モデルに対して固有値解析を行い,固有振動数とモード形状を算出した。振動計測結果との 比較で用いるモード形状を図 3-46 に示す。このモード形状のD1 橋でのモード振幅と無線計測およ び有線計測により得られたモード形状の比較をそれぞれ図 3-47,図 3-48 に示す。モード形状は計 測結果から得られた鉛直方向成分のモードベクトルの最大値を1として正規化している。振動計測 との比較には,複数回の計測データから安定して同定されたモードと比較を行っており,無線計測 では1次モードのみ,有線計測は1次モードと2次モードでそれぞれ比較を行っている。計測とモ デルの振動数比と MAC を比較したものを表 3-12 に示す。

位置(m)

橋軸方向 1 次モード 図 3-47 無線計測とのモード形状の比較(設計モデル)

まず,無線計測で求められたモード形状と設計モデルでのモード形状を比較する。1 次モードは 表 3-12 から振動数比が 0.9 以上と比較的合っており,橋軸方向と鉛直方向でのモード振幅の傾向 も比較的合っているが,橋軸直角方向は計測結果とは大きくずれたモード形状となった。MAC で 見ても 0.4 程度である。有線計測と設計モデルを比較しても同様の傾向が確認できた。有線計測で は、1 次モードの振動数比は無線計測と同程度であり,MAC で見ても無線計測よりもモード形状 が合っているように見えるが、2 次モードではモード振幅がどの点でも大きくずれており、振動数 比や MAC も大きな誤差がみられる。これは、設計モデルでは2 次モードのねじれ挙動を再現でき なかったため、このモードが現れなかったと考えられる。そのため、設計モデルでは2 次モードの ねじれ挙動を正確に反映できていないといえる。本研究の対象橋梁は,表 3-13 のように壁高欄や 遮音壁が桁重量に比べて大きな重量を持っており,図 3-49 のように桁両側がそれらの荷重位置に なっているため,実際には慣性モーメントが作用すると考えられるが,設計モデルではこれらを考 慮していない。図 3-48 の計測で同定されたモード形状をみると,水平方向のモード振幅は進行方 向の両側で大きな変化は見られないが,鉛直方向に対しては車線進行方向の両側のモード振幅の差 から鉛直方向にねじれが生じていることが分かる。そのため,このような複雑な構造の橋梁の実挙 動をモデルで再現するには鉛直方向のねじれを正確に再現する必要があるといえる。

表 3-12 計測結果と理論値との比較

	魚	無線計測		理論値	垢動粉レ	мас			
	次数	振動数(Hz)	次数	振動数(Hz)	1水到秋儿	MAC			
設計モデル	1	3.4052	20	3.1177	0.9156	0.3907			
慣性モーメント 考慮モデル	1	3.4052	20	3.0678	0.900916	0.5392			

(a) 無線計測との比較

	有	有線計測		理論値	垢動粉比	MAC	
	次数	振動数(Hz)	次数	振動数(Hz)	派到级比		
設計エデル	1	3.4287	20	3.1177	0.9093	0.6973	
成計モノル	2	6.0032	42	7.3879	1.2307	0.0467	
慣性モーメント	1 3.4287		20	3.0678	0.8947	0.7725	
考慮モデル	2	6.0032	42	6.0513	1.0080	0.6573	

(b) 有線計測との比較

壁高欄と遮音壁の遮音壁によって生じる慣性モーメントがねじれに大きな影響を与えると考え, これらの重量を桁両側に分配することで,壁高欄と遮音壁による慣性モーメントを再現したモデル の構築を行った。慣性モーメント考慮後のモード形の鳥瞰図と計測とのモード形状の比較をそれぞ れ図 3-50,図 3-51,図 3-52 に,計測との振動数と振動数比,MACの比較を表 3-12 に示す。1次 モードでは有線計測,無線計測ともに慣性モーメント考慮前に比べてMACが上昇しており,モー ド形状の再現性が向上しているといえる。また、2次モードでは,設計モデルでは再現することの できなかったねじれモードが再現できており,振動数比,MACで見ても比較的よく一致している。 そのため,壁高欄や遮音壁による慣性モーメントを考慮することにより,設計モデルに比べてモデ ルが実挙動をより正確に再現することができたといえる。本研究で対象としているような,複雑な 形状の橋梁のように,主桁の重量に比べて壁高欄や遮音壁のような付属物の重量が無視できない場 合は、これらの慣性モーメントを考慮してモデル化することで実挙動を再現できるといえる。

	壁高欄	覆蓋構造
荷重[kN/m]	16.400	20.520
鋼重[kN/m]	31.600~	~48.900
桁重量に対する割合[%]	$33.5 {\sim} 51.9$	$42.0 \sim 64.9$

表 3-13 桁重量に対する壁高欄・覆蓋構造の重量

図 3-51 無線計測とのモード形状の比較(壁高欄・遮音壁の慣性モーメント考慮)

実計測に基づいた3次元骨組みモデルを構築するため、大橋ジャンクションB1連結路およびD1 連結路で加速度計測を行った。モード同定を行い、設計モデルと比較した結果、設計モデルではね じれモードを再現できていないことが明らかとなった。この原因は設計モデルでは壁高欄や遮音壁 など、桁重量に比べて大きな質量をもつ非構造部材の質量による慣性モーメントが考慮されていな いためであると考えられる。そこで、壁高欄や遮音壁等の質量を詳細にモデル化することにより、 実計測に基づいたモデルを構築した。その結果、1次モード、2次モードともに MAC が上昇し、 壁高欄や遮音壁の質量のモデル化の違いが曲線橋の動的応答に大きな影響を及ぼすことが明らか になった。

3-4. 幸魂大橋斜張ケーブルー最新センシング技術による張力測定

3-4-1. 概要

斜張橋やニールセン橋を構成するケーブルの張力値は、一般的に振動法^{1),2)}を用いて計測される。これは、ケーブルの張力値が固有振動数の関数となる関係を利用するものである。具体的には、加速度計をケーブルに取り付けて振動計測を実施する。ここで、ケーブルの加振力が十分でない場合は、ケーブルを人手で加振することもある。取得された加速度応答に対して周波数解析を行い、 卓越振動数を抽出してケーブルの固有振動数とする。

従来の手法では、加速度計をケーブルに固定する必要があるため、ケーブル本数が多くなると、 多大な手間を要する(図 3-53)。そこで、レーザードップラー速度計(LDV)を利用してケーブル の振動を非接触遠隔計測により効率化する試みが行われている^{3),4)}。

図 3-53 従来のケーブル張力計測方法

3-4-2. 不可視レーザー光を用いた新しい LDV

本報では、新たに開発された LDV(図 3-54)の評価を目的とし、幸魂大橋のケーブルの振動計 測を実施した。この LDVは、従来の LDVと比較して、レーザー光源(エルビウムレーザー)の波 長が赤外光よりも長く(1550nm)、不可視光で長距離計測を実現する点に特徴がある。スペックは、 最大計測距離が 150m、計測レンジが 0.4mm/s/V~100mm/s/V*、周波数帯域が DC~5kHz*である(* プロトタイプ仕様のため変更される可能性あり)。レーザーの安全基準はクラス 1 であり、屋外計 測にも問題はない。仕様を表 3-14 に示す【要確認】。また、従来の LDV とは異なり、計測対象の 表面が黒色となる場合でも、反射テープの貼付など特別な表面処理を必要とせずに計測することが 可能である。この理由として、レーザー出力の増加、レンズロ径の増大、レーザー波長が長くなっ たことによる物質反射率の増大などが挙げられる。ただし、レーザー光を肉眼で直接確認できない ため、焦点合わせは、ヘッドに内蔵されたカメラにより PC 上で行う(図 3-55)。

図 3-54 不可視レーザー光を用いた新しい LDV

データ収集/処理系	RSV-E-150 コントローラ
速度出力	デジタル速度デコーダ0.4mm/s/V ~ 100mm/s/V
	フルスケール(p-p) ±1m/s, BNC アナログ出力 ±10V
変位出力	デジタル変位デコーダ:1μm/V ~ 100mm/V
	フルスケール(p-p) ±1m, BNC アナログ出力 ±10V
周波数範囲	0 Hz - 25kHz (測定レンジによる)
フィルタ	High pass: 10Hz, 100Hz
	Low pass: 1kHz, 5kHz
ビデオ出力	CVBS信号 : 1V (p-p)/75Ω, BNC, PAL standard
インジケータ	コントローラ前面に配置
外形寸法	225 X 220 X 150mm
$[L \times W \times H]$ mm	233 × 320 × 1301111
重量	約 6kg
電源	100V - 240 VAC (50/60 Hz) / 12 - 24 V DC (オプション)
保護クラス	IP-20
使用環境条件	+5°C ∼ +40°C
アクセサリ/オプション	

アクセサリ/オプション	アクセサリ/オプション									
ターゲット用 A-VIS-SCOP1 3-9×40 ズーム機能付きスコープ										
3.5" モニタ	A-MON-TFT3 センサ取付用モニタ									
補正用	A-VIB-ACC01 リファレンス用加速度計 (環境振動用の補正用)									
インバータ	A-CONDCAC 12V to 230V									
ビデオアダプタ	A-CON-VIDEO USBビデオコンバータ									
VibSoft-20 データ収	集ソフトウェア									
仕様概要	時間軸/周波数軸の解析機能, LiveVideo映像表示, 測定データの 後加工機能(Signal Processor), UFF, ASCIなどのエクスポート機能, コントローラのリモート設定, VisualBasic互換のスクリプト機能など									
データ収集帯域	20kHz									
チャンネル数	2ch (測定用信号および参照用)									
フロントエンド	VIB-E-200 USBデータ収集ユニット									

図 3-55 レーザー光の焦点合わせ

3-4-3. 計測対象橋梁(幸魂大橋)

対象とした橋梁は幸魂大橋であり,支間長 190m でマルチファン型一面吊りの 2 径間連続鋼斜張橋である(図 3-56)。東京外環自動車道と国道 298 号が一体構造となる斜張橋が,内回りと外回りで 2 橋並列されている⁵⁾。

図 3-56 計測対象橋梁 (幸魂大橋)

3-4-4. 計測概要

計測日時は,2010年9月14日の10時~12時と2011年6月24日の10時~12時である。両日と もに天候は晴れで,気温は約30度であった。計測対象としたケーブルは,図3-57に示すように, 外回り線のT1~T7およびW1~W7である。各位置に2本のケーブルが並列しているため,計測対 象の総数は28本である。ケーブルの表面色は黒で,ディンプルなどはない。LDVの設置位置は, 主塔付近(P12)の外回り線の歩道である。

本研究で使用した LDV のレーザーは不可視光であることから,赤色光の He-Ne レーザーを使用 した従来の LDV とは異なり,車道を跨いだ計測が可能である。また,ケーブル表面に反射テープ は貼付していない。計測状況を図 3-58 に示す。2010 年度の計測では,LDV による振動計測と合わ せて,検証用に,有線加速度計による計測も実施した。計測は自由交通流下で実施し,加速度計の 計測では,さらに人手による加振を加えた。振動計測のサンプリング周波数は LDV,加速度計とも に 200Hz とした。LDV の計測レンジは 10mm/s/V である。

図 3-58 計測状況

3-4-5. 計測結果

表 3-15 に、同定された固有振動数を示す。理論値は、ケーブルの曲げ剛性ならびにサグの影響 を考慮して算出した^{1),2)}。実測値は、面外方向の振動データの周波数解析から同定した結果である。

加速度計の応答周波数は 0.4~2000Hz であることから,1 次の固有振動数が同定されにくいのに 対して,LDV の周波数特性は低周波数領域からフラットであるため,1 次の固有振動数が同定され やすい。実測値と理論値との差異は,温度ならびに車両通行による影響と考えられるが,LDV と加 速度計間の差異は小さい。よって,LDV による計測に問題は無いと言える。また,図 3-59,図 3-60 に LDV による計測結果の一例を示す。計測距離が長くなると時刻歴波形にスパイク状のスペック ルノイズが目立つようになるが,固有振動数の同定に対しては問題が無い。

表 3-15 固有振動数の同定結果

										固有援)	的数 (Hz)									備考
			-	n ana n			実測結果(2010年9月)					実測結果	(2011年6月)				
7-5	ル香芍					ケーブルa ケーブルb		ケーブルa				ケーブルb				計測距離2)				
		1 次	2 次	3次	4次	1 次	2次	1 次	2次	全体系	1次	2次	3 次	4次	全体系	1 次	2次	3次	4次	(111)
	W1	0.55	1.10	1.65	2.20	0.54	1.05	0.54	1.05	0.382	0.552	1.074	1.647		0.400	0.552	1.054			95
	W2	0.68	1.36	2.04	2.72	0.63		0.63	1.26	0.399	0.622	1.243	1.842		0.399	0.637	1.274			82
P12-P13	W3	0.78	1.56	2.34	3.12	0.75	1.45	0.76		0.401	0.761	1.458		2.955	0.404	0.737	1.336			71
P3側	W4	0.92	1.85	2.77	3.70	0.87		0.83		0.393	0.856	1.705		3.495	0.394	0.846	1.670	3.409		58
左側	W5	1.15	2.30	3.45	4.59	1.07	2.36	1.08		0.400	1.080	2.192	3.295	4.400	0.394	1.082	2.147	3.435	4.341	47
	W6	1.50	2.99	4.49	5.98	1.32	2.55	1.34	2.67	0.398	1.313	2.578	3.953	5.305	0.400	1.342	2.677	4.025		37
	W7	2.26	4.52	6.77	9.03	1.94	3.89	1.92	3.88	0.396	1.940	3.910	6.120		0.406	1.945	4.096	6.158		27
	T7	2.25	4.49	6.74	8.98	1.92	4.00	1.94	3.98	0.394	1.921	3.958	5.788		0.401	2.035	3.945	6.159		27
	T6	1.49	2.98	4.46	5.95	1.36		1.39		0.398	1.373	2.739	4.391	5.646	0.402	1.366	2.722	4.259		37
P11-P12	T5	1.14	2.29	3.43	4.57	1.03		1.05		0.403	1.027	2.106	3.202		0.401	1.025	2.198	3.179	4.216	47
A2側	T4	0.92	1.84	2.76	3.68	0.85	1.72	0.88	1.76	0.401	0.842	1.759			0.394	0.885	1.764	2.630	3.527	58
右側	T3	0.78	1.55	2.33	3.10	0.75		0.75	1.49	0.399	0.751	1.445		3.006		0.756	1.488		2.981	71
	T2	0.68	1.35	2.03	2.71		1.27	0.60	1.30	0.405	0.643	1.273		2.232	0.398	0.641	1.266	1.859	2.539	82
	T1	0.55	1.09	1.64	2.19	0.56	1.05	0.52	1.04	0.399	0.531	1.055			0.376	0.541	1.051		2.172	95

1) 新家式より算出
 2) 計測機器設置位置からケーブル中央点までの距離

3-4-6. 計測結果の比較

(1) 固有振動数

- ・ 2010 年度と 2011 年度の計測結果から同定された各ケーブルの固有振動数を図 3-61 に示す。
- ・ 図中の点線は理論値であり、文献 1),2)にもとづいて算出した。
- ・ 2010 年度と 2011 年度で、固有振動数の同定値の差は約±5%である。

(2) 張力

Σ

- ・ 表 3-16 に示すケーブル諸元と LDV を用いた振動計測から同定された固有振動数にもとづいて ケーブルの張力を算出することとした。
- ・ ケーブルの張力の算出では、文献 1), 2)にある以下の式を使用した。
 - a) 対称1次振動を対象とする場合(サグが小さい場合3≤Г)

$$T = \frac{4w}{g} (f_1 l)^2 \left\{ 1 - 2.20 \frac{C}{f_1} - 0.550 \left(\frac{C}{f_1}\right)^2 \right\} \quad (17 \le \xi)$$
(1a)

$$T = \frac{4w}{g} (f_1 l)^2 \left\{ 0.865 - 11.6 \left(\frac{C}{f_1}\right)^2 \right\} \quad (6 \le \xi \le 17)$$
(1b)

$$T = \frac{4w}{g} (f_1 l)^2 \left\{ 0.828 - 10.5 \left(\frac{C}{f_1}\right)^2 \right\} \quad (0 \le \xi \le 6)$$
(1c)

b) 逆対称1次振動を対象とする場合(サグが大きい場合 Γ≥3)

$$T = \frac{w}{g} (f_2 l)^2 \left\{ 1 - 4.40 \frac{C}{f_2} \right\} \quad (60 \le \xi)$$
(2a)

$$T = \frac{w}{g} \left(f_2 l \right)^2 \left\{ 1.03 - 6.33 \frac{C}{f_2} - 1.58 \left(\frac{C}{f_2} \right)^2 \right\} \quad (17 \le \xi \le 60)$$
(2b)

$$T = \frac{w}{g} (f_2 l)^2 \left\{ 0.82 - 85.0 \left(\frac{C}{f_2}\right)^2 \right\} \quad (0 \le \xi \le 17)$$
(2c)

こで、

$$\xi = \sqrt{\frac{T_1}{EI}}l : \text{剛性パラメータ}$$

$$\Gamma = \sqrt{\frac{wl}{128EA\delta^3\cos^3\theta}} \left(\frac{0.31\xi + 0.5}{0.31\xi - 0.5}\right) : \# \mathscr{I} \mathscr{I} \mathscr{I} = \sqrt{\frac{EIg}{wl^4}} : 振動パラメ-9$$

T₁:ケーブル張力(設計荷重)[tf]
 w:ケーブルの単位長さ当たりの重量 [tf/m]
 g:重力加速度 [m/s²]

f₁, f₂:計測した1次,2次の固有振動数 [Hz]
l:ケーブルの長さ [m]
E:ケーブルの弾性係数 [tf/m²]
I:ケーブルの断面2次モーメント [m⁴]
A:ケーブルの断面積 [m²]
δ:サグ比
θ:ケーブルの傾斜角

- ・ 上記の方法の特徴としては,数式が厳密解との誤差が0.4%以内の代数近似式として表現されて おり,その取扱いが容易な点が挙げられる。
- ・ 2010 年度と 2011 年度の固有振動数の同定結果から算出された張力を図 3-62 に示す。

・ 2010 年度と 2011 年度で, 張力の変動は約±10%である。

			カタログ		設計	+値				計算值					
ケーブル番号		鋼線本数	ストランド 外径(被覆前)	単位質量	断面積	ケーブル長さ (定着ブロック	傾斜角	サグ	設計張力 (死荷重時) T ₁		断面2次 モーメント	弾性係数	引張剛性 (仮定値)	曲げ剛性 (仮定値)	サグ比
		7 0 ×n	(m)	w (t/m)	A (m²)	間距離) L(m)	θ (deg)	s (m)	(t)	(kN)	I (m ⁴)	E (kN/m²)	EA (kN)	EI ($kN \cdot m^2$)	ð
	W1	397	0.1532	0.1240	0.015278	197.2260	21.591	1.0132	581.2	5699.6	0.000027	2.00E+08	3.06E+06	5408	0.0055
P12-P13 P3側 左側	W2	367	0.1470	0.1150	0.014124	172.1050	23.116	0.6798	627.4	6152.7	0.000023	2.00E+08	2.82E+06	4584	0.0043
	W3	349	0.1420	0.1100	0.013431	147.1400	25.151	0.5195	574.7	5635.9	0.000020	2.00E+08	2.69E+06	3992	0.0039
	W4	337	0.1406	0.1060	0.012969	122.4190	27.997	0.3745	536.3	5259.3	0.000019	2.00E+08	2.59E+06	3837	0.0035
	W5	313	0.1353	0.0986	0.012046	98.1060	32.228	0.2393	492.0	4824.9	0.000016	2.00E+08	2.41E+06	3290	0.0029
	W6	253	0.1217	0.0801	0.009737	74.5550	39.063	0.1336	388.6	3810.9	0.000011	2.00E+08	1.95E+06	2154	0.0023
	W7	253	0.1217	0.0801	0.009737	52.5130	51.383	0.0509	432.5	4241.4	0.000011	2.00E+08	1.95E+06	2154	0.0016
	T7	253	0.1217	0.0801	0.009737	52.7900	51.624	0.0512	432.5	4241.4	0.000011	2.00E+08	1.95E+06	2154	0.0016
	T6	253	0.1217	0.0801	0.009737	74.9520	39.436	0.1343	388.6	3810.9	0.000011	2.00E+08	1.95E+06	2154	0.0023
P11-P12	T5	313	0.1353	0.0986	0.012046	98.5900	32.670	0.2405	492.0	4824.9	0.000016	2.00E+08	2.41E+06	3290	0.0029
A2側	T4	337	0.1406	0.1060	0.012969	122.9730	28.480	0.3761	536.3	5259.3	0.000019	2.00E+08	2.59E+06	3837	0.0035
右側	T3	349	0.1420	0.1100	0.013431	147.7600	25.659	0.5217	574.7	5635.9	0.000020	2.00E+08	2.69E+06	3992	0.0039
	T2	367	0.1470	0.1150	0.014124	172.7870	23.640	0.6825	627.4	6152.7	0.000023	2.00E+08	2.82E+06	4584	0.0043
	T1	397	0.1532	0.1240	0.015278	197.9670	22.126	1.0169	581.2	5699.6	0.000027	2.00E+08	3.06E+06	5408	0.0055

表 3-16 ケーブル諸元

1) NEW-PWS(東京製綱)

3-4-7. ケーブルの温度変化および断面減少による解析的検討

3-4-7-1. 検討概要

ここでは、完成時からの温度変化-20℃の影響について自重解析(幾何学的非線形性を考慮した有限変位解析)により検討した。また、完成後のケーブルの腐食による断面減少の影響についても検討した。

3-4-7-2. 解析内容

(1) 解析ケース

ここでは、完成時からの温度変化(-20℃)およびケーブルの局部腐食の影響について検討す るために、以下の10ケースについて自重解析を行った。なお、③~⑩の解析ケースについては、 ケーブルの局部的な腐食による断面減少の影響を見るために、着目した C5,C1 ケーブルの下端要 素について、腐食率が10%の場合には断面積を90%とし、設定する腐食率に応じた断面積の減 少により考慮することとした。

	解析ケース名	内容	備考
1	D+Ps	死荷重+プレストレス	完成時
2	D+Ps+T (-20℃)	死荷重+プレストレス+温度変化 -20℃	完成時+温度変化(-20℃)
3	D+Ps+C5A(-10%)	死荷重+プレストレス+C5 ケーブル下端 部_腐食率 10%	完成時+C5 ケーブル局部腐食(下端 要素の断面減少-10%)
4	D+Ps+C5A(-20%)	死荷重+プレストレス+C5 ケーブル下端 部_腐食率 20%	完成時+C5 ケーブル局部腐食(下端 要素の断面減少-20%)
5	D+Ps+C5A(-50%)	死荷重+プレストレス+C5 ケーブル下端 部_腐食率 50%	完成時+C5 ケーブル局部腐食(下端 要素の断面減少-50%)
6	D+Ps+C5A(-80%)	死荷重+プレストレス+C5 ケーブル下端 部_腐食率 80%	完成時+C5 ケーブル局部腐食(下端 要素の断面減少-80%)
7	D+Ps+C1A(-10%)	死荷重+プレストレス+C1 ケーブル下端 部_腐食率 10%	完成時+C1 ケーブル局部腐食(下端 要素の断面減少-10%)
8	D+Ps+C1A(-20%)	死荷重+プレストレス+C1 ケーブル下端 部_腐食率 20%	完成時+C1 ケーブル局部腐食(下端 要素の断面減少-20%)
9	D+Ps+C1A(-50%)	死荷重+プレストレス+C1 ケーブル下端 部_腐食率 50%	完成時+C1 ケーブル局部腐食(下端 要素の断面減少-50%)
10	D+Ps+C1A(-80%)	死荷重+プレストレス+C1 ケーブル下端 部_腐食率 80%	完成時+C1 ケーブル局部腐食(下端 要素の断面減少-80%)

表 3-17 解析ケース

(2) 解析モデル

本橋の耐震補強設計時に作成した解析モデルを一部簡素化し、本検討に使用した。

図 3-63 立体骨組モデル

			拘束条件							移動
橋脚	支承名	支承タイプ	橋軸方向	橋軸直角	角 鉛直方向UZ		橋軸回り	橋軸直角	鉛直回り	可能量
			UX	方向UY	正	負	RX	回りRY	RZ	(mm)
D11	正反力沓	ピボットローラー	自由	自由	拘束	自由	自由	自由	自由	
P11 P13	ペンデル沓	ペンデル	自由	自由	自由	拘束	自由	自由	自由	± 110
115	水平沓(ウインド沓)	支承板支承	自由	拘束	自由	自由	自由	自由	自由	
D19	主桁沓	ピボット	自由	自由	拘束	拘束	自由	自由	自由	
1 12	主塔沓	ピボット	拘束	拘束	拘束	拘束	自由	自由	自由	1

表 3-18 支承条件

(3)材料特性

表 3-19 材料特性

材料名	材料No.	E (kN/m2)	G (kN/m2)	ポアソン比	線膨張係数	備考
鎁	100	2.000E+08	7.692E+07	0.300	1.2E-05	主塔・主桁(弾性はり)
ケーブル	500	1.950E+08	7.500E+07	0.300	1.2E-05	ケーブル
コンクリート	1000	2.350E+07	1.007E+07	0.167	1.0E-05	橋脚(弾性はり)

(4) 死荷重 D

死荷重は,竣工図書より上部構造死荷重強度および橋脚重量を集計し,要素分割された各部材 の節点が分担する重量分を節点荷重により載荷した。

	10	720 赤门民间日	107 主重(当例	成11日 年66	
TT	Ē		重量		備老
頃	. 🗗	延長	死荷重強度	重量	加つ
	主塔	80. Om	13.000tf/m	1040tf	ケーブル重量1/2含む
上部構造	主桁	380. Om	18.053tf/m	6860tf	11
	総重量		7900tf		
本占	団士	P11	P12	P13	
又尽	及刀	-108tf	8116tf	-108tf	
橋	助	P11	P12	P13	
「同」	니지	4096tf	8213tf	4131tf	基礎重量は含まない

表 3-20 斜張橋部の重量(当初設計計算書より)

(5) プレストレス Ps

ケーブル張力 T はケーブル公式により算出し,温度荷重として解析モデルに載荷した。主桁お よび主塔のプレストレスについても同様に,関係式から求めた主桁への水平張力 H および主塔へ の鉛直張力 V を温度荷重に換算して載荷した。また,温度変化時はさらに-20℃を加えることで, ケーブルに作用するプレストレスを考慮した。

ケーブル名	水平投影長 I(m)	水平単長 重量 w(tf/m)	主桁分担重 量Wg (tf)	ケーフ [*] ル勾配 θ(deg)	水平張力 H (kN)	鉛直張力 V (kN)	最大サグ (m)	ケ−ブル平均 張力T (kN)	断面積A (m2)	温度(℃)
CABL01	185.000	0.284	315.197	21.801	8371.2	3606.0	1.422	9016.1	0.03056	-126.1
CABL02	160.000	0.267	450.282	23.328	10725.5	4834.9	0.782	11680.3	0.02825	-176.7
CABL03	135.000	0.260	450.282	25.364	9677.5	4760.0	0.600	10709.9	0.02686	-170.4
CABL04	110.000	0.261	450.282	28.207	8495.2	4697.3	0.456	9640.0	0.02594	-158.8
CABL05	85.000	0.257	450.282	32.428	7119.3	4629.9	0.320	8434.5	0.02409	-149.6
CABL06	60.000	0.229	450.282	39.237	5489.7	4550.7	0.184	7087.7	0.01947	-155.6
CABL07	35.000	0.293	540.338	51.499	4255.0	5399.4	0.103	6835.1	0.01947	-150.0

表 3-21 ケーブルサグ,ケーブル張力および温度荷重の算出(死荷重時)

<ケーブル公式>

(6) ケーブルの局部腐食を考慮した断面積 CA

ケーブル下端部の局部腐食による影響を考慮するために,腐食率を10%,20%,50%,80%と した時の残存断面積を以下に示す。着目した C1 および C5 ケーブルの下端部要素の断面積を腐 食率に応じた断面積として腐食時の検討を行う。

表 3-22 腐食率に応じた残存断面積

			断面積A(m2)		
対象ケーノル	完成時	腐食率_10%	腐食率_20%	腐食率_50%	腐食率_80%
C1	0.030560	0.027504	0.024448	0.015280	0.006112
C5	0.024090	0.021681	0.019272	0.012045	0.004818

(7) 解析条件

•	解析ソフト	: Femap with NX Nastran ver9.3J
•	解析タイプ	: 非線形静解析(幾何学的非線形性を考慮した有限変位解析)
•	反復法	: ニュートンラプソン法
•	最大反復回数	:25 回
•	収束判定基準	:変位判定 1.0E-2

(8) 実用算定式を用いたケーブル張力による固有振動数の逆算

各解析ケースより算出したケーブル張力より,実用算定式を用いて固有振動数を逆算し,固有 振動数への影響を検討する。

3-4-7-3. ケーブルの局部腐食を考慮した解析結果

(1) 張力の算出結果

- ・完成後の温度変化後のケーブル張力は、完成時とほぼ同値となり、温度変化によるケーブル 張力への影響はかなり小さい。
- ・ケーブルの腐食率が80%の場合, 張力は最大で25%減少するが, 腐食率が50%では最大でも 8%程度の減少となり, 局部腐食によるケーブル張力への影響は小さい。
- ・腐食によるケーブル張力の変化率は、C1よりもC5の方が大きい。

表 3-23 張力の算出結果一覧

	完成時	完成時+;	温度変化				ケーブルの)局部腐食				
ᅯ슈	D+Ps	D+Ps+T(-20°C)		→C5腐	→C5腐食10%		賃食20%	→C5席	賃食50%	→C5席	賃食80%	
刈家 ブル			2)	3			1)	(!	5	6		
ケーブル C1 C2	1	張力比	張力差	張力比	張力差	張力比	張力差	張力比	張力差	張力比	張力差	
		2/1	2-1	3/1	3-1	4/1	4 -1	5/1	5-1	6/1	6-1	
01	0022.2	903	32.5	903	31.5	903	30.5	902	25.8	901	1.7	
01	9032.2	(1.00)	(0.27)	(1.00)	-(0.78)	(1.00)	-(1.74)	(1.00)	-(6.46)	(1.00)	-(20.57)	
C2	117246	117	34.7	117	38.7	117	43.7	117	69.0	11846.3		
	11/34.0	(1.00)	(0.15)	(1.00)	(4.11)	(1.00)	(9.14)	(1.00)	(34.43)	(1.01)	(111.73)	
02	10764.4	10764.5		10776.3		107	90.9	108	64.1	11087.3		
03	10704.4	(1.00)	(0.06)	(1.00)	(11.90)	(1.00)	(26.47)	(1.01)	(99.61)	(1.03)	(322.89)	
C4	0692.0	9682.8		9707.0		9736.7		9885.3		10339.3		
04	9082.9	(1.00)	-(0.01)	(1.00)	(24.19)	(1.01)	(53.80)	(1.02)	(202.47)	(1.07)	(656.44)	
05	9440.0	844	0.9	8364.0		826	69.9	779	97.4	635	57.9	
03	8440.9	(1.00)	-(0.05)	(0.99)	-(76.93)	(0.98)	-(171.05)	(0.92)	-(643.55)	(0.75)	-(2083.02)	
66	7027 2	702	27.2	705	53.9	708	36.5	725	50.3	7750.0		
00	1021.2	(1.00)	-(0.07)	(1.00)	(26.66)	(1.01)	(59.29)	(1.03)	(223.07)	(1.10)	(722.81)	
07	6764.2	676	64.3	677	78.6	679	96.1	688	33.9	7151.6		
07	0704.3	(1.00)	-(0.02)	(1.00)	(14.30)	(1.00)	(31.79)	(1.02)	(119.60)	(1.06)	(387.30)	

				ケーブルの	D局部腐食				
よる	→C1盾	葛食10%	→C1席	賃食20%	→C1盾	氰食50%	→C1腐食80%		
対象 ケーブル	($\overline{\mathcal{D}}$		3	(9	(10	
ケーブル C1 C2	張力比	張力差	張力比	張力差	張力比	張力差	張力比	張力差	
	⁄∕1	7-1	8/1	8-1	9/1	9-1	10/1	10-1	
C1 -	8957.3		886	6.0	84	11.7	699	99.0	
01	(0.99)	-(74.93)	(0.98)	-(166.25)	(0.93)	-(620.56)	(0.77)	-(2033.24)	
0.2	8957.3 (0.99) -(74.9 11755.9 (1.00) (21.34 10774.9		11755.9 11782.0		119	12.2	123	20.4	
02	(1.00)	(21.34)	(1.00)	(47.40)	(1.02)	(177.63)	(1.05)	(585.85)	
02	107	74.9	107	87.6	108	51.3	11050.6		
03	(1.00)	(10.44)	(1.00)	(23.19)	(1.01) (86.87)		(1.03) (286.17)		
C4	968	35.6	968	39.0	9705.7		975	58.2	
04	(1.00)	(2.75)	(1.00)	(6.11)	(1.00)	(22.88)	(1.01)	(75.31)	
05	843	39.6	843	38.0	843	30.1	840	05.1	
05	(1.00)	-(1.31)	(1.00)	-(2.90)	(1.00)	-(10.86)	(1.00)	-(35.83)	
6	702	25.2	702	22.8	70	10.6	6972.2		
00	(1.00)	-(2.00)	(1.00)	-(4.44)	(1.00)	-(16.63)	(0.99) -(55.05)		
07	676	<u>33.1</u>	676	61.6	675	54.1	673	30.5	
07	(1.00)	-(1.22)	(1.00)	-(2.71)	(1.00)	-(10.15)	(1.00)	-(33.73)	

(2) ケーブルの固有振動数の算出結果

- ・張力の算出結果と同様に、完成後の温度変化後のケーブルの固有振動数は、完成時とほぼ同値となり、温度変化によるケーブルの固有振動数への影響はかなり小さい。
- ・ 張力の算出結果と同様に、ケーブルの腐食率が 80%に及ぶ場合、固有振動数は最大で 12%減 少するが、腐食率が 50%では最大でも 3%程度の減少となり、局部腐食によるケーブルの固 有振動数への影響は小さい。
- ・ 腐食によるケーブルの固有振動数の変化率は、C5 よりも C1 の方が大きい。

腐食率と固有振動数の関係①

図 3-69 C1 ケーブルの腐食率と固有振動数の関係

表 3-24 固有振動数の算出結果

4-40										振動数	如理論値	fn (Hz)									
クーフル			(])死荷重	時				23	花荷重時	+温度	変化(-20)°C)				③C5ク	ーブル1	0%腐食		
宙方	1次	2次	3次	4次	5次	6次	7次	1次	2次	3次	4次	5次	6次	7次	1次	2次	3次	4次	5次	6次	7次
<i>C</i> 1	0.10	0.00	1.10	1.00	0.17	0.01	0.15	0.49	0.98	1.47	1.96	2.45	2.94	3.43	0.49	0.98	1.47	1.96	2.45	2.94	3.43
CI	0.49	0.98	1.47	1.96	2.45	2.94	3.43	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
<u></u>	0.00	1.00	1.00	0.05	0.00	0.00	4.05	0.66	1.33	1.99	2.65	3.32	3.98	4.65	0.66	1.33	1.99	2.65	3.32	3.98	4.65
C2	0.66	1.33	1.99	2.65	3.32	3.98	4.65	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
C2	0.76	1 5 9	9.90	2.05	9.01	4 57	= 22	0.76	1.52	2.28	3.05	3.81	4.57	5.33	0.76	1.52	2.28	3.05	3.81	4.57	5.33
C3	0.70	1.52	2.20	5.05	5.61	4.07	0.00	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
C4	0.89	1.77	2.66	3 55	4.44	5 32	6.21	0.89	1.77	2.66	3.55	4.44	5.32	6.21	0.89	1.77	2.66	3.55	4.44	5.32	6.21
04	0.05	1.11	2.00	0.00	1.11	0.02	0.21	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
C5	1.08	2 15	3 23	4 30	5.38	6 45	7 53	1.08	2.15	3.23	4.30	5.38	6.45	7.53	1.08	2.15	3.23	4.30	5.38	6.45	7.53
00	1.00	2.10	0.20	1.00	0.00	0.10	1.00	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
C6	1.44	2.88	4.31	5.75	7.19	8.63	10.06	1.44	2.88	4.31	5.75	7.19	8.63	10.06	1.44	2.88	4.31	5.75	7.19	8.63	10.06
								(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
C7	2.02	4.05	6.07	8.09	10.12	12.14	14.16	2.02	4.05	6.07	8.09	10.12	12.14	14.16	2.02	4.05	6.07	8.09	10.12	12.14	14.16
								(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
ケーブル			Oasi		001 177 A					振動委	て埋論値	in (Hz)					@ a= /		0 0 15 A		
番号	1 1/4	0.14	4)C57	ーフル2	0%腐食	014	7.14	1 1/4	0.24	⑤C5グ	ーフル5	0%腐食	c>4-	714	1 1/4	0.24	6C57		0%腐食	0.24-	7.×L-
	1次	24	3次	4次	5次	6次	7夜	1次	210	3次	4次	5次	6次	115	100	210	3伙	4次	5次	6次	115
C1	0.49	0.98	1.47	1.96	2.45	2.94	3.43	0.49	0.98	1.47	1.96	2.45	2.94	3.43	0.49	0.98	1.4(1.96	2.45	2.94	3.42
	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)
C2	0.66	1.33	1.99	2.66	3.32	3.98	4.65	0.66	1.33	(1.00)	2.66	3.32	3.98	4.65	(1.00)	1.33	(1.00)	2.66	3.32	3.99	4.65
	(1.00)	(1.00)	(1.00)	2.05	2 01	(1.00)	(1.00)	(1.00)	(1.00)	0.00	2.05	2 01	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	2.06	2 00	(1.00)	(1.00)
C3	(1.00)	1.02	(1.00)	3.00 (1.00)	3.81 (1.00)	4.07	0.33 (1.00)	(1.00)	(1.00)	(1.00)	3.00 (1.00)	3.81 (1.00)	4.07	0.34 (1.00)	(1.00)	1.03	(1.00)	3.00 (1.00)	3.82 (1.00)	4.39	0.30 (1.00)
	0.89	(1.00)	2.66	3.55	(1.00)	5.33	6.22	0.89	1.78	2.67	3.56	(1.00)	5.34	6.23	0.90	(1.00)	2.69	3.58	(1.00)	5.38	6.27
C4	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.01)	(1.01)	(1.01)	(1.01)	(1.01)	(1.01)	(1.01)
	1.07	2 14	3.21	4 28	5 35	6.42	7 50	1.06	2.13	3 19	4.26	5 32	6.39	7 45	1.03	2.07	3 10	4 14	5.17	6.21	7 24
C5	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(0.99)	(0.99)	(0.99)	(0.99)	(0.99)	(0.99)	(0.99	(0.96)	(0.96)	(0.96)	(0.96)	(0.96)	(0.96)	(0.96
	1.44	2.88	4.32	5.76	7.20	8.64	10.08	1.44	2.89	4.33	5.77	7.22	8.66	10.10	1.46	2.92	4.38	5.84	7.30	8.76	10.22
C6	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.02)	(1.02)	(1.02)	(1.02)	(1.02)	(1.02)	(1.02)
07	2.03	4.05	6.08	8.10	10.13	12.15	14.18	2.03	4.06	6.08	8.11	10.14	12.17	14.20	2.04	4.08	6.12	8.16	10.20	12.24	14.28
Cr	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.00)	(1.01)	(1.01)	(1.01)	(1.01)	(1.01)	(1.01)	(1.01)
6 70										振動券	女理論値	fn (Hz)									
ケーブル 悉号		-	⑦C1ク	ーブル1	0%腐食	-	-			振動数 ⑧C1ケ	な理論値 ーブル2	fn (Hz) 0%腐食	-				⑨C1ク	ーブル5	0%腐食		
ケーブル 番号	1次	2次	⑦C1ケ 3次	ーブル1 4次	0%腐食 5次	6次	7次	1次	2次	振動数 ⑧C1ケ 3次	型論値	fn (Hz) 0%腐食 5次	6次	7次	1次	2次	⑨C15 3次	ーブル5 4次	0%腐食 5次	6次	7次
ケーブル 番号	1次 0.49	2次 0.98	⑦C1ク 3次 1.46	ーブル1 4次 1.95	0%腐食 5次 2.44	6次 2.93	7次 3.41	1次 0.49	2次 0.97	振動数 ⑧C1ケ 3次 1.46	な理論値 ーブル2 4次 1.94	fn (Hz) 0%腐食 5次 2.43	6次 2.91	7次 3.40	1次 0.47	2次 0.95	⑨C15 3次 1.42	⁻ ーブル5 4次 1.89	0%腐食 5次 2.36	6次 2.84	7次 3.31
ケーブル 番号 C1	1次 0.49 (1.00)	2次 0.98 (1.00)	⑦C15 3次 1.46 (1.00)	ーブル1 4次 1.95 (1.00)	0%腐食 5次 2.44 (1.00)	6次 2.93 (1.00)	7次 3.41 (1.00)	1次 0.49 (0.99)	2次 0.97 (0.99)	振動数 ⑧C1ケ 3次 1.46 (0.99)	y理論値 ーブル2 4次 1.94 (0.99)	fn (Hz) 0%腐食 5次 2.43 (0.99)	6次 2.91 (0.99)	7次 3.40 (0.99)	1次 0.47 (0.97)	2次 0.95 (0.97)	⑨C15 3次 1.42 (0.97)	ーブル5 4次 1.89 (0.97)	0%腐食 5次 2.36 (0.97)	6次 2.84 (0.97)	7次 3.31 (0.97)
ケーブル 番号 C1 C2	1次 0.49 (1.00) 0.66	2次 0.98 (1.00) 1.33	⑦C1ク 3次 1.46 (1.00) 1.99	ーブル1 4次 1.95 (1.00) 2.66	0%腐食 5次 2.44 (1.00) 3.32	6次 2.93 (1.00) 3.99	7次 3.41 (1.00) 4.65	1次 0.49 (0.99) 0.67	2次 0.97 (0.99) 1.33	振動数 ⑧C1ケ 3次 1.46 (0.99) 2.00	y理論値 ーブル2 4次 1.94 (0.99) 2.66	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33	6次 2.91 (0.99) 3.99	7次 3.40 (0.99) 4.66	1次 0.47 (0.97) 0.67	2次 0.95 (0.97) 1.34	⑨C1岁 3次 1.42 (0.97) 2.01	~一ブル5 4次 1.89 (0.97) 2.67	0%腐食 5次 2.36 (0.97) 3.34	6次 2.84 (0.97) 4.01	7次 3.31 (0.97) 4.68
ケーブル 番号 C1 C2	1次 0.49 (1.00) 0.66 (1.00)	2次 0.98 (1.00) 1.33 (1.00)	⑦C1ク 3次 1.46 (1.00) 1.99 (1.00)	ーブル1 4次 1.95 (1.00) 2.66 (1.00)	0%腐食 5次 2.44 (1.00) 3.32 (1.00)	6次 2.93 (1.00) 3.99 (1.00)	7次 3.41 (1.00) 4.65 (1.00)	1次 0.49 (0.99) 0.67 (1.00)	2次 0.97 (0.99) 1.33 (1.00)	振動数 ⑧C1ケ 3次 1.46 (0.99) 2.00 (1.00)		fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00)	6次 2.91 (0.99) 3.99 (1.00)	7次 3.40 (0.99) 4.66 (1.00)	1次 0.47 (0.97) 0.67 (1.01)	2次 0.95 (0.97) 1.34 (1.01)	⑨C1グ 3次 1.42 (0.97) 2.01 (1.01)	ーブル5 4次 1.89 (0.97) 2.67 (1.01)	0%腐食 5次 2.36 (0.97) 3.34 (1.01)	6次 2.84 (0.97) 4.01 (1.01)	7次 3.31 (0.97) 4.68 (1.01)
ケーブル 番号 C1 C2 C3	1次 0.49 (1.00) 0.66 (1.00) 0.76	2次 0.98 (1.00) 1.33 (1.00) 1.52	⑦C1ケ 3次 1.46 (1.00) 1.99 (1.00) 2.29	ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81	6次 2.93 (1.00) 3.99 (1.00) 4.57	7次 3.41 (1.00) 4.65 (1.00) 5.33	1次 0.49 (0.99) 0.67 (1.00) 0.76	2次 0.97 (0.99) 1.33 (1.00) 1.52	振動数 ⑧C1ケ 3次 1.46 (0.99) 2.00 (1.00) 2.29		fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81	6次 2.91 (0.99) 3.99 (1.00) 4.57	7次 3.40 (0.99) 4.66 (1.00) 5.34	1次 0.47 (0.97) 0.67 (1.01) 0.76	2次 0.95 (0.97) 1.34 (1.01) 1.53	⑨C1方 3次 1.42 (0.97) 2.01 (1.01) 2.29	ーブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82	6次 2.84 (0.97) 4.01 (1.01) 4.59	7次 3.31 (0.97) 4.68 (1.01) 5.35
ケーブル 番号 C1 C2 C3	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00)	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00)	⑦C1均 3次 1.46 (1.00) 1.99 (1.00) 2.29 (1.00)	ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00)	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00)	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00)	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00)	1次 0.49 (0.99) 0.67 (1.00) 0.76 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00)	振動数 ⑧C1ケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00)	文理論値 ーブル2 4次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00)	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00)	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00)	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00)	⑨C15 3次 1.42 (0.97) 2.01 (1.01) 2.29 (1.00)	ーブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 4.59 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00)
ケーブル 番号 C1 C2 C3 C4	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 1.77 (1.20)	⑦C1/2 3次 1.46 (1.00) 1.99 (1.00) 2.29 (1.00) 2.66 (1.20)	ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 3.55	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 4.44 (1.22)	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 5.32	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 6.21	1次 0.49 (0.99) 0.67 (1.00) 0.76 (1.00) 0.89	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 1.77 (1.20)	振動業 ⑧C1ケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.66 (1.22)	y理論値 ーブル2 4次 (0.99) 2.66 (1.00) 3.05 (1.00) 3.55	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.20)	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 5.32	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 6.21	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 0.89	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 1.78 (1.02)	⑨C1/5 3次 1.42 (0.97) 2.01 (1.01) 2.29 (1.00) 2.66 (1.00)	ーブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 3.55	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44	6次 2.84 (0.97) 4.01 (1.01) 4.59 (1.00) 5.33	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22
ケーブル 番号 C1 C2 C3 C4	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00)	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 1.77 (1.00) 2.15	⑦C1/2 3次 1.46 (1.00) 1.99 (1.00) 2.29 (1.00) 2.66 (1.00)	ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.20	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 4.44 (1.00) 5.29	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 6.21 (1.00)	1次 0.49 0.67 (1.00) 0.76 (1.00) 0.89 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 1.77 (1.00) 2.15	振動数 ⑧C1ケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.66 (1.00) 2.22	y理論値 -ブル2 4次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.20	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.00) 5.29	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 6.21 (1.00) 7.52	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 0.89 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 1.78 (1.00)	③C15 3次 1.42 (0.97) 2.01 (1.01) 2.29 (1.00) 2.66 (1.00)	ーブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 3.55 (1.00) 4.20	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44 (1.00) 5.27	6次 2.84 (0.97) 4.01 (1.01) 4.59 (1.00) 5.33 (1.00) 6.45	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52
ケーブル 番号 C1 C2 C3 C4 C5	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 1.77 (1.00) 2.15 (1.00)	⑦C1/ 3次 1.46 (1.00) 1.99 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00)	ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00)	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 6.21 (1.00) 7.53 (1.00)	1次 0.49 (0.99) 0.67 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 1.77 (1.00) 2.15 (1.00)	振動数 ⑧C1ケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00)	y理論値 -ブル2 4次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00)	h (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 6.21 (1.00) 7.53	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.02)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 1.78 (1.00) 2.15 (1.00)	③C1/2 3次 1.42 (0.97) 2.01 (1.01) 2.29 (1.00) 2.66 (1.00) 3.22 (1.00)	ーブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 3.55 (1.00) 4.30 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44 (1.00) 5.37 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 4.59 (1.00) 5.33 (1.00) 6.45 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00)	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 1.77 (1.00) 2.15 (1.00) 2.87	⑦C1/ 3次 1.46 (1.00) 1.99 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31	ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06	1次 0.49 (0.99) 0.67 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 1.77 (1.00) 2.15 (1.00) 2.87	振動数 (⑧C1ケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31		h (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 6.21 (1.00) 7.53 (1.00)	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 1.78 (1.00) 2.15 (1.00) 2.87	(9)C1/2 3次 1.42 (0.97) 2.01 (1.01) 2.29 (1.00) 2.66 (1.00) 3.22 (1.00) 4.31	ーブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 3.55 (1.00) 4.30 (1.00) 5.74	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44 (1.00) 5.37 (1.00) 7.18	6次 2.84 (0.97) 4.01 (1.01) 4.59 (1.00) 5.33 (1.00) 6.45 (1.00) 8.62	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 10.05
ケーブル 番号 C1 C2 C3 C4 C5 C6	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00)	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 2.87 (1.00)	⑦C1夕 3次 1.46 (1.00) 1.99 (1.00) 2.29 (1.00) 2.660 (1.00) 3.23 (1.00) 4.31 (1.00)	ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00)	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19 (1.00)	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00)	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00)	1次 0.49 (0.99) 0.67 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00)	振動變 ⑧C1ケ 3次 1.46 (0.99) 2.09 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00)	文理論値 ーブル2 4次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00)	m (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 5.38 (1.00) 7.19 (1.00)	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00)	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00) 1.44 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 2.15 (1.00) 2.15 (1.00) 2.87 (1.00)	(9)C1/2 3% 1.42 (0.97) 2.01 (1.01) 2.29 (1.00) 2.66 (1.00) 3.22 (1.00) 4.31 (1.00)	ーブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 3.55 (1.00) 4.30 (1.00) 5.74 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44 (1.00) 5.37 (1.00) 7.18 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 4.59 (1.00) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 10.05 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5 C6	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05	⑦C1夕 3次 1.46 (1.00) 1.99 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07	ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19 (1.00) 10.12	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16	1次 0.49 (0.99) 0.67 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05	振動變 ⑧C1ケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07	文理論値 ーブル2 4次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09	m (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19 (1.00) 10.12	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 2.15 (1.00) 2.87 (1.00) 4.04	③C1/2 3次 1.42 (0.97) 2.01 (1.01) 2.29 (1.00) 2.66 (1.00) 3.22 (1.00) 4.31 (1.00) 4.31 (1.00) 6.07	ーブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 3.55 (1.00) 4.30 (1.00) 5.74 (1.00) 8.09	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44 (1.00) 5.37 (1.00) 7.18 (1.00) 7.11	6次 2.84 (0.97) 4.01 (1.01) 4.59 (1.00) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00) 12.13	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 10.05 (1.00) 14.15
ケーブル 番号 C1 C2 C3 C4 C5 C6 C7	1½ 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	⑦C1/2 3次 1.46 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00)	ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00)	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19 (1.00) 10.12 (1.00)	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.49 0.67 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	振動變 ⑧C1ケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00)	x理論値 ーブル2 4次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00)	m (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19 (1.00) 10.12 (1.00)	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 2.15 (1.00) 2.87 (1.00) 4.04 (1.00)	③C1/2 3次 1.42 (0.97) 2.01 (1.01) 2.29 (1.00) 2.66 (1.00) 3.22 (1.00) 4.31 (1.00) 6.07 (1.00)	$-\mathcal{I}\mathcal{N}_{5}$ 4 \times 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 3.55 (1.00) 4.30 (1.00) 5.74 (1.00) 8.09 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44 (1.00) 5.37 (1.00) 7.18 (1.00) 10.11 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00) 12.13 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 10.05 (1.00) 14.15 (1.00)
ケーブル 番号 C1 C2 C3 C3 C4 C5 C6 C7	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	⑦C1/2 3次 1.46 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00) 振動素	 -ブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00) \$24a 	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19 (1.00) 10.12 (1.00) fn (Hz)	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.49 0.67 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	振動變 ⑧C1ケ 3次 (0.99) 2.00 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00)	な理論値 -ブル2 4次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00)	m (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19 (1.00) 10.12 (1.00)	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 2.15 (1.00) 2.87 (1.00) 4.04 (1.00)	(9)C1/2 3% 1.42 (0.97) 2.01 (1.00) 2.66 (1.00) 3.22 (1.00) 3.22 (1.00) 4.31 (1.00) 6.07 (1.00)	$-\mathcal{I}\mathcal{N}_{5}$ 4χ 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 3.55 (1.00) 4.30 (1.00) 5.74 (1.00) 8.09 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44 (1.00) 5.37 (1.00) 7.18 (1.00) 10.11 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00) 12.13 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 10.05 (1.00) 14.15 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5 C6 C7 ケーブル	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	⑦C1/ 3次 1.46 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00) 振動素 (0)C1/	 ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00) ½理論値 ーブル8 	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19 (1.00) 10.12 (1.00) 10.12 (1.00) 0%腐食	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.49 (0.99) 0.67 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	振動變 ⑧C1ケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00)	な理論値 -ブル2 4次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00)	m (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19 (1.00) 10.12 (1.00)	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 7.53 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 1.78 (1.00) 2.15 (1.00) 2.87 (1.00) 4.04 (1.00)	(9)C1/2 3% 1.42 (0.97) 2.01 (1.01) 2.29 (1.00) 2.66 (1.00) 3.22 (1.00) 3.22 (1.00) 4.31 (1.00) 6.07 (1.00)	$-\mathcal{I}\lambda 5$ 4 $\&$ 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 3.55 (1.00) 4.30 (1.00) 5.74 (1.00) 8.09 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44 (1.00) 5.37 (1.00) 7.18 (1.00) 10.11 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00) 12.13 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 10.05 (1.00) 14.15 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5 C6 C7 ケーブル 番号	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	⑦C1/ 3次 1.46 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00) 振動类 3次	 -ブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00) ½ ½ 1.00) 4.30 	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19 (1.00) 7.19 (1.00) 7.19 (1.00) 6,5%	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.49 0.67 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	振動数 (8)C1ケ (0.99) 2.00 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00)	文理論値 ーブル2 4次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00)	m (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19 (1.00) 10.12 (1.00)	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 2.15 (1.00) 2.87 (1.00) 4.04 (1.00)	(9)C1/2 3% 1.42 (0.97) 2.01 (1.01) 2.29 (1.00) 2.66 (1.00) 3.22 (1.00) 4.31 (1.00) 6.07 (1.00)	$-\mathcal{I}\lambda 5$ 4χ 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 3.55 (1.00) 4.30 (1.00) 5.74 (1.00) 8.09 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44 (1.00) 5.37 (1.00) 7.18 (1.00) 10.11 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 5.33 (1.00) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00) 12.13 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 7.52 (1.00) 10.05 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5 C6 C7 ケーブル 番号	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 1.77 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	⑦C1/ 3次 1.46 (1.00) 1.99 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00) 振動表 ⑩C1/ 3次 1.30	 ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00) 8.09 (1.00) 8.09 (1.00) 8.09 (1.00) 4.00 2.70 4.00 4.00 1.73 	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19 (1.00) 10.12 (1.00) fn (Hz) 0%腐食 5次 5次 2.16	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00) 8.62 (1.00)	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.49 (0.99) 0.67 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 1.77 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	振動響 ⑧C1ケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00)	な理論値 -ブル2 4次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00)	fin (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19 (1.00) 10.12 (1.00)	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 6.21 (1.00) 7.53 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 2.15 (1.00) 2.87 (1.00) 4.04 (1.00)	(9)C1/5 (3)K (1,42) (0,97) (1,00) 2.66 (1,00) 3.22 (1,00) 4.31 (1,00) 6.07 (1,00)	ーブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 3.55 (1.00) 4.30 (1.00) 5.74 (1.00) 8.09 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44 (1.00) 5.37 (1.00) 7.18 (1.00) 10.11 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 5.33 (1.00) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00) 12.13 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 10.05 (1.00) 14.15 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5 C6 C7 ケーブル 番号 C1	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 1.44 (1.00) 1.44 (1.00)	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 2.88 (1.00) 2.	⑦C14 3次 1.46 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00) 振動場 個のC14 3次 1.30 (0.88)	 ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00) (1.00)<	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 4.44 (1.00) 5.38 (1.00) 10.12 (1.00) 10.12 (1.00) 10.12 (1.00) 0%腐食 2.16 (0.88)	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 6.45 (1.00) 8.62 (1.00) 8.62 (1.00) 12.14 (1.00) 6.45 (1.00) 8.62 (1.00)8 (1.00)8.62 (1.00)8.62 (1.00)8 (1.00)8.62 (1.00)8.62 (1.00)8.	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.49 0.67 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	振動参 ⑧C1ケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.26 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00)	(理論値 -ブル2 4次 (0.99) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00)	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.00) 5.38 (1.00) 7.19 (1.00) 10.12 (1.00)	6次 2.91 (0.99) 3.99 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 2.15 (1.00) 2.87 (1.00) 4.04 (1.00)	(9)C1/2 3)% 1.42 (0.97) 2.01 (1.00) 2.29 (1.00) 2.66 (1.00) 3.22 (1.00) 4.31 (1.00) 6.07 (1.00)	ーブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 3.55 (1.00) 4.30 (1.00) 5.74 (1.00) 8.09 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44 (1.00) 5.37 (1.00) 7.18 (1.00) 10.11 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00) 12.13 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 10.05 (1.00) 10.05 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5 C6 C7 ケーブル 番号 C1	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 1.44 (1.00) 1.44 (1.00) 1.44 (1.00) 1.44 (1.00) 0.68	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.15 (1.00) 2.1	⑦C1/5 3次 1.46 (1.00) 2.29 (1.00) 2.66 (1.00) 4.31 (1.00) 6.07 (1.00) 振動妻 (1.00) 振動妻 3次 3次 (1.00) 6.07 (1.00) (1.00) 6.07 (1.00) (1.0) (1.00)	 ーブル1 4次 1.95 (1.00) 3.05 (1.00) 3.05 (1.00) 3.05 (1.00) 5.75 (1.00) (1.00) 5.75 (1.00) (1.00) 5.75 (1.00) (1.00)	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 7.19 (1.00) 7.19 (1.00) 7.19 (1.00) 7.19 (1.00) 7.19 (1.00) 6.5.38 (1.00) 7.19 (1.00) 7.10 7.10 7.20 7.20 7.20 7.20 7.20 7.20 7.20 7.2	6次 2.93 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00) 6次 2.59 (0.88) 4.08	7次 3.41 (1.00) 5.33 (1.00) 6.21 (1.00) 10.06 (1.00) 14.16 (1.00) 7次 3.02 (0.88)	1次 0.49 0.67 (1.00) 0.76 (1.00) 0.76 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	振動業 ⑧Clケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.66 (1.00) 4.31 (1.00) 4.31 (1.00) 6.07 (1.00)	ス理論値 ーブル24次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00) 3.05 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00)	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 4.44 (1.00) 4.44 (1.00) 7.19 (1.00) 10.12 (1.00)	6次 2.91 (0.99) 3.99 (1.00) 5.32 (1.00) 5.32 (1.00) 8.62 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 6.21 (1.00) 6.21 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.47 (0.97) (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 1.78 (1.00) 2.87 (1.00) 2.87 (1.00) 4.04 (1.00)	(9)C1/2 3 次 1.42 (0.97) 2.01 (1.01) 2.29 (1.00) 3.22 (1.00) 3.22 (1.00) 4.31 (1.00) (1.00) (1.00)	- ブル5 4改 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 3.55 (1.00) 5.74 (1.00) 5.74 (1.00) 8.09 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 4.44 (1.00) 7.18 (1.00) 7.18 (1.00) 10.11 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 5.33 (1.00) 5.33 (1.00) 8.625 (1.00) 8.625 (1.00) 12.13 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 10.05 (1.00) 14.15 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5 C6 C7 ケーブル 番号 C1 C2	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.15 2.15 (1.00) 2.15 2.15 (1.00) 2.15 2.15 (1.00) 2.15 2.15 (1.00) 2.15 2.15 (1.00) 2.15 2.15 (1.00) 2.15 2.15 (1.00) 2.15 2.15 (1.00)	⑦C1/5 3次 1.46 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00) 4.31 (1.	 ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 3.05 (1.00) 5.75 (1.00) 8.09 (1.00) 8.09 (1.00) 8.09 4.30 (1.00) 7.48 4.72 (1.02) 2.72 (1.02) 	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 4.44 (1.00) 7.19 (1.00) 7.10 (1.0	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.57 (1.00)8.57	7次 3.41 (1.00) 4.65 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00) 7次 3.02 (0.88) 4.76 (1.02)	1次 0.49 0.67 (1.00) 0.76 (1.00) 0.76 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 1.77 (1.00) 2.87 (1.00) 2.87 (1.00) 4.05 (1.00)	振動業 ⑧Clケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.60 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00)	(理論値 -ブル2の) 4次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00)	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.00) 7.19 (1.00) 7.19 (1.00)	6次 2.91 (0.99) (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.47 (0.97) (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 2.15 (1.00) 2.87 (1.00) 4.04 (1.00)	(9)C14/3 (0,97) 3.2.01 (1.00) 2.66 (1.00) 2.66 (1.00) 3.22 (1.00) 4.31 (1.00) 6.07 (1.00)	- ブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 4.30 (1.00) 5.74 (1.00) 8.09 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44 (1.00) 7.18 (1.00) 7.18 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00) 12.13 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 10.05 (1.00) 14.15 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5 C6 C7 ケーブル 番号 C1 C2 C2	 1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 1.08 (1.00) 1.08 (1.00) 2.02 (1.00) 2.02 (1.00) 1.4% 0.43 (0.88) 0.68 (1.02) 0.77 	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 2.97 (1.00) 2.9	⑦C14 3次 1.46 (1.00) 2.29 (1.00) 2.26 (1.00) 3.23 (1.00) 4.31 (1.00) 4.31 (1.00) 6.07 (1.00) 据動數 個C17 3次 1.30 (0.88) 2.04 (1.02) 2.24	-ブル1 4次 1.95 (1.00) 2.66 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00) 5.75 (1.00) 8.09 (1.00) 5.75 (1.00) 8.08 (1.00) 5.75 (1.00) 8.09 (1.00) 5.75 (1	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 4.44 (1.00) 7.19 (1.00) 7.10 (1.0	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00) 8.62 (1.02) 8.62 (1.02) 8.63 (1.02) 8	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00) 7次 3.02 (0.88) 4.76 (1.02) 5.40	1次 0.49 (0.99) 0.67 (1.00) 0.76 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	振動業 ⑧C1ケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00)	(理論値 -ブル2の) 4次 (0.99) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 4.30 (1.00) 5.75 (1.00) 8.09 (1.00)	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 5.38 (1.00) 7.19 (1.00) 10.12 (1.00)	6次 2.91 (0.99) 3.99 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 2.15 (1.00) 2.87 (1.00) 2.87 (1.00)	(9)C14/3 (0,97) 2.01 (1.00) 2.29 (1.00) 2.66 (1.00) 3.22 (1.00) 4.31 (1.00) 6.07 (1.00)	- ブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 4.30 (1.00) 5.74 (1.00) 8.09 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44 (1.00) 7.18 (1.00) 7.18 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00) 12.13 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 10.05 (1.00) 14.15 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5 C6 C7 ケーブル 番号 C1 C2 C3	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 1.08 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00) 1 水 0.43 (0.88) 0.68 (1.02) 0.77 (1.01)	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.85 (1.00) 2.85 (1.00) 2.85 (1.00) 2.15 (1.00) 2.5 (1.00) 2	(7)C1/3 3次 1.46 (1.00) 2.29 (1.00) 2.26 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 2.04 (1.02) 2.04 (1.02) 2.04 (1.02) 3.23 2.04 (1.02) 2.04 (1.00) 3.23 (1.00) 3.33 (1.3	ーブル1 4次 1.95 (1.00) 3.05 (1.00) 3.05 (1.00) 4.30 (1.00) 4.30 (1.00) 4.30 (1.00) 型:品値 4次 1.73 (0.88) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.72 (1.02) 2.75 (1.02)	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 5.38 (1.00) 5.38 (1.00) 5.38 (1.00) 5.38 (1.00) 5.38 (1.00) 5.38 (1.00) 0%腐食 5次 5次 5次 (1.00) 3.40 (1.00) 3.40 (1.00) 3.40 (1.00) 3.40 (1.00) 3.40 (1.00) 5.50 (1.00)	6次 2.93 (1.00) 3.99 (1.00) 5.32 (1.00) 6.45 (1.00) 7.45 7.45 (1.00) 7.45 (1.4	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 7.55 (1.00) 7.5	1次 0.49 (0.99) 0.67 (1.00) 0.76 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 2.87 (1.00)	振動業第 ⑧C1 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.29 (1.00) 3.23 (1.00) (1	ス理論値 ーブル24次 1.94 (0.99) 2.666 (1.00) 3.05 (1.00) 4.30 (1.00) 4.30 (1.00) 9.575 (1.00) 4.30 (1.00)	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 5.38 (1.00) 7.19 (1.00) 5.38 (1.00)	6次 2.91 (0.99) 3.399 (1.00) 4.57 (1.00) 6.45 (1.00) 8.62 (1.00) 8.82 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 7.53 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 2.15 (1.00) 2.87 (1.00) 2.87 (1.00)	(9)C1/2 3 % 1.42 (0.97) 2.01 (1.00) 2.29 (1.00) 3.22 (1.00) 3.22 (1.00) 4.31 (1.00) (1.00)	-ブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 4.30 (1.00) 4.30 (1.00) 5.74 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.00) 3.82 (1.00) 5.37 (1.00) 5.37 (1.00) 7.18 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00) 12.13 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 7.52 (1.00) 10.05 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5 C6 C7 ケーブル 番号 C1 C2 C2 C3 C3	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 1.08 (1.00) 1.08 (1.00) 1.08 (1.00) 1.44 (1.00) 1.44 (1.00) 1.08 (1.00) 1.08 (1.00) 0.76 (1.01) 0.68 (1.02) 0.77 (1.01) 0.89	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.15 (1.00) 2.5 (1.00) 2.	⑦C1/5 3次 1.46 (1.00) 2.29 (1.00) 2.29 (1.00) 3.23 (1.00) 4.31 (1.00) 振動表 (0.C1/5 1.30 (0.88) 2.04 (1.02) 2.31 (1.01) 2.67	ーブル1 4次 1.95 (1.00) 3.05 (1.00) 3.05 (1.00) 5.75 (1.00) 5.75 (1.00) 5.75 (1.00) 位理論値 4.30 (1.00) 位理論値 4.37 (1.02) 3.09 (1.02) 3.09 (1.02) 3.09 (1.02) 3.09 (1.02) 3.09 (1.02) 3.09 (1.02) 3.09 (1.02) 3.09 (1.00) 5.75 (1.0)	0%腐食 5次 2.44 (1.00) 3.81 (1.00) 5.38 (1.0	6次 2.93 (1.00) 4.57 (1.00) 4.57 (1.00) 6.45 (1.00) 8.62 (1.00) 8.63 (1.00) 8.6	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 5.33 (1.00) 10.06 (1.00) 10.06 (1.00) 14.16 (1.00) (1.0	1次 0.49 0.67 (1.00) 0.76 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	振動影 ⑧C1ク 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 3.23 (1.00) 4.31 (1.00) 4.31 (1.00)	(理論値 ーブル24次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00) 3.05 (1.00) 5.75 (1.00) 5.75 (1.00)	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 7.19 (1.00) 7.19 (1.00) 10.12 (1.00)	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 5.34 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.47 (0.97) (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.95 (0.97) 1.34 (1.00) 1.78 (1.00) 2.15 (1.00) 2.87 (1.00) 4.04 (1.00)	(9)C1/2 3 次 1.42 (0.97) 2.01 (1.01) 2.29 (1.00) 2.66 (1.00) 3.22 (1.00) 4.31 (1.00) 6.07 (1.00)	- ブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 4.30 (1.00) 5.74 (1.00) 9.09 8.09 8.09	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 7.18 (1.00) 7.18 (1.00) 10.11 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 10.05 (1.00) 14.15 (1.00)
	 1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00) 1.44 (1.00) 2.02 (1.00) 1.44 (0.88) 0.68 (1.02) 0.77 (1.01) 0.89 (1.00) 	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.15 (1.00) 2.1	⑦C1/5 3次 1.46 (1.00) 2.29 (1.00) 2.29 (1.00) 2.23 (1.00) 4.31 (1.00) 6.07 (1.00) 振動嬰 (0.1/5 3次 1.30 (0.88) 2.04 (1.02) 2.31 (1.01) 2.67 (1.00)	 ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 3.05 (1.00) 5.75 (1.00) 8.09 (1.00) 5.75 (1.00) 8.09 (1.00) 5.75 (1.00) 8.09 (1.00) 5.75 (1.00) 8.09 (1.00) 8.09 (1.00) 5.75 (1.00) (1.00) (1.01) (1.02) 3.09 (1.02) (1.03) (1.04) 	0% 腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 7.19 (1.00) 7.10 (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.0	6次 2.93 (1.00) 4.57 (1.00) 5.32 (1.00) 8.62 (1.00) 8.62 (1.00) 12.14 (1.00) 6次 2.59 (0.88) 4.08 (1.02) 4.63 (1.01) 5.34 (1.00)	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 5.33 (1.00) 10.06 (1.00) 10.06 (1.00) 14.16 (1.00) 7次 3.02 (0.88) 4.76 (1.02) 5.40 (1.01) 6.23 (1.00)	1次 0.49 0.67 (1.00) 0.76 (1.00) 1.08 (1.00) 1.44 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	振動變 ⑧Clケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.23 (1.00) 4.31 (1.00) 6.07 (1.00)	(理論値 ーブル24次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00) 3.05 (1.00) 5.75 (1.00) 5.75 (1.00) 8.09 (1.00)	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.00) 7.19 (1.00) 10.12 (1.00)	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 8.62 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 6.21 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00) 1.44 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 1.78 (1.00) 2.87 (1.00) 2.87 (1.00)	(9)C1/2 3 次 1.42 (0.97) 2.01 (1.01) 2.29 (1.00) 2.66 (1.00) 3.22 (1.00) 4.31 (1.00) 6.07 (1.00)	- ブル5 4茨 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 3.55 (1.00) 4.30 (1.00) 5.74 (1.00) 8.09 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 7.18 (1.00) 7.18 (1.00) 10.11 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 4.59 (1.00) 5.33 (1.00) 8.62 (1.00) 12.13 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 10.05 (1.00) 14.15 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5 C6 C7 ケーブル 番号 C1 C2 C3 C4 C3 C4 C5	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.44 (1.00) 1.44 (1.00) 1.44 (1.00) 1.44 (1.00) 1.44 (1.00) 0.68 (1.02) 0.77 (1.01) 0.88 (1.02) 0.77 (1.01) 0.88	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.15 (1.00) 2.54 (1.00) 2.54 (1.00) 2.54 (1.00) 2.55 (1.00) 2.5	⑦C1/5 3次 1.46 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 3.23 (1.00) 振動器 3次 (0.88) 2.04 (1.02) 2.31 (1.01) 2.67 (1.02) 2.31 (1.01) 2.67 (1.02) 3.23	 ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 3.05 (1.00) (1.00) 5.75 (1.00) 8.09 (1.00) 5.75 (1.00) 8.09 (1.00) (1.00)	0% 腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 4.44 (1.00) 7.19 (1.00) 7.20 (1.	6次 2.93 (1.00) 4.57 (1.00) 5.32 (1.00) 5.32 (1.00) 8.62 8.62 (1.00)8 (1.00)8.62 (1.00)	7次 3.41 (1.00) 5.33 (1.00) 6.21 (1.00) 10.06 (1.00) 14.16 (1.00) 7次 3.02 (0.88) 4.76 (1.02) 5.40 (1.01) 6.23	1次 0.49 0.67 (1.00) 0.76 (1.00) 0.76 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	振動業 ⑧Clケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.66 (1.00) 3.23 (1.00) 4.31 (1.00) 6.07 (1.00)	(理論値 -ブル2の) 4次 1.94 (0.99) 2.66 (1.00) 3.55 (1.00) 3.55 (1.00) 5.75 (1.00) 5.75 (1.00) 8.09 (1.00)	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.00) 7.19 (1.00) 7.19 (1.00) 7.19 (1.00)	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 8.62 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 6.21 (1.00) 6.21 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.95 (0.97) 1.34 (1.00) 1.53 (1.00) 2.15 (1.00) 2.87 (1.00) 4.04 (1.00)	③C1方 3次 1.42 (0.97) 2.01 (1.01) 2.29 (1.00) 2.66 (1.00) 3.22 (1.00) 4.31 (1.00) 6.07 (1.00)	- ブル5 4改 1.89 (0.97) 2.67 (1.01) 3.55 (1.00) 5.74 (1.00) 5.74 (1.00) 8.09 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44 (1.00) 7.18 (1.00) 7.18 (1.00)	6次 2.84 (0.97) 4.01 (1.00) 5.33 (1.00) 5.33 (1.00) 8.62 (1.00) 12.13 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 10.05 (1.00) 14.15 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5 C6 C7 ケーブル 番号 C1 C2 C3 C3 C4 C5	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 1.08 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00) 1.44 (1.00) 2.02 (1.00) 1.44 (1.00) 2.02 (1.00) 1.48 (1.02) 0.77 (1.01) 0.89 (1.00) 1.08 (1.00)	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 2.55 (1.00) 2.5	⑦C1/5 3次 1.46 (1.00) 2.29 (1.00) 2.26 (1.00) 3.23 (1.00) 4.31 (1.00) 4.31 (1.00) 4.31 (1.00) 4.31 (1.00) 4.31 (1.00) 2.24 (1.00) 2.31 (1.01) 2.64 (1.02) 3次 2.24 (1.02) 2.31 (1.01) 2.67 (1.02) 3.23 (1.00) 2.64 (1.02) 3.23 (1.00) 2.64 (1.02) 3.23 (1.00) 2.64 (1.00) 3.23 (1.00) 2.64 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00) 4.31 (1.00) 3.23 (1.00) 3.23 (1.00) 4.31 (1.00) 3.23 (1.00) 4.31 (1.00) 2.64 (1.00) 4.31 (1.00) 2.64 (1.00) 2.29 (1.00) 4.31 (1.00) 2.29 (1.00) 4.31 (1.00) 2.29 (1.00) 4.31 (1.00) 2.29 (1.00) 4.31 (1.00) 2.29 (1.00) 2.29 (1.00) 2.29 (1.00) 2.29 (1.00) 2.29 (1.00) 2.29 (1.00) 2.29 (1.00) 2.24 (1.00) 2.24 (1.00) 2.24 (1.00) 2.24 (1.00) 2.24 (1.00) 2.24 (1.00) 2.24 (1.00) 2.24 (1.00) 2.24 (1.00) 2.31 (1.00) 2.34 (1.00) 2.34 (1.00) 2.34 (1.00) 2.34 (1.00) 2.34 (1.00) 2.31 (1.00) 2.29 (1.00) 2.29 (1.00) 2.31 (1.00) 2.29	 ーブル1 4次 1.95 (1.00) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 5.75 (1.00) 5.75 (1.00) 8.09 8.09 (1.00) 8.09 (1.00) 4.30 (1.00) 4.30 (1.00) 3.56 (1.00) (1.01) 3.56 (1.00) (1.00) (1.00) (1.00) (1.00) 	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 4.44 (1.00) 7.19 (1.00) 7.10 (1.00) 7.10 (1.00) 7.10 (1.00) 7.10 (1.00) 7.10 (1.00) 7.10 (1.00) 7.10 (1.00) 7.10 (1.00) 7.55 (1.5	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 8.62 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00) 8.62 (1.00)8 (1.00)8.62 (7次 3.41 (1.00) 4.65 (1.00) 6.21 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00) 7次 3.02 (0.88) 4.76 (1.02) 5.40 (1.01) 6.23 (1.00) 7.53 (1.00)	1次 0.49 0.67 (1.00) 0.76 (1.00) 0.76 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	22% 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 1.77 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00)	振動業 ⑧Clケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.60 (1.00) 4.31 (1.00) 6.07 (1.00)	(理論値 -ブル2の) 4次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00) 3.55 (1.00) 5.75 (1.00) 5.75 (1.00) 8.09 (1.00)	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 4.44 (1.00) 7.19 (1.00) 7.19 (1.00)	6次 2.91 (0.99) (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 6.21 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.95 (0.97) 1.34 (1.00) 1.53 (1.00) 2.15 (1.00) 2.87 (1.00) 4.04 (1.00)	(9)C1/2 3 次 1.42 (0.97) 2.01 (1.01) 2.29 (1.00) 2.66 (1.00) 3.22 (1.00) 4.31 (1.00) 6.07 (1.00)	- ブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 4.30 (1.00) 5.74 (1.00) 8.09 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 4.44 (1.00) 7.18 (1.00) 7.18 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00) 12.13 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 10.05 (1.00) 14.15 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5 C6 C7 ケーブル 番号 C1 C2 C3 C3 C4 C5 C5 C6	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.89 (1.00) 1.08 (1.00) 1.08 (1.00) 2.02 (1.00) 2.02 (1.00) 1.08 0.68 (1.02) 0.77 (1.01) 0.89 (1.00) 1.08 (1.00) 1.43	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.15 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.86 (0.88) 1.54 (1.01) 1.52 (1.00) 2.55 (1.00) 2.54 (1.00) 2.55 (1.00) 2.5	⑦C1/5 3次 1.46 (1.00) 2.29 (1.00) 2.26 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00) 据動動動 2.04 (1.02) 2.04 (1.02) 2.04 (1.01) 2.67 (1.00) 2.67 (1.00) 2.67 (1.00) 2.67 (1.00) 3.23 (1.00) (1.00) 3.23 (1.	ーブル1 4次 1.95 (1.00) 3.05 (1.00) 3.05 (1.00) 4.30 (1.00) 4.30 (1.00) 4.30 (1.00) 型論値 4次 1.73 (0.88) 2.72 (1.02) 2.72 (1.02) 3.56 (1.00) 3.56 (1.00) 3.56 (1.00) 3.56 (1.00) 4.30 (1.01) 3.56 (1.00) 5.73	0%腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 5.38 (1.00) 7.19 (1.00) 10.12 (1.00) 10.12 (1.00) 10.12 (1.00) 0%腐食 (1.00) 5.38 2.16 (0.88) 3.40 (1.01) 4.45 (1.00) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.00) 7.19 5.38 (1.00) 7.19 5.38 (1.00) 7.19 5.38 (1.00) 7.19 5.38 (1.00) 10.12 (1.0)	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 6.45 (1.00) 6.45 (1.00) 6.45 (1.00) 6.45 (1.00) 6.45 (1.00) 6.88 (1.02) 6.88 (1.02) 6.88 (1.00) 6.85 (1.00) 6.45 (1.00) 6.	7次 3.41 (1.00) 5.33 (1.00) 6.21 (1.00) 7.53 (1.00) 7.53 (1.00) 7.53 (1.00) 7.53 (1.00) 7.53 (1.00) 7.53 (1.00) 7.540 (1.01) 6.23 (1.00) 7.53 (1.00) 7.53 (1.00) 7.53 (1.00) 7.53 (1.00) 7.53 (1.00) 7.53 (1.00) 7.53 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.55 (1.00) 7	1次 0.49 (0.99) 0.67 (1.00) 0.76 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 2.87 (1.00)	振動業後 ⑧C1ク 3次 1.46 (0.99) (1.00) 2.29 (1.00) 2.29 (1.00) 3.23 (1.00) 3.23 (1.00) (1.00) 3.23 (1.00)	ス理論値 ーブル24次 1.94 (0.99) 2.666 (1.00) 3.05 (1.00) 4.30 (1.00) 4.30 (1.00) 9.09 (1.00)	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 5.38 (1.00) 7.19 (1.00) 5.38 (1.00)	6次 2.91 (0.99) 3.399 (1.00) 4.57 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 7.53 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 2.15 (1.00) 2.87 (1.00) 2.87 (1.00)	(9)C1/2 3 % 1.42 (0.97) 2.01 (1.00) 2.29 (1.00) 3.22 (1.00) 3.22 (1.00) 4.31 (1.00) (1.00)	ーブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 4.30 (1.00) 4.30 (1.00) 4.30 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.00) 4.44 (1.00) 5.37 (1.00) 7.18 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 10.05 (1.00) 14.15 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5 C6 C7 ケーブル 番号 C1 C2 C3 C4 C5 C6 C6	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 0.76 (1.00) 0.89 (1.00) 1次 0.43 0.68 (1.02) 0.77 (1.01) 0.89 (1.00) 1.43 (1.00)	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.15 (1.00) 2.85 (1.00) 2.85 (1.02) 1.54 (1.02) 1.54 (1.02) 1.54 (1.02) 1.54 (1.00) 2.86 (1.00) 2.86 (1.00)	⑦C14 3次 1.46 (1.00) 2.29 (1.00) 2.29 (1.00) 3.23 (1.00) 4.31 (1.00) 4.31 (1.00) 4.31 (1.00) 据動數 (0.17 3次 (1.00) (0.88) 2.04 (1.02) 2.31 (1.01) 2.67 (1.00) 2.64 (1.02) 2.31 (1.01) 2.67 (1.01) 2.67 (1.01) 2.67 (1.01) 2.67 (1.01) 2.67 (1.01) 2.67 (1.01) 2.67 (1.01) 2.67 (1.01) 3.23 (1.01) 3.23 (1.00) 3.24 (1.00) 3.23 (1.00) 3.24 (1.00) 3.24 (1.00) 3.23 (1.00) 3.24 (1.00) 3.23 (1.00) 3.24 (1.00) 3.24 (1.00) 3.23 (1.00) 3.24 (1.00) 3.23 (1.00) 3.24 (1.01) 3.24 (1.01) 3.24 (1.00) 3.23 (1.00) 3.23 (1.00) 3.24 3	ーブル1 4次 1.95 (1.00) 3.05 (1.00) 3.05 (1.00) 4.30 (1.00) 4.30 (1.00) 4.30 (1.00) 4.30 (1.00) 5.75 (1.00) 3.09 (1.01) 3.56 (1.00) 3.57 (1.00) 3.57 (1.00) 3.57 (1.00)	0%腐食 5次 2.44 (1.00) 3.81 (1.00) 5.38 (1.00) 5.38 (1.00) 5.38 (1.00) 5.38 (1.00) 5.38 (1.00) 5.38 (1.00) 5.38 (1.00) 5.38 3.40 (1.02) 3.86 (0.88) 3.40 (1.01) 4.45 (1.00) 5.38 3.40 (1.01) 4.45 (1.00) 5.38 3.40 (1.01) 5.38 3.40 (1.02) 5.38 3.40 (1.02) 5.38 3.40 (1.02) 5.38 3.40 (1.02) 5.38 3.40 (1.00) 5.38 3.40 (1.01) 5.38 3.40 (1.01) 5.38 3.40 (1.01) 5.38 3.40 (1.01) 5.38 3.40 (1.01) 5.38 3.40 (1.01) 5.38 3.40 (1.01) 5.38 3.40 (1.01) 5.38 3.40 (1.01) 5.38 3.40 (1.01) 5.38 3.40 (1.01) 5.38 3.40 (1.01) 5.38 3.40 (1.01) 5.38 3.40 (1.01) 5.38 (1.01) 5.38 3.40 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.01) 5.38 (1.00) 5.38	6次 2.93 (1.00) 3.99 (1.00) 4.57 (1.00) 6.45 (1.00) 6.45 (1.00) 6.45 (1.00) 6.45 (1.00) 6.45 (1.00) 6.45 (1.00) 6.88 (1.02) 4.63 (1.01) 5.34 (1.00) 5.34 (1.00) 5.34 (1.00) 5.34 (1.00) 5.34 (1.00) 5.34 (1.00) 5.34 (1.00) 5.34 (1.00) 5.35 (1.00) 5.34 (1.00) 5.34 (1.00) 5.34 (1.00) 5.34 (1.00) 5.34 (1.00) 5.34 (1.00) 5.35 (1.00) 5.3	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.54 (1.00) 7.53 (1.00) 7.54 (1.00) 7.53 (1.00) 7.54 (1.00) 7.55 (1.00) 7.55 (1.00) 7.55 (1.00) 7.5	1次 0.49 (0.99) 0.67 (1.00) 0.89 (1.00) 1.44 (1.00) 1.44 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	振動影 (8)C1 / 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.26 (1.00) 3.23 (1.00) 3.23 (1.00) 3.23 (1.00)	(理論値 ーブル24次 1.94 (0.99) 2.666 (1.00) 3.05 (1.00) 3.05 (1.00) 5.75 (1.00) 9.(1.00)	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 7.19 (1.00) 7.19 (1.00) 7.19 (1.00)	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 7.53 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.47 0.67 (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.95 (0.97) 1.34 (1.01) 1.53 (1.00) 2.15 (1.00) 2.87 (1.00) 4.04 (1.00)	(9)C1/2 3 % 1.42 (0.97) 2.01 (1.00) 2.29 (1.00) 2.29 (1.00) 4.31 (1.00) 6.07 (1.00)	ーブル5 4次 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 4.30 (1.00) 5.74 (1.00) 5.74 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.01) 3.82 (1.00) 7.18 (1.00) 7.18 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 7.52 (1.00) 7.52 (1.00) 10.05 (1.00)
ケーブル 番号 C1 C2 C3 C4 C5 C6 C7 C1 C2 C3 C4 C5 C6 C6 C7	1次 0.49 (1.00) 0.66 (1.00) 0.76 (1.00) 1.08 (1.00) 1.44 (1.00) 1.44 (1.00) 2.02 (1.00) 1.44 (1.00) 2.02 (1.01) 0.77 (1.01) 0.89 (1.00) 1.08 (1.00) 1.08 (1.00) 1.08 (1.00) 1.08 (1.00) 1.08 (1.00) 1.08 (1.00) 1.08 (1.00) 1.08 (1.00) 1.08 (1.00) 2.02	2次 0.98 (1.00) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.87 (1.00) 2.15 (1.00) 2.1	⑦C1/5 3次 1.46 (1.00) 2.29 (1.00) 2.29 (1.00) 2.23 (1.00) 4.31 (1.00) 级C1/5 1.30 (0.08) 3次 2.04 (1.02) 2.31 (1.00) 3.23 (1.00)	-ブル1 4次 1.95 (1.00) 3.05 (1.00) 3.05 (1.00) 5.75 (1.00) 5.75 (1.00) 位理論値 4次 1.73 8.09 (1.00) 位理論値 4次 1.73 8.09 (1.00) 位.88 (1.02) 3.09 (1.01) 3.05 (1.02) 3.09 (1.01) 5.73 (1.00) 4.30 (1.00) 5.73 (1.00) 4.30 (1.00) 5.73 (1.00) 5.73 (1.00) 5.73 (1.00) 5.73 (1.00) 5.73 (1.00) 5.73 (1.00) 5.73 (1.00) 5.75	0% 腐食 5次 2.44 (1.00) 3.32 (1.00) 3.81 (1.00) 7.19 (1.00) 7.10 (1.	6次 2.93 (1.00) 4.57 (1.00) 4.57 (1.00) 6.45 (1.00) 8.62 (1.00) 12.14 (1.00) (1.01) 6.45 (1.02) 4.63 (1.02) 4.63 (1.01) 5.34 (1.00) 6.45 (1.00) 6.45 (1.00) 6.45 (1.00) 6.45 (1.00) 6.45 (1.00) 6.45 (1.00) 6.45 (1.00) 7.25 (1	7次 3.41 (1.00) 4.65 (1.00) 5.33 (1.00) 5.33 (1.00) 10.06 (1.00) 14.16 (1.00) 7% 3.02 (0.88) 4.76 (1.02) 5.40 (1.01) 6.23 (1.00) 7.53 (1.0)	1次 0.49 0.67 (1.00) 0.76 (1.00) 1.08 (1.00) 1.44 (1.00) 2.02 (1.00)	2次 0.97 (0.99) 1.33 (1.00) 1.52 (1.00) 2.15 (1.00) 2.87 (1.00) 4.05 (1.00)	振動影響 ⑧Clケ 3次 1.46 (0.99) 2.00 (1.00) 2.29 (1.00) 2.20 (1.00) 4.31 (1.00) 4.31 (1.00) 4.31 (1.00)	(理論値 ーブル24次 1.94 (0.99) 2.66 (1.00) 3.05 (1.00) 3.05 (1.00) 5.75 (1.00) 8.09 (1.00)	fn (Hz) 0%腐食 5次 2.43 (0.99) 3.33 (1.00) 3.81 (1.00) 7.19 (1.00) 7.19 (1.00)	6次 2.91 (0.99) 3.99 (1.00) 4.57 (1.00) 5.32 (1.00) 8.62 (1.00) 8.62 (1.00)	7次 3.40 (0.99) 4.66 (1.00) 5.34 (1.00) 5.34 (1.00) 10.06 (1.00) 14.16 (1.00)	1次 0.47 (0.97) 0.67 (1.01) 0.76 (1.00) 0.89 (1.00) 1.07 (1.00) 1.44 (1.00)	2次 0.95 (0.97) 1.34 (1.00) 1.78 (1.00) 2.87 (1.00) 2.87 (1.00) 4.04 (1.00)	(9)C1/2 3 次 1.42 (0.97) 2.01 (1.01) 2.29 (1.00) 2.66 (1.00) 4.31 (1.00) 6.07 (1.00)	- ブル5 4茨 1.89 (0.97) 2.67 (1.01) 3.06 (1.00) 4.30 (1.00) 5.74 (1.00)	0%腐食 5次 2.36 (0.97) 3.34 (1.00) 3.82 (1.00) 7.18 (1.00) 7.18 (1.00)	6次 2.84 (0.97) 4.01 (1.01) 5.33 (1.00) 6.45 (1.00) 8.62 (1.00)	7次 3.31 (0.97) 4.68 (1.01) 5.35 (1.00) 6.22 (1.00) 10.05 (1.00) 10.05 (1.00)

3-4-8. まとめ

(1)実橋計測

- ・ 不可視レーザー光を用いた新たな LDV(RSV)の評価を目的として,幸魂大橋の振動計測を実施した。
- ・ 計測表面が黒色で、かつ計測距離が約 100m となる場合でも、ケーブル表面に特別な表面処理 を施さなくても計測できることを確認した。本 LDV は、従来の LDV を比較して非接触で長距 離振動計測を効率化するデバイスと言える。
- 2010年と2011年の計測結果から得られた固有振動数の変化は約±5%で、張力に換算すると約 ±10%の変化が見られた。

(2)解析検討

- ・現状では損傷程度と張力変化量との関係は不明確であり、構造安全性を判断するための閾値 が設定されていない。温度など環境条件の変化に対する張力や振動数の感度も明らかになっ ていない。そこで立体骨組みモデルを作成して、損傷と張力変化、温度変化の関係を検討した。
- ・完成後の温度変化後のケーブル張力は、完成時とほぼ同値となり、温度変化によるケーブル 張力への影響はかなり小さい。
- ・ケーブルの腐食率が80%の場合, 張力は最大で25%減少するが, 腐食率が50%では最大でも 8%程度の減少となり, 局部腐食によるケーブル張力への影響は小さい。
- ・腐食によるケーブル固有振動数の変化の傾向は、張力の傾向と同様である。
- ケーブル腐食に対する振動数や張力の変化量の解析値は、2010年と2011年の実測値の差と 比較して明らかに大きいとは言えない。ケーブル腐食を振動数計測から検出できるとは結論 できない。今後、高頻度なケーブル振動計測などにより環境条件依存性を実測から明らかに した上で、厳密な感度分析が必要である。

【参考文献】

- 1) 新家徹,広中邦汎,頭井洋,西村春久:振動法によるケーブル張力の実用算定式について,土 木学会論文報告集,第 294 号, pp.25-32, 1980.
- 2) 頭井洋,新家徹,濱崎義弘:振動法によるケーブル張力実用算定式の補正,土木学会論文集, No.525/I-33, pp.351-354, 1995.
- 3) 久保田ら:レーザードップラー速度計とトータルステーションを用いた超遠隔自動振動計測シ ステムの構築,第62回土木学会年次学術講演会講演概要集, Vol.62, pp683-684, 2007.
- 4) 玉田ら: 健全度評価のための斜張橋ケーブルの振動計測, 第65回土木学会年次学術講演会講演 概要集, CD-ROM, 2010.
- 5) 川平ら:幸魂大橋(2径間連続鋼斜張橋)の耐震補強設計, pp.13-20, 橋梁と基礎, 2010.6.

§4. まとめと今後の課題

4-1. まとめ

橋梁振動の計測ニーズの整理として実務の事例や研究事例を文献調査等により整理し、シーズの 整理として各種センサの特徴整理を行った。従来からの振動計測ニーズが多岐にわたる一方で、橋 梁の老朽化や近年報告されているインフラ関連事故を踏まえて、振動計測を橋梁健全性や損傷の評 価に利用することの期待が大きく、多様なアプローチで研究が進められている。各種センサの近年 の展開はこれらの振動計測を効率化、簡易化、あるいは、高精度化に貢献すると考えられる。次に、 振動を利用した橋梁健全度評価方法として体系的にまとめられている米国ロスアラモス報告書の 抄訳を行った。振動を利用した健全度評価は、長きに渡り研究されてきたものの、実務での利用に 向けての課題も多い。さらに、振動計測技術の適用の参考とするとともに、振動データの分析方法 の整理を行った。

スマートセンサを利用して,鋼逆ランガー橋を耐震補強前後で密に振動計測し,振動挙動を詳細 に把握した。さらに,計測値と FEM と比較することで違いを明らかにし,振動数に加えて詳細モ ード形も基準としてモデルアップデートを試みた。FEM のより詳細な検討と計測誤差の分析が必 要であるものの,密な計測を利用することで,構造物のより精緻なモデル化ができることを示した。

同橋を対象とした解析的検討により,桁端部の支承の機能不全では,振動数の変化が比較的大き いが,加速度計を設置しやすい補剛桁の鉛直モード形変化によって明確に検知できる可能性がある。 また,橋全体モードの振動数変化が極小さいアーチクラウン部の疲労破断やアーチ基部の腐食,床 版上面の土砂化についても,補剛桁の鉛直モード形に着目すれば検知できる可能性が示唆された。

不可視レーザー光を用いた新たな LDV (RSV) の評価を目的として,幸魂大橋のケーブル振動計 測を実施した結果,計測表面が黒色で,かつ計測距離が約 100m となる場合でも,ケーブル表面に 特別な表面処理を施さなくても計測でき,本 LDV は,従来の LDV を比較して非接触で長距離振動 計測を効率化するデバイスと言える。また,解析的検討により,温度変化によるケーブル張力への 影響は小さく,損傷検知に優位であるが,ケーブルの腐食率が 50%では最大でも 8%程度の減少とな り,局部腐食によるケーブル張力への影響は小さかった。

4-2. 今後の課題

(1) スマートセンサの安定性向上

多数のスマートセンサを利用して鋼逆ランガー橋の振動計測をしたものの,正常動作しないノー ドもあり,必ずしも全ての計測点における振動データを得られたわけではない。また,配線が不要 なため,設置自体は簡易であるものの,通信環境の設定,電池切れ対応などに時間を要することが あった。センサノードの安定性や使用性の向上が必要である。

(2) 密な計測データの解析方法

密に計測することで従来は得られなかった,空間的に詳細な動特性を利用することができる。こ れを利用する解析方法として,モード形の変化に着目したモデルアップデートを試みた。しかし, 複雑な構造の有限要素モデルの固有値解析の妥当性は必ずしも自明でない。解析結果が要素の種類 に依存することもある。計測動特性とモデルの違いを支承などのパラメータの違いとしてアップデ ートしてよいか厳密な検討が必要である。 また各計測データの持つノイズの取り扱いも検討が必 要である。

(3)健全性や損傷の評価

鋼逆ランガー橋を対象にして、モード形変化から支承機能不全や疲労亀裂、腐食などが検知でき る可能性を示したが、外気温や表面温度などの環境条件が変化する環境で実橋梁に適用可能か、検 討が必要である。センシング技術の進捗により、従来よりも簡易に安価に実橋梁のモニタリングが 可能になりつつある。実データを利用して、健全性や損傷評価の妥当性検討が期待される。

A SUMMARY REVIEW OF VIBRATION-BASED DAMAGE IDENTIFICATION METHODS

Scott W. Doebling, Charles R. Farrar, and Michael B. Prime Engineering Analysis Group Los Alamos National Laboratory Los Alamos, NM

ABSTRACT

要旨

【抄訳】

この論文では、計測した振動応答の変化を調べることによって、構造系と力学系における損傷の特 徴を明らかにし、発生位置を検出する手法の概要を説明する.振動を利用した損傷同定の研究は、過 去数年間で急速に拡大している.この技術の背後にある基本的な考え方は、「モードパラメータ(特に 周波数、モード形状、モード減衰)は、構造体の物理特性(質量、減衰、剛性)の関数である」という ことである.つまり、物理特性の変化により、モード特性に検出可能な変化が生じるのである.この 技術を発展させるための方法が発表されており、モデルベースと非モデルベースによる比較や、線形 と非線形の比較によって与えられる損傷検出のレベル等、様々な基準に従って分類されている.それ らの実施方法と正確さに関する難しさを含めて、一般論として説明する.また、実際のエンジニアリ ングシステムにおける技術の歴史と今後の計画の要約を示す.最後に、振動を利用した損傷同定の分 野における、今後の研究のための重要な課題について考察する.

This paper provides an overview of methods to detect, locate, and characterize damage in structural and mechanical systems by examining changes in measured vibration response. Research in vibration-based damage identification has been rapidly expanding over the last few years. The basic idea behind this technology is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Therefore, changes in the physical properties will cause detectable changes in the modal properties. The motivation for the development of this technology is presented. The methods are categorized according to various criteria such as the level of damage detection provided, model-based vs. non-model-based methods and linear vs. nonlinear methods. The methods are also described in general terms including difficulties associated with their implementation and their fidelity. Past, current and future-planned applications of this technology to actual engineering systems are summarized. The paper concludes with a discussion of critical issues for future research in the area of vibration-based damage identification.

この論文では、計測した振動応答の変化を調べることによって、構造系と力学系における損傷の特徴 を明らかにし、発生位置を検出する手法の概要を説明する.振動を利用した損傷同定の研究は、過去 数年間で急速に拡大している.この技術の背後にある基本的な考え方は、「モードパラメータ(特に周 波数、モード形状、モード減衰)は、構造体の物理特性(質量、減衰、剛性)の関数である」というこ とである.つまり、物理特性の変化により、モード特性に検出可能な変化が生じるのである.この技 術を発展させるための方法が発表されており、モデルベースと非モデルベースによる比較や、線形と 非線形の比較によって与えられる損傷検出のレベル等、様々な基準に従って分類されている.それら の実施方法と正確さに関する難しさを含めて、一般論として説明する.また、実際のエンジニアリン グシステムにおける技術の歴史と今後の計画の要約を示す.最後に、振動を利用した損傷同定の分野 における、今後の研究のための重要な課題について考察する.

INTRODUCTION

The interest in the ability to monitor a structure and detect damage at the earliest possible stage is pervasive throughout the civil, mechanical, and aerospace engineering communities. For the purposes of this paper, damage is defined as changes introduced into a system, either intentional or unintentional, which adversely effect the current or future performance of that system. These systems can be either natural or man-made. As an example, an anti-aircraft missile is typically fired to intentionally introduce damage that will immediately alter the flight characteristics of the target aircraft. Biological systems can be unintentionally subject to the damaging effects of ionizing radiation. However, depending on the levels of exposure, these systems may not show the adverse effects of this damaging event for many years or even future generations. Implicit in this definition of damage is that the concept of damage is not meaningful without a comparison between two different states of the system, one of which is assumed to represent the initial, and often undamaged, state.

Most currently used damage identification methods are included in one of the following categories: visual or localized experimental methods such as acoustic or ultrasonic methods, magnetic field methods, radiography, eddy-current methods or thermal field methods (Doherty, 1997). All of these experimental techniques require that the vicinity of the damage is known *a priori* and that the portion of the structure being inspected is readily accessible. The need for quantitative global damage detection methods that can be applied to complex structures has led to the development and continued research of methods that examine changes in the vibration characteristics of the structure.

The increase in research activity regarding vibration-based damage detection is the result of the coupling between many factors. These factors can be generally categorized as spectacular failures resulting in loss of life that have received ample news media coverage, economic concerns, and recent technical advancements. Failures such as the in-flight loss of the exterior skin on an Aloha Airlines flight in Hawaii and the resulting media coverage focus the public's attention on the need for testing, monitoring, and evaluation to ensure the safety of structures and mechanical systems used by the public. The public's concerns, in turn, focus the attention of politicians on this issue and, hence, industry and regulatory agencies are influenced to provide the funding resources necessary for the development and advancement of this technology. The current state of aging infrastructure and the economics associated with its repair have also been motivating factors for the development of methods that can be used to detect the onset of damage or deterioration at the earliest possible stage. Finally, technological advancements including increases in cost-effective computing memory and speed, advances in sensors including non contact and remotely monitored sensors and adaptation and advancements of the finite element method represent technical developments that have contributed to recent improvements in vibration-based damage detection. Additional factors that have contributed to these improvements are the adaptation and advancements in experimental techniques such as modal testing (most recently by the civil engineering community), and development of linear and nonlinear system identification methods. Recently, a workshop specific to the topic of vibration based health monitoring was held at Stanford University (Chang, 1997).

It is the authors' speculation that damage or fault detection, as determined by changes in the dynamic properties or response of systems, has been practiced in a qualitative manner, using acoustic techniques, since modern man has used tools. More recently, this subject has received considerable attention in the technical literature where there has been a concerted
effort to develop a firmer mathematical and physical foundation for this technology. However, the basic idea remains that commonly measured modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Therefore, changes in the physical properties, such as reductions in stiffness resulting from the onset of cracks or loosening of a connection, will cause detectable changes in these modal properties. Because changes in modal properties or properties derived from these quantities are being used as indicators of damage, the process of vibration-based damage detection eventually reduces to some form of a pattern recognition problem.

The idea that changes in vibration characteristics can provide information regarding damage in a structure is very intuitive and one may ask the question: Why has this technology taken such a long time to be formally and generally adopted by the modern engineering community? The answer is that there are several confounding factors making vibration-based damage identification difficult to implement in practice. First, standard modal properties represent a form of data compression. Modal properties are estimated experimentally from measured response-time histories. A typical time-history may have 1024 data points, and if measurements are made at 100 points, there are 102,400 pieces of information regarding the current state of the structure. For this discussion the additional data typically obtained from averaging will not be considered as providing supplemental data, but rather improving the accuracy of 100 measurements. Through system identification procedures commonly referred to as experimental modal analysis (Ewins, 1984) this volume of data is reduced to some number of resonant frequencies, mode shapes and modal damping values. This data compression is done because the modal quantities are easier to visualize, physically interpret, and interpret in terms of standard mathematical modeling of vibrating systems than are the actual time-history measurements. If twenty real modes are identified, then the 102,400 pieces of information will have been reduced to 2020-2040 pieces of information (20 modes each consisting of 1 resonant frequency value, 1 modal damping value and 100 modal amplitude values).

Intuitively, information about the current state of the structure must be lost in this data reduction and system identification process. The loss of information occurs primarily from the fact that for a linear system the modal properties are independent of the excitation signal characteristics (amplitude and frequency content) and the location of the excitation, whereas the time histories are not. In addition, if the input excites response at frequencies greater than those that can be resolved with the specified data sampling parameters, the identified modes will not provide any information regarding the higher frequency response characteristics of the structure that are contributing to the measured time-history responses. Within the measured frequency range of response it is often difficult to identify all the modes contributing to the measured response because of coupling between the modes that are closely spaced in frequency. This difficulty is observed more commonly at the higher frequency portions of the spectrum where the modal density is typically greater. Also, the introduction of bias (or systematic) errors, such as those that arise from windowing of the data, finite frequency resolution, and those that arise from changing environmental conditions during the test, will tend to make the identified modal parameters less representative of the true dynamic properties of the structure.

Another confounding factor is the fact that damage typically is a local phenomenon. Local response is captured by higher frequency modes whereas lower frequency modes tend to capture the global response of the structure and are less sensitive to local changes in a structure. From a testing standpoint it is more difficult to excite the higher frequency response of a structure, as more energy is required to produce measurable response at these higher frequencies than at the lower frequencies. These factors coupled with the loss of information resulting from the necessary reduction of time-history measurements to modal properties add difficulties to the process of vibration-based damage identification. These factors also contribute to the limitation of this technology to the research arena with only limited practice by the engineering community.

A logical question then is why not examine the time-histories directly for indications of damage? The answer is that, despite the difficulties associated with damage detection based on changes in modal properties, it is even more difficult to identify damage by examining response-time histories directly. To identify that damage has occurred based on the changes in patterns of these time histories and relate these changes to physical changes in the structure is a very difficult problem. If excitation sources change and/or environmental conditions change this process becomes even more difficult. However, it should be pointed out that in a situation where the system response changes from linear to nonlinear, time histories alone (actually their frequency domain power spectra) could be sufficient to identify damage. Generally, correct identification requires that the location of the damage be known *a priori*, as is typically the case with loosening of bearings on rotating machinery. Detecting the onset of nonlinear vibration behavior in rotating machinery represents one of the most widely practiced forms of vibration-based damage identification (Wowk, 1991).

Notwithstanding the difficulties discussed above, advances in vibration-based damage detection over the last 20-30 years have produced new methods of examining dynamic data for indications of structural damage. These methods are seeing more widespread applications. One of the most prominent examples of this application is NASA's space shuttle modal inspection system (Hunt, et al., 1990). Because of difficulties accessing the exterior surface caused by the thermal protective system, a vibration-based damage detection system was developed. This system has identified damage that would have eluded traditional non-destructive testing methods because of inaccessibility to the damaged components and has been adopted as a standard inspection tool for the Space Shuttle Orbiter structures.

It is the intent of this paper to provide an overview of these recent advances in vibration-based damage detection. This paper is based on a previous detailed review of the vibration-based damage detection literature (Doebling, et al., 1996a). As mentioned previously, the field of damage identification is very broad and encompasses both local and global methods. This paper will be limited to global methods that are used to infer damage from changes in vibration characteristics of the structure. Many different issues are critical to the success of using the observed changes in mechanical vibration characteristics of a structure for damage identification and health monitoring. Among the important issues are excitation and measurement considerations, including the selection of the type and location of sensors, and the type and location of the excitations. Another important topic is signal processing, which includes such methods as Fourier analysis, time-frequency analysis and wavelet analysis. In this paper, these peripheral issues will not be directly addressed. The scope of this paper will be limited to the methods that use changes in modal properties (i.e. modal frequencies, modal damping ratios, and mode shapes) to infer changes in mechanical properties, and the application of these methods to engineering problems. The review includes both methods that are based solely on changes in the measured data as well as those methods that use a finite element model (FEM) in the formulation. The reader should note that methods based on identifying nonlinear response or non-parametric models (such as neural network-based approaches) are not included in this review. Also the large amount of literature applicable to fault detection and diagnosis in rotating machinery is not reviewed. Application-specific experimental considerations are also not included within the scope of this paper.

CLASSIFICATION OF DAMAGE AND DAMAGE IDENTIFICATION METHODS 損傷分類と損傷同定法

【抄訳】

本章は,損傷分類と損傷同定法についてまとめている.

- 構造物の損傷状態は、線形性あるいは非線形性で分類できる.
- 線形損傷状態とは、初期の弾性構造物が損傷を受けた後も弾性体として挙動する場合に定義される.モード特性の変化は、構造物の幾何学形状の変化および(あるいは)材料特性の変化によるものであるが、構造物の応答は線形運動方程式でモデル化できる状態である.
- 非線形損傷とは、初期の弾性構造物が損傷を受けた後に非線形挙動を示す場合に定義される。
 例えば、通常の振動環境下での疲労き裂が開口と閉口を繰り返して伸展するものが挙げられる。
- 損傷同定法では、4つの損傷同定レベルで定義されている。
 - レベル1:損傷発生の決定
 - レベル2:損傷位置の決定
 - レベル3:損傷程度の定量化
 - レベル4:構造物の残存寿命の推定
- 損傷同定技術は、構造物性能の長期モニタリング法と重大災害によって引き起こされた損傷検 出法で区別される.一般的には、構造物の健全度を評価するためのデータとして同じ解析技術 が適用される.

The effects of damage on a structure can be classified as linear or nonlinear. A linear damage situation is defined as the case when the initially linear-elastic structure remains linear-elastic after damage. The changes in modal properties are a result of changes in the geometry and/or the material properties of the structure, but the structural response can still be modeled using linear equations of motion. Linear methods can be further classified as model-based and non-model based. Model-based methods assume that the monitored structure responds in some predetermined manner that can be accurately discretized by finite element analysis, such as the response described by Euler-Bernoulli beam theory.

構造物の損傷状態は、線形性あるいは非線形性で分類できる.線形損傷状態とは、初期の弾性構造物 が損傷を受けた後も弾性体として挙動する場合に定義される.モード特性の変化は、構造物の幾何学 形状の変化および(あるいは)材料特性の変化によるものであるが、構造物の応答は線形運動方程式 でモデル化できる状態である.更に線形法は、モデル化によるものとモデル化によらないものに分類 できる.モデル化手法とは、対象とする構造物がある条件下において離散化された有限要素解析どお りに応答すると仮定したものであり、例えばオイラー・ベルヌーイの梁理論による応答値のようなも のである.

Nonlinear damage is defined as the case when the initially linear-elastic structure behaves in a nonlinear manner after the damage has been introduced. One example of nonlinear damage is the formation of a fatigue crack that subsequently opens and closes under the normal operating vibration environment. Other examples include loose connections that rattle and nonlinear material behavior such as that exhibited by polymers. The majority of the studies reported in the technical literature address only the problem of linear damage detection. 非線形損傷とは、初期の弾性構造物が損傷を受けた後に非線形挙動を示す場合に定義される.非線形 損傷の一例としては、通常の振動環境下において疲労き裂が開口と閉口を繰り返して伸展するものが 挙げられる.また、ガタガタ音を鳴らすようなルーズな継手部やポリマーのような非線形材料挙動も その一例である.文献に報告されている研究の大多数は、線形損傷検出問題にのみ取り組んだもので ある.

Another classification system for damage-identification methods defines four levels of damage identification, as follows (Rytter, 1993):

- Level 1: Determination that damage is present in the structure
- Level 2: Level 1 plus determination of the geometric location of the damage
- Level 3: Level 2 plus quantification of the severity of the damage
- Level 4: Level 3 plus prediction of the remaining service life of the structure

To date, vibration-based damage identification methods that do not make use of some structural model primarily provide Level 1 and Level 2 damage identification. When vibration-based methods are coupled with a structural model, Level 3 damage identification can be obtained in some cases. Level 4 prediction is generally associated with the fields of fracture mechanics, fatigue-life analysis, or structural design assessment and, as such, is not addressed in this paper.

一方,損傷同定法による分類システムは、以下に示すような4つの損傷同定レベルで定義されている (Rytter,1993).

- レベル1:構造物に損傷発生の決定
- ・レベル2:レベル1に加えて,損傷位置の決定
- ・レベル3:レベル2に加えて、損傷程度の定量化
- ・レベル4:レベル3に加えて、構造物の残存寿命の推定

構造モデルを使用しない振動に基づいた損傷同定法は,主にレベル1の損傷同定にレベル2の損傷同 定を行うものである.振動に基づいた損傷同定法は,構造モデルと組み合わせて利用する場合があり, レベル3の損傷同定に適用される.一般的に,レベル4の残存寿命は,破壊力学,疲労寿命解析ある いは構造設計アセスメントなどの分野から推定される.

Another category of classification for damage identification techniques makes the distinction between methods that are used for continuous monitoring of structural performance and methods that are applicable to the detection of damage caused by extreme events. As an example, a system that uses continuous or intermittent accelerometer measurements from sensors mounted permanently to a bridge is different in terms of instrumentation and data acquisition requirements from a system that does not acquire data except during and immediately following an earthquake or a hurricane. It should be noted that the primary distinction between these situations has to do with the sensors and data acquisition system requirements. Typically, the same types of analytical techniques can be applied to the data to determine the integrity of the structure.

損傷同定技術に関する別のカテゴリーとして分類されるものとして、構造物性能の長期モニタリング 法と重大災害によって引き起こされた損傷検出法に区別されている. 例えば、橋梁に常に設置され たセンサーから連続的あるいは断続的に加速度を計測するシステムは、地震およびハリケーンの発生 時およびその直後を除いてはデータを取得されないシステムとは、計測機器やデータ取得の点からも 異なるものである. それは、主にセンサー配置やデータ取得に関するシステム要求で区別されるもの である. 一般的には、構造物の健全度を評価するためのデータとして同じ解析技術が適用される.

EARLY DIFFICULTIES

研究初期の難題

【抄訳】

振動ベースの損傷検出を軸とした最も近代的な研究は、1970年代~80年初めに海底油田業界により行われたが、ほとんどの提案技術は成功に至らなかった.水面上における計測で、唯一共振周波数についての情報が得られたが、環境変動の影響により損傷を原因としない測定値の変化が発生した.また、 共振周波数だけが使われた場合、空間的な損傷位置を特定できない問題がみつかった.これらの失敗が元で、石油業界は、1980年代半ばにこの技術の追求の大部分を放棄した.

Most of the modern developments in vibration-based damage detection stem from studies performed in the 1970s and early 1980s by the offshore oil industry. See Vandiver (1975, 1977); Begg, et al. (1976); Loland and Dodds (1976); Wojnarowski (1977); Coppolino and Rubin (1980); Duggan et al. (1980); Kenley and Dodds (1980); Crohas and Lepert (1982); Nataraja (1983); and Whittome and Dodds (1983) for details on these studies. However, most of the proposed techniques were less than successful. Instead, it was found that above-water-line measurements could provide information about resonant frequencies only. Environmental conditions such as marine growth that added significant mass to the structure, equipment noise, and changing mass associated with changing fluid tank levels caused changes in the measurements that were not the result of damage. These tests also identified uniqueness issues associated with locating the damage spatially if only resonant frequencies are used. Because of the lack of success, the oil industry mostly abandoned pursuit of this technology in the mid- 1980s.

振動ベースの損傷検出を軸とした最も近代的な研究は、1970年代と1980年代の初め、海底油田業界に より行われた.これらの研究の詳細は、Vandiver (1975, 1977)、Begg, et al. (1976)、Loland and Dodds (1976)、Wojnarowski (1977)、Coppolino and Rubin (1980)、Duggan et al. (1980)、Kenley and Dodds (1980)、Crohas and Lepert (1982)、Nataraja (1983)、Whittome and Dodds (1983)等の 文献を参照のこと.しかしながら、ほとんどの提案技術は成功に至らなかった.その代わり、水面上 における計測では、唯一共振周波数についての情報が得られた.構造物の有効質量に付加されるマリ ングロス等の環境条件や装置騒音、流体タンクの水位変化に伴う質量変化により、損傷を原因としな い測定値の変化が発生した.また、これらの研究では、共振周波数だけが使われた場合、空間的な損 傷位置を特定できない問題が見つかった.これらの失敗が元で、石油業界は、1980年代半ばにこの技 術の追求の大部分を放棄した.

DAMAGE DETECTION BASED ON CHANGES IN BASIC MODAL PROPERTIES

基本的なモード特性の変化に基づく損傷検出

【抄訳】

本章は、振動モード特性の変化を基づく損傷検出の中で、特に、周波数変化に着目した開発事例に ついてまとめている.

- 構造特性が変化した際に振動周波数の変化を引き起こすことが観測され,損傷同定やヘルスモニタリングにモード手法が適用されるようになった.
- 損傷による周波数の変化は感度が非常に低いため、計測精度を向上させるあるいは損傷レベル を上げないと、損傷検出に周波数変化を適用することは困難である.
- 40橋における高速道路橋の振動計測結果より、周波数の変化が損傷の指標として、十分な感度 を有していないと結論付けた.プレートガーターの支間中央部における断面剛性が96.4%減少 した場合、橋梁全体の曲げ剛性の減少は21%となり、ほんのわずかなモード周波数の減少が観 測される程度であった.
- 工場の品質管理のように環境条件が制御された非常に厳密な計測が可能な場合に、周波数変化 による損傷検出の適用が実用化されている.例えば、精密な正弦波スイープ波形を計測するホ モダイン検出法である「共鳴超音波分光法」をボールベアリングの真球度検出に適用した.
- マルチ周波数変化は、異なる複数の位置で構造物の変化を計測して、モード周波数の組合せの 変化を捉えることにより、構造物の損傷に対する空間的な情報を得ることができる.ただし、 高モード密度が生じる局所モードを励起および抽出するには限界があり、損傷同定をより困難 なものにしている.
- レベル1損傷同定のカテゴリーに分類される順問題は、既知である損傷タイプから周波数変化 を計算するものであり、損傷を数学モデルでモデル化して、実測周波数と損傷モデルによる推 定周波数を比較検討するものである。
- レベル2あるはレベル3の損傷同定である逆問題は、周波数の変化からクラックの長さあるいは 位置等の損傷パラメーターを算定するものである。

Numerous other investigators who have tried to examine changes in basic modal properties have encountered issues similar to those encountered in the offshore oil industry. In this context basic modal properties will be defined as resonant frequencies, modal damping, and mode shape vectors.

基本的なモード特性の変化に関して調査しようとすると、海洋石油産業において直面したものと同様 な課題に直面する.ここで、基本的なモード特性としては、共振周波数、モード減衰およびモード形 状ベクトルが定義される.

FREQUENCY CHANGES

周波数変化

The amount of literature related to damage detection using shifts in resonant frequencies is quite large. Salawu (1997a) presents an excellent review on the use of modal frequency changes for damage diagnostics. The observation that changes in structural properties cause changes in vibration frequencies was the impetus for using modal methods for damage identification and health monitoring. Because of the large amount of literature, not all papers that the authors have reviewed on this subject are included in the reference list of this paper. A more thorough review and reference list can be found in Doebling (1996a). An effort has been made to include the early work on the subject, some papers representative of the different types of work done in this area, and papers that are considered by the authors to be significant contributions in this area.

共振周波数の変化を用いた損傷検出に関する文献は非常にたくさん発表されている.

Salawu (1997a)は、モード周波数の変化に着目した損傷診断法に関する素晴らしい成果を発表している.構造特性が変化した際、振動周波数の変化を引き起こすことが観測されたことによって、損傷同定やヘルスモニタリングにモード手法を適用するきっかけとなった。巻末の参考文献には、モード手法による損傷同定やヘルスモニタリングに関してレビューした文献を記載している。参考文献にも記載されているDoebling (1996a)は、初期の検討段階を含めて、この分野において素晴らしい成果を挙げている。

It should be noted that frequency shifts have significant practical limitations for applications to the types of structures considered in this review, although ongoing and future work may help resolve these difficulties. The somewhat low sensitivity of frequency shifts to damage requires either very precise measurements or large levels of damage. However, recent studies have shown that resonant frequencies have much less statistical variation from random error sources than other modal parameters (Farrar, et al. (1997), Doebling, et al. (1997a)).

現時点での評価では、周波数の変化を適用するには構造物の種類がかなり限定されることになるが、 進行中あるいは将来の研究成果によってそれらの問題が解決されるであろう.損傷による周波数の変 化は、感度が非常に低いため、計測精度を向上させるあるいは損傷レベルを上げるかしないと適用す ることが難しい.しかし、最近のFarrarら(1997)、Doeblingら (1997a)の研究では、他のモードパラ メーターに比べて、共振周波数は不規則なエラー要因による統計学的な変動量が非常に小さいことが 指摘されている.

For example, in offshore platforms damage-induced frequency shifts are difficult to distinguish from shifts resulting from increased mass from marine growth. Tests conducted on the Interstate 40 highway bridge (Farrar, et al., 1994) also demonstrate that frequency shifts are not sensitive indicators of damage. When the cross-sectional stiffness at the center of a main plate girder had been reduced 96.4%, reducing the bending stiffness of the overall bridge cross-section by 21%, no significant reductions in the modal frequencies were observed. Currently, using frequency shifts to detect damage appears to be more practical in applications where such shifts can be measured very precisely in a controlled environment, such as for quality control in manufacturing. As an example, a method known as "resonant ultrasound spectroscopy", which uses homodyne detectors to make precise sine-sweep frequency measurements, has been used successfully to determine out-of-roundness of ball bearings (Migliori, et al., 1993).

例えば、海洋プラットホームの損傷によって引き起こされた周波数の変化が、損傷に起因するものな のか、質量増加によるものなのか、海洋生成物によるものなのかを判断することが困難である. Farrar ら(1994)は、40橋における高速道路橋の振動計測結果より、周波数の変化が損傷の指標として、十分 な感度を有していないことを結論付けた. プレートガーターの支間中央部における断面剛性が96.4% 減少した場合、橋梁全体の曲げ剛性の減少は21%となり、ほんのわずかなモード周波数の減少が観測 される程度である.最近では、工場の品質管理のように環境条件が制御された非常に厳密な計測が可 能な場合に、周波数変化による損傷検出の適用が実用化されてきている.例えば、Miglioriら(1993) は、精密な正弦波スイープ波形を計測するホモダイン検出法である「共鳴超音波分光法」をボールベ アリングの真球度の検出に適用した. Also, because modal frequencies are a global property of the structure, it is not clear that shifts in this parameter can be used to identify more than Level 1 damage. In other words, the frequencies generally cannot provide spatial information about structural changes. An exception to this limitation occurs at higher modal frequencies, where the modes are associated with local responses. However, the practical limitations involved with the excitation and extraction of these local modes, caused in part by high modal density, can make them difficult to identify. Multiple frequency shifts can provide spatial information about structural damage because changes in the structure at different locations will cause different combinations of changes in the modal frequencies. However, as pointed out by several authors, there are often an insufficient number of frequencies with significant enough changes to determine the location of the damage uniquely.

モード周波数は、構造物全体の特性であるため、レベル1の損傷同定にモード周波数の変化を適用で きるか否かは定かでない.また、周波数は、一般的に構造物の変化に対する空間的な情報を供給する ものではない.ただし、局所的な応答現象に関連した高次モードの周波数はその例外である.しかし、 高モード密度が生じる局所モードを励起および抽出するには限界があり、損傷同定をより困難なもの にしている.マルチ周波数変化は、異なる複数の位置で構造物の変化を計測して、モード周波数の組 合せの変化を捉えることにより、構造物の損傷に対する空間的な情報を得ることができる.しかし、 損傷位置を検出するために必要な周波数の数が不足することがしばしば起こることが指摘されてい る.

The Forward Problem

順問題

The forward problem, which usually falls into the category of Level 1 damage identification, consists of calculating frequency shifts from a known type of damage. Typically, the damage is modeled mathematically, then the measured frequencies are compared to the predicted frequencies to determine the damage. This method was used extensively by the previously mentioned offshore oil industry investigators.

レベル1損傷同定のカテゴリーに分類される順問題は、既知である損傷タイプから周波数変化を計算 するものである.通常,損傷を数学モデルでモデル化して,実測周波数と損傷モデルによる推定周波 数を比較検討する.本手法は,先に述べた海洋石油産業の調査員がよく使っているものである.

As an example, Cawley and Adams (1979) give a formulation to detect damage in composite materials from frequency shifts. They start with the ratio between frequency shifts for two different modes. A grid of possible damage points is considered, and an error term is constructed that relates the measured frequency shifts to those predicted by a model based on a local stiffness reduction. A number of mode pairs is considered for each potential damage location, and the pair giving the lowest error indicates the location of the damage. The formulation does not account for possible multiple-damage locations. Special consideration is given to the anisotropic behavior of the composite materials.

例えば、Cawley とAdams (1979)は、周波数の変化から複合材料における損傷検出を定式化した. 彼らは、2つ異なるモードの周波数変化の比率に着目した.まず、損傷が発生しそうな点の格子を考 えて、周波数変化の実測値と局所的に剛性を低下させたモデルによる推定値との関係から誤差項を算 定する.各モードの組合せから損傷位置としての可能性を考えて、誤差が最も小さくなるモードの組 合せを損傷位置として決定付ける.この定式化は、複数の損傷位置を検出するものではない.複合材 料の異方性挙動を有する場合、特に留意する必要がある. Friswell, et al. (1994) present the results of an attempt to identify damage based on a known catalog of likely damage scenarios. The authors presumed that an existing model of the structure is highly accurate. Using this model, they computed frequency shifts of the first several modes for both the undamaged structure and all the postulated damage scenarios. Then ratios of all the frequency shifts were calculated. For the candidate structure, the same ratios were computed, and a power-law relation was fit to these two sets of numbers. When the body of data is noise-free, and when the candidate structure lies in the class of assumed damages, the correct type of damage should produce a fit that is a line with unity slope. For all other types of damage the fit will be inexact. The likelihood of damage was keyed on the quality of the fit to each pattern of known damage. Two measures of fit were used: the first was related to the correlation coefficient; the second was a measure of how close the exponent and coefficient were to unity. Both measures were defined on a scale from 0 to 100. It was hypothesized that damage was present when both measures were near 100.

Friswellら (1994)は、想定される損傷シナリオの一覧より損傷同定に適用した結果を報告している. 著者らは、構造物の現存モデルが非常に高い精度を有するものと推察している.このモデルを使って、 彼らは健全時と想定した全ての損傷シナリオを対象として、いくつかの低次モードの周波数変化を計 算した.そして、全ての周波数変化の比率を計算した.候補構造の中から、同じ比率が計算された2 セットに対してべき乗則で近似される.データ全体にノイズが含まれず、かつ候補構造が仮定された 損傷クラスにある場合、正しい損傷タイプとして一定勾配の直線近似が与えられる.その他の損傷タ イプに対しては、正確な近似が得られないであろう.損傷の尤度は、損傷パターンの近似精度が鍵を 握っている.近似手法としては、相関係数によるものと、指数回帰係数によるものがある.両手法と も0から100のスケールで定義されている.損傷が存在する場合には、両手法とも100に近い値となる.

Juneja, et al. (1997) present a forward technique called contrast maximization to match the response of the damaged structure to a database of structural responses to locate the damage. They also develop a predictive measure of the detectability of the damage. Gudmundson, (1982), Tracy and Pardoen, (1989), and Penny, et al. (1993) present other approaches to the forward problem.

Juneja,ら (1997)は,損傷した構造物の応答と構造応答データベースと損傷位置を組み合わせたコントラスト最大化と呼ばれる順問題技法を発表している.また,彼らは,損傷検出推定法に関しても開発している.Gudmundson (1982), Tracyと Pardoen (1989)そして Pennyら (1993)は,順問題への他のアプローチ手法を発表している.

The Inverse Problem

逆問題

The inverse problem, which is typically Level 2 or Level 3 damage identification, consists of calculating the damage parameters, e.g., crack length and/or location, from the frequency shifts. Lifshitz and Rotem (1969) present what may be the first journal article to propose damage detection via vibration measurements. They look at the change in the dynamic moduli, which can be related to the frequency shift, as indicating damage in particle-filled elastomers. The dynamic moduli, which are the slopes of the extensional and rotational stress-strain curves under dynamic loading, are computed for the test articles from a curve-fit of the measured stress-strain relationships, at various levels of filling.

レベル2あるはレベル3の損傷同定である逆問題は、周波数の変化からクラックの長さあるいは位置等の損傷パラメーターを算定するものである. LifshitzとRotem (1969)は、振動計測によって損傷検出

を推定する最初の文献を発表した.彼らは、周波数の変化に関連する動的係数の変化に着目し、微粒 子充填エラストマーの損傷を検出した.動的係数は、動的荷重の作用下における引張方向と回転方向 の応力ひずみ曲線勾配であり、さまざまな充填状態における応力ひずみ関係の実測値の曲線近似から 前提条件として計算される.

Stubbs and Osegueda (1990a, 1990b) developed a damage detection method using the sensitivity of modal frequency changes that is based on work by Cawley and Adams (1979). In this method, an error function for the each mode and each structural member is computed assuming that only one member is damaged. The member that minimizes this error is determined to be the damaged member. This method is demonstrated to produce more accurate results than their previous method in the case where the number of members is much greater than the number of measured modes. The authors point out that this frequency-change sensitivity method relies on sensitivity matrices that are computed using a FEM. This requirement increases the computational burden of these methods and also increases the dependence on an accurate prior numerical model. To overcome this drawback, Stubbs, et al. (1992) developed a damage index method, which is presented in the section on methods that use mode shape curvature changes.

Stubbsと Osegueda (1990a, 1990b)は、CawleyとAdams (1979)の研究成果に基づき、モード周波数 変化の感受性を用いた損傷検出手法を開発した.この手法は、あるひとつの部材が損傷したと仮定し て、各モードと各構造部材の誤差関数を計算するものである.この誤差関数を最小化する部材が損傷 部材として検出される.部材数が計測したモード数よりも多くなる場合、従来手法に比べて検出精度 の向上が認められた.著者らは、この周波数変化感受性手法の信頼性に関して、FEMを使って計算 された感受性マトリックスで検証した.この要求事項は、これらの手法の計算負荷を増加させるとと もに、より正確な数値モデルに対する依存性が増加する.この欠点を解決するために、Stubbsら (1992)は、モード形状の曲率変化による損傷指標法を開発した.

Morassi (1997) presents an inverse technique to localize notch effects in steel frames using changes in modal frequency. This study focuses particularly on the accuracy of the assumed reference (undamaged) structural configuration and the practicality of making vibration measurements in the field. Koh, et al. (1995) use a recursive method based on static condensation to locate damage based on measured modal frequencies.

Morassi (1997)は、モード周波数の変化を用いて鋼骨組構造におけるノッチ効果の位置を検出するため逆問題技法を発表した.この研究は、健全な想定構造物の正確な諸言や実橋振動計測の実用性に焦点を当てている.Kohら (1995)は、モード周波数計測から損傷位置を検出するために、静的縮約による回帰法を適用した.

Further examples of inverse methods for examining changes in modal frequencies for indications of damage are presented by: Adams, et al. (1978); Wang and Zhang (1987); Stubbs, et al. (1990); Hearn and Testa (1991); Richardson and Mannan (1992); Sanders, et al. (1992); Narkis (1994); Brincker, et al. (1995); Balis Crema, et al. (1995); Skjaerbaek, et al. (1996a); Al-Qaisia and Meneghetti (1997); and Villemure, et al. (1996).

この他,モード周波数の変化から損傷同定するために逆問題を検討した研究事例としては,Adams ら(1978),WangとZhang (1987),Stubbsら(1990),HearnとTesta (1991),RichardsonとMannan (1992),Sandersら(1992),Narkis (1994),Brinckerら (1995),Balis Cremaら(1995),Skjaerbaek ら (1996a),Al-QaisiaとMeneghetti (1997),Villemureら (1996)が挙げられる.

MODE SHAPE CHANGES モード形状の変化

[抄訳]

モード形状の変化による損傷評価に関して以下のように示されている.

- ・FEM を使用しない構造物の損傷位置同定について、モード形状に対するモードの保証基準 (MAC)を使用が提案されている.モード形状は様々な手法により分割され、全ての分割手 法において、MAC の変化が構造物の損傷位置同定に適用される.
- ・特定のモードの節点に近接する測定点に基づく MAC である "Node line MAC" は損傷によ るモード形状の変化に対するより敏感な指標であり,損傷位置同定のためにモードの節点と最 大振幅点を関連づける簡単な手法およびモード形状の相対的変化の測定手法が提案されてい る.
- ・構造の並進および回転に関する誤差照査(STRECH)としてモード形状の変化によるモード誤差位置同定の手法が示されている.関連するモード変位の比を用いて,STRECHは異なる2つの構造自由度における構造剛性の正確性を評価できる.
- ・また、モード形状データに対して Laplacian 演算子の差分近似を使用した梁の損傷位置検出 手法、固有ベクトル感度解析に基づく構造損傷同定のためのセンサーの位置の優先付けの手法 が提案されている. 他にも、モード形状の変化の検証について MAC (COMAC)の値を調整し ている研究事例が報告されている.

(1) モード形状の曲率/ひずみモード形状変化

モード形状の曲率とひずみモード形状による損傷評価に関して以下のように示されている.

- ・振動変化の源の空間的な情報を得るために、モード形状を適用する代わりに、曲率(曲率と 曲げひずみは直接的関係)のようなモード形状からの誘導体を使用する.なお、曲率はモード 変位より中央差分演算を用いて算出可能である.
- ・測定モードの曲率から定義される 2 つの構造自由度の間におけるモードずみエネルギーの減 少に基づく手法が提示されており,基準となるモードパラメータ無しにこの手法を使用した損 傷位置の決定の可能性も検証されている.
- ・モード形状からの曲率の数値的な算出が結果として許容できない誤差に結びつく場合には、 測定されたひずみ直接使用することにより結果が改善されることが報告されている.

(2) 動的に測定された柔性に基づく手法

動的に測定された柔性に基づく損傷評価に関して以下のように示されている.

- ・損傷同定手法として、動的測定された柔性マトリックスを使用する.柔性マトリックスと静 剛性マトリックスは逆関係であり、柔性マトリックスは作用力と変位を関係付ける.したがっ て、柔性マトリックスの各列は、対応する自由度に作用させた単位荷重に対応する変形形状を 示している.質量標準化された測定モード形状と振動数から、測定された柔性マトリックスを 評価することができる.この方法による柔性マトリックスの定式化は、通常は極めて低次のモ ードのみが測定されることから、近似式となる.
- ・通常,健全な構造物のモードにより合成された柔性マトリクスあるいは FEM による柔性マトリクスを損傷した構造物のモードにより合成された柔性マトリクスを比較することにより,損傷が柔性マトリクスにより検出される.モード振動数の二乗との逆相関のため,測定された柔性マトリックスは低次モードにおける変化に最も敏感である.

(3) 柔性変化の比較

柔性変化の比較による損傷の評価に関する手法について以下のように示されている。
 ・橋梁の相対的な健全性を示す状態指標として、測定され柔性の使用が提案されている。また、
 構造物の測定された柔性の変化に基づく損傷検出と位置決定の手法も提案されている。

・橋梁の測定された柔性を解析し、基準となるデータの有無に関わらず断面方向の柔性の異常

West (1984) presents what is possibly the first systematic use of mode shape information for the location of structural damage without the use of a prior FEM. The author uses the modal assurance criteria (MAC) to determine the level of correlation between modes from the test of an undamaged Space Shuttle Orbiter body flap and the modes from the test of the flap after it has been exposed to acoustic loading. The mode shapes are partitioned using various schemes, and the change in MAC across the different partitioning techniques is used to localize the structural damage.

West (1984)は, FEM を使用しない構造物の損傷位置同定に対するモード形状の最初のシステム的使用の可能性について提示している.著者は,スペースシャトル Orbiter の健全な機体のフラップと音速飛行による荷重を受けた後のフラップの実験よるモードについて相関レベルを決めるために,モードの保証基準(MAC)を使用している.モード形状は様々な手法により分割され,全ての分割手法において,MAC の変化が構造物の損傷位置同定に適用される.

Fox (1992) shows that single-number measures of mode shape changes such as the MAC are relatively insensitive to damage in a beam with a saw cut. Again this highlights the problem that too much data compression can cause in damage identification. "Node line MAC," a MAC based on measurement points close to a node point for a particular mode, was found to be a more sensitive indicator of changes in the mode shape caused by damage. Graphical comparisons of relative changes in mode shapes proved to be the best way of detecting the damage location when only resonant frequencies and mode shapes were examined. A simple method of correlating node points —in modes that show relatively little change in resonant frequencies—with the corresponding peak amplitude points—in modes that show large changes in resonant

frequencies—was shown to locate the damage. The author also presents a method of scaling the relative changes in mode shape to better identify the location of the damage.

Fox (1992) は、MAC のようなモード形状変化に関する一桁の数の測定値がこぎりで切断すること により与えた梁の損傷について比較的鈍感であることを示した. さらに、損傷同定ではデータを圧縮 しすぎることが問題となり得るということを強調した. 特定のモードの節点に近接する測定点に基づ く MAC である "Node line MAC"は、損傷によるモード形状の変化に対するより敏感な指標となる ことがわかった. モード形状の相対的変化の図式的な比較は、共鳴振動数とそのモード形状のみにお いて、損傷位置を検出する最も良い方法であることがわかった. 損傷位置同定に対して、モードの共 鳴振動数において比較的小さな変化示す節点と大きな変化を示す最大振幅点を関連づける簡単な手 法が示された. また、作者は、損傷位置をより特定しやすくするため、モード形状の相対的変化の計 測手法を提示する.

Mayes (1992) presents a method for modal error localization based on mode shape changes known as structural translational and rotational error checking (STRECH). By taking ratios of relative modal displacements, STRECH assess the accuracy of the structural stiffness between two different structural degrees of freedom (DOF). STRECH can be applied to compare the results of a test with an original FEM or to compare the results of two tests. Ratcliffe (1997) presents a technique for locating damage in a beam that uses a finite difference approximation of a Laplacian operator on mode shape data. Cobb and Liebst (1997) present a method for prioritizing sensor locations for structural damage identification based on an eigenvector sensitivity analysis. Skjaereak, et al. (1996b) examine the optimal sensor location issue for detecting structural damage based on changes in mode shapes and modal frequencies using a substructure iteration method.

Mays (1992)は、構造の並進および回転に関する誤差照査(STRECH)として知られる、モード形状の 変化によるモード誤差位置同定の手法を提示している.関連するモード変位の比を用いて、STRECH は異なる2つの構造自由度における構造剛性の正確性を評価する.自由度の異なった2つの構造物の 構造的剛性 (DOF)の精度を評価する.STRECH は、試験結果とその原型のFEMの比較、または2 つの試験結果の比較に適用できる.

Ratcliffe (1997) は、モード形状データに対して Laplacian 演算子の差分近似を使用した梁の損傷位置を見つけるための手法を提示している. Cobb と Liebst は、固有ベクトル感度解析に基づく構造損傷同定のためのセンサーの位置の優先付けの手法を提示している. Skjaereak ら(1996) は、基礎反復法を使用して、モード形状と振動数における変化による構造物の損傷を見つけるためのセンサーの最適位置問題について検討している.

Yuen (1985); Rizos, et al. (1990); Osegueda, et al. (1992); Kam and Lee (1992); Kim, et al. (1992); Srinivasan and Kot (1992) ; Ko, et al. (1994); Salawu and Williams (1994, 1995); Lam, et al. (1995); Salawu (1995); Salawu (1997); and Saitoh and Takei (1996) provide examples of other studies that examine changes in mode shapes. The studies focus primarily on MAC and coordinate MAC (COMAC) values to identify damage.

Yuen (1985); Rizos ら (1990); Osegueda ら (1992); Kam と Lee (1992); Kim ら (1992); Srinivasan と Kot (1992); Ko ら (1994); Salawu と Williams (1994, 1995); Lam, 他 (1995); Salawu (1995); Salawu (1997); そして Saitoh and Takei (1996)はモード形状の変化の検証に関す る他の研究事例を提示している. その研究は, 損傷を特定するため, 最初に MAC に着目し, さらに MAC (COMAC)の値を調整している.

MODE SHAPE CURVATURE/STRAIN MODE SHAPE CHANGES モード形状の曲率/ひずみモード形状変化

An alternative to using mode shapes to obtain spatial information about sources of vibration

changes is using mode shape derivatives, such as curvature. It is first noted that for beams, plates, and shells there is a direct relationship between curvature and bending strain. Some researchers discuss the practical issues of measuring strain directly or computing it from displacements or accelerations.

振動変化の源の空間的な情報を得るために、モード形状を適用する代わりに、曲率のようなモード形 状からの誘導体を使用する.まず、梁、板、シェルにおいて曲率と曲げひずみは直接的関係にあるこ とを注意する.直接ひずみを測定するか変位あるいは加速度からひずみを計算かの実用的な問題につ いて議論する研究者もいる.

Pandey, et al. (1991) demonstrates that absolute changes in mode shape curvature can be a good indicator of damage for the FEM beam structures they consider. The curvature values are computed from the displacement mode shape using the central difference operator.

Pandey ら (1991)は, 彼らが考えた FEM の梁の構造に対してモード形状の曲率の絶対的な変化が損 傷の良い指標であることを検証している. 曲率はモード変位より中央差分演算を用いて算出している.

Stubbs, et al. (1992) present a method based on the decrease in modal strain energy between two structural DOF, as defined by the curvature of the measured mode shapes. Topole and Stubbs (1994a, 1995b) examine the feasibility of using a limited set of modal parameters for structural damage detection. In a more recent publication, Stubbs and Kim (1996) examine the feasibility of localizing damage using this technique without baseline modal parameters.

Stubbs ら (1992)は、測定モードの曲率から定義される 2 つの構造自由度の間におけるモードずみエ ネルギーの減少に基づく手法を提示している. Topole と Stubbs (1994a, 1995b)は、構造損傷検出の ためのモードパラメータの限定された組合せの適用の可能性について検証している. 最近の著書では、 Stubbs と Kim (1996)が、基準となるモードパラメータ無しにこの手法を使用した損傷位置の決定の 可能性を検証している.

Chance, et al. (1994) found that numerically calculating curvature from mode shapes resulted in unacceptable errors. They used measured strains instead to measure curvature directly, which dramatically improved results.

Chance ら(1994)は、モード形状からの曲率の数値的な算出が結果として許容できない誤差に結びつ くことを発見した.彼らは、曲率を測定する代わりに測定されたひずみ直接使用し、結果が劇的に改 善された.

Chen and Swamidas (1994); Dong, et al. (1994); Kondo and Hamamoto (1994); Nwosu, et al. (1995); and Yao and Chang (1995) present other studies that identify damage from changes in mode shape curvature or strain-based mode shapes.

Chen と Swamidas (1994); Dong ら (1994); Kondo と Hamamoto (1994); Nwosu ら (1995)そ して Yao と Chang (1995)は、モード形状の曲率あるいはひずみに基づくモード形状の変化から損傷 を特定するその他の研究を提示している.

METHODS BASED ON DYNAMICALLY MEASURED FLEXIBILITY 動的に測定された柔性に基づく手法

Another class of damage identification methods uses the dynamically measured flexibility matrix to estimate changes in the static behavior of the structure. Because the flexibility matrix is defined as the inverse of the static stiffness matrix, the flexibility matrix relates the applied static force and resulting structural displacement. Thus, each column of the flexibility matrix represents the displacement pattern of the structure associated with a unit force applied at the corresponding DOF. The measured flexibility matrix can be estimated from the mass-normalized measured mode shapes and frequencies. The formulation of the flexibility matrix by this method is approximate due to the fact that only the first few modes of the structure (typically the lowestfrequency modes) are measured. The synthesis of the complete static flexibility matrix would require the measurement of all of the mode shapes and frequencies.

もう1つのクラスの損傷同定手法は、構造物の静的挙動の変化の評価のために動的測定された柔性マ トリックスを使用する.柔性マトリックスが静剛性マトリックスの逆と定義されるため、柔性マトリ ックスは作用する静的な力とその結果の構造的変位を関係付ける.したがって、柔性マトリックスの 各列は、対応する自由度に作用させた単位荷重に対応する変形形状を示している.質量標準化された 測定モード形状と振動数から、測定された柔性マトリックスを評価することができる.この方法によ る柔性マトリックスの定式化は、構造物の初期の少ないモード(通常、極めて低次のモード)のみが 測定されるという事実から、近似式となる.完全な静的柔性マトリックスの合成は、全てのモード形 状と振動数の測定を必要とする.

Typically, damage is detected using flexibility matrices by comparing the flexibility matrix synthesized using the modes of the damaged structure to the flexibility matrix synthesized using the modes of the undamaged structure or the flexibility matrix from a FEM. Because of the inverse relationship to the square of the modal frequencies, the measured flexibility matrix is most sensitive to change in the lower-frequency modes of the structure.

通常,健全な構造物のモードにより合成された柔性マトリクスあるいは FEM による柔性マトリクス を損傷した構造物のモードにより合成された柔性マトリクスを比較することにより,損傷が柔性マト リクスにより検出される.モード振動数の二乗との逆相関のため,測定された柔性マトリックスは低 次モードにおける変化に最も敏感である.

Comparison of Flexibility Changes

柔性変化の比較

Aktan, et al. (1994) propose the use of measured flexibility as a "condition index" to indicate the relative integrity of a bridge. They apply this technique to 2 bridges and analyze the accuracy of the flexibility measurements by comparing the measured flexibility to the static deflections induced by a set of truck-load tests.

Aktanらは、橋梁の相対的な健全性を示す状態指標として、測定され柔性の使用を提案している.彼らは、この手法を2つの橋梁に適用し、柔性の測定の確実性について一組のトラック載荷試験における静的たわみと測定された柔性を比較することにより検証している.

Pandey and Biswas (1994,1995) present a damage-detection and -location method based on changes in the measured flexibility of the structure. This method is applied to several numerical examples and to an actual spliced beam where the damage is linear in nature. Results of the numerical and experimental examples showed that estimates of the damage condition and the location of the damage could be obtained from just the first two measured modes of the structure.

Pandey と Biswas (1994,1995)は、構造物の測定された柔性の変化に基づく損傷検出と位置決定の 手法を示している.この手法は、複数の数値問題に適用されると共に、自然に線形的に損傷した実際 の添接された橋梁に適用されている.その数値的および実験的な事例の結果より、構造物の最初の2 つの測定されたモードより、損傷の発生と損傷位置の推定が可能であることが示されている.

Toksoy and Aktan (1994) compute the measured flexibility of a bridge and examine the crosssectional deflection profiles with and without a baseline data set. They observe that anomalies in the deflection profile can indicate damage even without a baseline data set.

Toksoy と Aktan (1994)は,橋梁の測定された柔性を解析し,基準となるデータの有無に関わらず 断面方向の柔性を検証している.彼らは,たとえ基準となるデータが無くても柔性の異常から損傷を 発見できることを確認している.

Mayes (1995) uses measured flexibility to locate damage from the results of a modal test on a bridge. He also proposes a method for using measured flexibility as the input for a damagedetection method (STRECH) which evaluates changes in the load-deflection behavior of a spring-mass model of the structure.

Mayes (1995)は, 橋梁のモード試験結果より損傷位置を決定するために測定された柔性を用いている. また,彼は,構造物のバネー質点モデルの荷重—変位関係の変化を評価する損傷検証手法(STRECH) のインプットとして測定された柔性を使用する手法を提案している.

Peterson, et al. (1995) propose a method for decomposing the measured flexibility matrix into elemental stiffness parameters for an assumed structural connectivity. This decomposition is accomplished by projecting the flexibility matrix onto an assemblage of the element-level static structural eigenvectors.

Petersonら(1995)は、構造的結合条件の推定のための要素剛性特性値への測定された柔性行列の分解 手法を提案している.この分解は、柔性行列を要素レベルの静的構造固有ベクトルの集合に投影する ことにより実施される.

Zhang and Aktan (1995) suggest that changes in curvatures of the uniform load surface (deformed shape of the structure when subjected to a uniform load), calculated using the uniform load flexibilities, are a sensitive indicator of local damage. The authors state that changes in the uniform load surface are appropriate to identify uniform deterioration. A uniform load flexibility matrix is constructed by summing the columns of the measured flexibility matrix. The curvature is then calculated from the uniform load flexibilities using a central difference operator.

Zhang とAktan (1995)は,等分布荷重に柔性を用いて算出される等分布荷重による表面の曲率(等分布荷重を載荷した時の構造物の曲率)は局部損傷の敏感な指標であることを提示している.著者らは,均等な劣化の評価に等分布荷重による表面形状の変化が適当であることを数式で示している.等分布荷重による柔性行列は,測定された柔性行列の列の和により構成されている.その曲率は,等分布荷重による柔性の中央差分演算により算出される.

Unity Check Method

調和チェック法

The unity check method is based on the pseudoinverse relationship between the dynamically measured flexibility matrix and the structural stiffness matrix. An error matrix is defined which measures the degree to which this pseudoinverse relationship is satisfied. The relationship uses a pseudoinverse rather than an inverse since the dynamically measured flexibility matrix is typically rank-deficient.

調和チェック法は,構造剛性行列と動的に測定された柔性行列の間の擬逆関係を基本としている. 誤 差行列は,この擬逆関係はどの程度満足されているかを測定することにより定義される.動的に測定 された柔行列は通常にランク不足となるため,両者の関係には逆関係より擬逆関係が用いられる.

Lim (1990) proposes the unity check method for locating modeling errors and uses the location of the entry with maximum magnitude in each column to determine the error location. He applies

the method to FEM examples and also investigates the sensitivity of the method to nonorthogonality in the measured modes.

Lim (1990)は、調和チェック法をモデル化エラーの位置決定として提案し、誤差行列の最大値の発生 位置をエラーの位置決定に用いている.彼はその手法をFEM例題に適用し、測定された変形モード の非直交性問題に対してその手法の感度を検証している.

Lim (1991) extends the unity check method to the problem of damage detection. He defines a least-squares problem for the elemental stiffness changes—which are consistent with the unity check error—in potentially damaged members.

Lim (1991)は,調和チェック法を損傷検出に拡張している.潜在的に損傷した部材の要素剛性変化に対する最小二乗問題(それは調和チェック法と一致する)を定義している.

Stiffness Error Matrix Method

剛性誤差行列法

The stiffness error matrix method is based on the computation of an error matrix that is a function of the flexibility change in the structure and the undamaged stiffness matrix. He and Ewins (1986) present the stiffness error matrix as an indicator of errors between measured parameters and analytical stiffness and mass matrices. For damage identification, the stiffness matrix generally provides more information than the mass matrix, so it is more widely used in the error matrix method.

剛性誤差行列法は,健全な剛性行列と構造物の柔性変化の関数である誤差行列を計算することを基本 としている.彼とEwins (1986)は,剛性誤差行列を解析による剛性・質量行列と測定された特性値と の誤差の指標として提示している.損傷同定において,剛性行列は一般的に,質量行列より情報を提 供するため,誤差行列においてより幅広く使用されている.

Gysin (1986) demonstrates the dependency of this method on the type of matrix reduction used and on the number of modes used to form the flexibility matrices. The author compared the reduction techniques of elimination, Guyan-reduction, and indirect reduction, and found that the latter two techniques gave acceptable results, while the first technique did not.

Gysin (1986)は、この手法の柔性行列を算出するために適用するモード数とマトリクス換算(演算) 法への依存性について提示している.著者は、消去、Guyan換算、間接換算の各換算技法について比 較を行っており、最初の手法以外の後者の2手法が良好な結果が得られることを確認している.

Park, et al. (1988) present a weighted error matrix, where the entries are divided by the variance in natural frequency resulting from damage in each member. The authors apply their formulation to both beam models and plate models.

Parkら (1988)は、重み付き誤差マトリクスを提案しており、その値は各要素の損傷による自由振動 数の変化から決定される.

Effects of Residual Flexibility

残差柔性の影響

The residual flexibility matrix represents the contribution to the flexibility matrix from modes outside the measured bandwidth so that the exact flexibility matrix can be related to the measured modes and the residual flexibility. Doebling, et al. (1996b) and Doebling (1995) present a technique to estimate the unmeasured partition of the residual flexibility matrix because only

one column of the frequency response function (FRF) matrix can be measured for each modal excitation DOF. This technique does not add any new information into the residual flexibility, but it does complete the reciprocity of the residual flexibility matrix so that it can be used in the computation of measured flexibility. The authors demonstrate that the inclusion of the measured residual flexibility in the computation of the measured flexibility matrix yields a more accurate estimate of the static flexibility matrix.

残差柔性行列は、測定された振動数域を超えたモードの柔性行列に対する影響を示している.そのため、正確な柔性行列は測定されたモードと残差柔性行列に関係付けられる.Doeblingら(1996b)と Doebling(1995)は、振動数応答関数(FRF)行列の一列が各自由度のモード刺激に対して測定する ことができることから、測定されない範囲の残差柔性行列の評価手法について提案している.この手 法は残差柔性に対して何の新しい情報も追加しないが、残差柔性行列の相互依存性を満足しているため 測定された柔性マトリクスを計算するために使用される.著者らは、測定された柔性行列の計算に 対する残差柔性行列の適用が静的柔性行列のより正確な推定に繋がることを提示している.

Changes in Measured Stiffness Matrix

測定された剛性行列の変化

A variation on the use of the dynamically measured flexibility matrix is the use of the dynamically measured stiffness matrix, defined as the pseudoinverse of the dynamically measured flexibility matrix. Similarly, the dynamically measured mass and damping matrices can be computed. Salawu and Williams (1993) use direct comparison of these measured parameter matrices to estimate the location of damage.

動的に測定され柔性行列の使用上の変量は、動的に測定された柔性行列との擬逆関係により定義されるように、動的に測定された剛性行列に使用される.同様にして、動的に測定された質量および減衰行列が計算することができる.SalawuとWilliams (1993)は、損傷位置の同定のため、測定されたこれらの特性行列の直接比較を使用している.

Peterson, et al. (1993) propose a method to use the measured stiffness and mass matrices to locate damage by solving an "inverse connectivity" problem, which evaluates the change in impedance between two structural DOF to estimate the level of damage in the connecting members.

Peterson ら(1993)は、"逆接合"問題を解くことにより損傷位置同定への測定された剛性および質量行列の使用方法について提案しており、それは接合部材の損傷レベルの推定のため2つの構造自由度のインピーダンスの変化を評価している.

METHODS BASED ON UPDATING STRUCTURAL MODEL PARAMETERS

構造モデルパラメータのアップデーティング法

【抄訳】

モデルアップデーティング法には,静的応答また 現した構造モデル(質量,剛性,減衰等)の行列を この同定法では,運動方程式,公称モデル,計測 更新された行列(または,更新行列から求められた 損傷の指標や位置,程度は,更新行列と元の相関 なお,損傷同定法のアルゴリズムの違いは,「目 適化に使用される数値計算手法」の3つに分類でき	は動的応答から計測し,可能な限り厳密に再 修正する方法がある. データに基づく制約付最適化問題を形成し, 形式的なモデルの摂動)を求める. 行列を比較することで,算出できる. 的関数の最小化」,「制約充足問題」,「最 る.
 (1)目的関数と制約条件 目的関数と以下に示す制約条件として、モータ 対称行列の特性を保持するための制約条件 疎行列の特性を保持するための制約条件 正行列における特性を保持するための制約 	[*] ルフォース誤差が用いられる. # 約条件
 (2)最適な行列の更新方法 最適な行列の更新方法としては、損傷モデルの 閉形式直接解を用いる方法が一般的である。また ルティベースの最適化として定式化されている。 最適化問題の一般的な公式は、モーダルフォー 用いた、全体パラメータ行列の摂動のフロベニウセンサー数は、損傷検出するために、計測モー 十分なモーダルデータが利用できる場合、計測 トラス構造の要素剛性と質量パラメータをコンとその他の方法として、行列の摂動のノルムでは 与える手法がある。 MRPT アルゴリズム (Minimum Rank Perturbati 損傷ベクトルの非ゼロ成分は、損傷位置 摂動の結果は、モーダルフォース誤差の可 (構造の剛体モードを維持することから) 	9行列,または、行列の摂動を計算するための 、、ラグランジュの未定乗数法、または、ペナ マス誤差ゼロ点と対称行列の特性の制約条件を マスノルムを最小にする。 - ド数の次に重要なパラメータである。 されたモーダル周波数とモードシェイプから ニュータで解析することができる。 なく、行列の摂動のランクの最小化に影響を on Theory) について、以下に示す。 を示す。 計算で用いられたモード数と同じ階数となる。 正明される)
 MRPT アルゴリズムの拡張版は、次の様に用い 片持梁に載荷された集中荷重の位置を見- 質量、剛性、比例減衰行列の摂動を同時は 仮定質量と剛性マトリックスが関連する- 元の FEM がない場合の最適化を行う. 振動テストと FEM 解析との間でモード数的荷重と振動実験の結果から、剛性の摂動 	いられる. つける. こ評価する. ベースラインデータセットを使用することで, が一致しないことを避けるために,複数の静 動を計算する.
(3) 感度ベースの更新方法 感度ベースの更新方法には,行列の摂動の誤差 を基にしたものがある.なお,基本となるのは, ラメータ)のベクトルを特定することである./ プソン反復法で計算され,誤差関数を最小にする	選数を最小にする,一次のテイラー級数の解 修正モデルパラメータ(材料特性や幾何学パ ジラメータの摂動ベクトルは,ニュートン・ラ か.

いくつかの感度ベースの更新方法間の主な違いは、感度行列の評価の使用方法である。それ ぞれ、実験または解析の結果を評価するために用いられる。感度ベースの実験で得られた直行 相関関係は、モデルパラメータの導関数の計算で用いられる。感度ベースの解析では、通常、 剛性行列と質量行列の導関数の評価が必要となり、それらはデータのノイズとパラメータの大 きな摂動に対し、実験的な感度行列よりも敏感である

行列の更新方法の計算バリエーションには、質量と剛性の系、重心系、固有振動数とモード シェイプの変化、構造パラメータと実験的な計測のための統計的な信頼ファクター等によるも のがある

(4) 固有構造配置法

固有構造配置法は、モーダルフォース誤差を最小化する仮想のコントローラの設計をベース としたものである.仮想コントローラのゲインは、無損傷構造モデルのパラメータ行列の摂動 として解釈される.また、仮想コントローラのゲインは、公称構造モデルと損傷構造がゼロと 計測モーダルパラメータ間のモーダルフォース誤差としても選択される.

最適達成可能固有ベクトルと計測固有ベクトルとの関係は,損傷位置の計測に使用される. 特に,特定部材が損傷している場合,計測固有ベクトルと最適達成可能固有ベクトルは同じも のとなる.また,最適達成可能固有ベクトルと計測固有ベクトルとの間の角度は,特定部材が 特定モードの変化にどの程度影響するかの指標を示し,構造的な損傷の位置を仮定するのに用 いることができる.

最適達成可能固有ベクトル,無損傷モデル行列,モーダルフォース誤差方程式を満足するコントローラといった固有構造配置法を用いて,損傷の大きさを計算することができる.

- なお,固有構造配置法の改良版,類似版として,以下の方法がある.
 - ◆ モードシェイプの譲渡性と更新モデルのスパース性を維持するための改良を加えたものがあり、片持ち梁の弾性係数の同定に用いられた.
 - ◆構造部材毎の損傷係数を定義し,固有構造配置法を用いて各部材の損傷係数を解析した. これは、10ベイトラス FEM でシミュレートした損傷を検出するために用いられた.
 - ◆ 周波数応答関数配置方式(FRF assignment)という要素レベルの剛性と質量の摂動要素 の線形解として問題を定式化したものがある. 直接 FRF の計測値を使用する方が,モ ードシェイプを抽出するよりも簡単である.

(5) ハイブリッドな行列更新方法とその他事項

ハイブリッドな行列更新方法として,以下の方法がある.

- ◆ 大規模構造の局所的な計測において、"損傷が発生している構造の領域を識別する"ために行列更新の最適化を行った後、"損傷が発生している特定の構造要素の位置を識別する"ために感度ベースの手法を用いる方法がある.
- ◆ FEM の連結性を保持することで、剛性行列の摂動を制限し、要素剛性パラメータに応じて摂動ベクトルの大きさを最小にする方法がある.
- ◆ 要素レベルの剛性パラメータの摂動の形式で,損傷の大きさの推定値を概算する方法がある.
- ◆ LSQIC と呼ばれるモードシェイプ拡張アルゴリズムは、計測不可能な FEM 自由度で、 計測されたモードシェイプを概算するために用いられる.

Another class of damage identification methods is based on the modification of structural model matrices such as mass, stiffness, and damping to reproduce as closely as possible the measured static or dynamic response from the data. These methods solve for the updated matrices (or perturbations to the nominal model that produce the updated matrices) by forming a constrained optimization problem based on the structural equations of motion, the nominal model, and the measured data. Comparisons of the updated matrices to the original correlated matrices provide an indication of damage and can be used to quantify the location and extent of damage. The methods use a common basic set of equations, and the differences in the various algorithms can be classified as follows:

- 1. Objective function to be minimized
- 2. Constraints placed on the problem
- 3. Numerical scheme used to implement the optimization

The following sections describe each of the classification items in this list. For the formulas and equations for each of these sections, please refer to Doebling, et al. (1996a).

損傷同定法のもうひとつのクラスとして,静的または動的応答から計測し可能な限り厳密に再現した, 質量,剛性,減衰等の構造モデルの行列の修正に基づくものがある.これらの同定法では,運動方程 式,公称モデル,そして,計測データに基づく制約付最適化問題を形成することにより,更新行列(ま たは,更新行列から求められた形式的なモデルの摂動)を求める.更新行列と元の相関行列の比較に より,損傷の指標を規定し,損傷の位置と程度を示すために使用することができる.その方法では, 一般的な基本方程式を使い,そして,以下の様に,各種アルゴリズムの違いを分類することができる.

- 1. 目的関数の最小化
- 2. 制約充足問題
- 3. 最適化に使用される数値計算手法

以下のセクションでは、このリストの分類細目について述べる.各セクションで用いられる公式と方 程式は、Doebling等(1996a)の論文を参照のこと.

Objective Functions and Constraints

目的関数と制約条件

There are several different physically based equations that are used as either objective functions or constraints for the matrix update problem, depending upon the update algorithm. The structural equations of motion are the basis for the "modal force error equation." It is first assumed that the structural eigenequation is satisfied for all measured modes. Substituting the eigenvalues (modal frequencies) and eigenvectors (mode shapes) measured from the damaged structure into this equation along with the mass and stiffness matrix from the undamaged structure yields a vector that is defined as the "modal force error," or "residual force." As described by Ojalvo and Pilon (1988), this vector represents the harmonic force excitation that would have to be applied to the undamaged structure at the damaged frequency so that the structure would respond with the damaged mode shape.

いくつかの異なる物理方程式は、更新アルゴリズムによる行列更新問題のための目的関数または制約 条件として用いられる.運動方程式は、モーダルフォース誤差方程式の基本である.最初に、全ての 計測モードを満足した固有方程式を仮定する.固有値(モード周波数)と、質量および無傷の構造の剛 性行列を考慮した方程式に損傷構造から計測した固有ベクトル(振動モードシェイプ)を代用するこ とで、モーダルフォース誤差と定義されるベクトル、または、残留力が得られる.0jalvoとPilon(1988) によって説明されるように、このベクトルは、構造が損傷後のモードシェイプで応答するような損傷 頻度で無傷構造に与えられる調和励振力に相当する. There are several methods that have been used to compute the analytical model matrices of the damaged structure such that the resulting equation of motion (EOM) is balanced and the modal force error is minimized. The modal force error is used as both an objective function and a constraint in the various methods described below. Preservation of the property matrix symmetry is used as a constraint. Preservation of the property matrix sparsity (the zero/nonzero pattern of the matrix) is also used as a constraint. The preservation of sparsity is one way to preserve the allowable load paths of the structure in the updated model. Preservation of the property matrix positivity is also used as a constraint.

"均衡のとれた運動方程式"と"最小化されたモーダルフォース誤差"を結果とするような,損傷構造の 解析モデルマトリックスを計算するためのいくつかの方法がある.モーダルフォース誤差は,以下で 説明する様々な方法における目的関数と制約条件として用いられる.また,対称行列における,特性 を保持する制約条件として使用される.また,疎行列(ゼロ/非ゼロの行列パターン)における特性を保 持する制約条件としても使用される.疎行列の保持は,更新モデルの構造の許容荷重経路を保持する 一つの方法である.また,正行列における特性を保持する制約条件としても使用される.

Optimal Matrix Update Methods

最適な行列の更新方法

Methods that use a closed-form direct solution to compute the damaged model matrices or the perturbation matrices are commonly referred to as optimal matrix update methods. Smith and Beattie (1991a), Zimmerman and Smith (1992), Hemez (1993), and Kaouk (1993) have published reviews of these methods. The problem is generally formulated as a Lagrange multiplier or penalty-based optimization.

ー般的に最適な行列の更新方法は,損傷モデルの行列,または,行列の摂動を計算するための閉形式 直接解を用いる方法である. Smith と Beattie(1991a), ZimmermanとSmith (1992), Hemez (1993), および, Kaouk (1993)は,これらの方法のレビューを報告した.その方法は,一般に、ラグランジュ の未定乗数法,または、ペナルティベースの最適化として定式化されている.

Baruch and Bar Itzhack (1978), Kabe (1985), and Berman and Nagy (1983) have a common formulation of the optimal update problem that is essentially minimization of the Frobenius norm of global parameter matrix perturbations using zero modal force error and property matrix symmetry as constraints.

Baruch と Bar Itzhack (1978), Kabe (1985),および, Berman と Nagy (1983)は、最適な更新問題 の一般的な公式を用いた.その方法は本質的に、モーダルフォース誤差ゼロ点と対称行列の特性の制 約条件を用いた、全体パラメータ行列の摂動のフロベニウスノルムを最小にする.

Chen and Garba (1988a, 1988b) present a method for minimizing the norm of the model property perturbations with a zero modal force error constraint. They also enforce a connectivity constraint to impose a known set of load paths onto the allowable perturbations. The updates are thus obtained at the element parameter level, rather than at the matrix level. This method is demonstrated on a truss FEM.

Chen と Garba (1988a, 1988b)は、モーダルフォース誤差ゼロ点の制約条件と共に、モデル特性の 摂動のノルムを最小化するための方法を示した.また、彼らは、許容可能な摂動における、荷重経路 の既知の集合を制御するための拘束条件の連結性を示した.このような更新問題は、行列レベルより、 むしろ要素パラメタレベルで得られる.この方法は、トラスFEMで裏付けられる.

Another approach to this problem used by Kammer (1988) and Brock (1968) can be formulated as minimization of modal force error with a property matrix symmetry constraint. The symmetry constraint preserves the reciprocity condition in the updated structural model. Kammer (1988) と Brock (1968)によって用いられた,更新問題への他のアプローチでは,対称行列 特性の制約条件と共に,モーダルフォース誤差を最小化するように定式化することができる.対称行 列の制約は,更新構造モデルにおける相互状態を保持する.

McGowan, et al. (1990) report ongoing research that examines stiffness matrix adjustment algorithms for application to damage identification. Based on measured mode shape information from sensor locations that are typically fewer than the DOF in an analytical model, mode shape expansion algorithms are employed to extrapolate the measured mode shapes such that they can be compared with analytical model results. These results are used to update the stiffness matrix while maintaining the connectivity and sparsity of the original matrix.

McGowan等(1990)は,損傷同定に応用するための剛性行列の調整アルゴリズムに関する調査内容の研 究報告を行った.モードシェイプ展開アルゴリズムは,通常,分析モデルの自由度より少ないセンサ 一位置からの計測モードシェイプ情報に基づいて,分析モデル結果と比較ができるよう,計測モード シェイプを推定するために使われる.これらの結果は,元の行列の連続性とスパース性を維持してい る間,剛性行列を更新するのに用いられる.

Smith and Beattie (1991a) extend the formulation of Kabe (1985) to include a sparsity preservation constraint and also formulate the problem as the minimization of both the perturbation matrix norm and the modal force error norm subject to the symmetry and sparsity constraints.

Smith と Beattie (1991a)は、スパース性の保存制約条件を考慮してKabe (1985)の定式化を拡張し、 "行列の摂動のノルム"と"対称性とスパース性の制約条件に従うモーダルフォース誤差のノルム" の両方を最小化する方法を定式化した.

Smith (1992) presents an iterative approach to the optimal update problem that enforces the sparsity of the matrix at each iteration cycle. Multiplying each entry in the stiffness update by either one or zero enforces the sparsity pattern. Kim and Bartkowicz (1993) investigate damage detection capabilities with respect to various matrix update methods, model reduction methods, mode shape expansion methods, numbers of damaged elements, numbers of sensors, numbers of modes, and levels of noise. The authors develop a hybrid model reduction / eigenvector expansion approach to match the order of the undamaged analytical model and the damaged test mode shapes in the matrix update. They also introduce a more realistic noise level into frequencies and mode shapes for numerical simulation. From both numerical and experimental studies, the authors showed that the number of sensors is the most critical parameter for damage detection, followed by the number of measured modes.

Smith (1992)は、反復サイクル毎に行列のスパース性を強化する最適化問題への反復アプローチを提示した.1か0のいずれかにより更新された剛性のエントリを乗じることで、スパースパターンは強化される.KimとBartkowicz (1993)は、様々な行列更新方法、モデル低減法、振動モードシェイプの展開法、損傷要素の数、センサ数、モード数、およびノイズレベルの観点から、損傷検出能力を調査した.彼らは、損傷していない解析モデルと更新行列の損傷実験のモードシェイプの順序に一致する、縮小ハイブリッドモデル/固有ベクトルの検証方法を開発した.また彼らは、周波数に含まれる、よりリアルなノイズレベルと数値シミュレーションのために振動モードシェイプを取り入れた.数理的研究と実験的研究の両方から、筆者等は、センサー数が、計測モード数に続いて損傷検出するために最も重要なパラメータである、ということを示した.

Lindner, et al. (1993) present an optimal update technique that formulates an overdetermined system for a set of damage parameters representing reductions in the extensional stiffness values for each member. The value represents the amount of stiffness reduction in that member. Lindner and Kirby (1994) extend the technique to account for changes in elemental mass properties.

Lindner等(1993)は、各部材の伸び剛性の減少で表される損傷パラメータセットの過剰決定系を定式 化する最適な更新手法を提示した.伸び剛性の減少量は、その部材の剛性低下量を表す.Lindner と Kirby (1994)は、基本的な要素質量特性に変換するための計算手法に拡張した.

Liu (1995) presents an optimal update technique for computing the elemental stiffness and mass parameters for a truss structure from measured modal frequencies and mode shapes. The method minimizes the norm of the modal force error. The author demonstrates that if sufficient modal data are available, the elemental properties can be directly computed using the measured modal frequencies, measured mode shapes, and two matrices which represent the elemental orientations in space and the global connectivity of the truss. In this case, the solution for the elemental properties is shown to be unique and globally minimal. The method is used to locate a damaged member in a FEM of a truss using the first four measured modes in sets of three at a time.

Liu (1995) は、計測モーダル周波数とモードシェイプからトラス構造の要素剛性と質量パラメータ をコンピュータで解析するための最適な更新手法を示した.その方法は、モーダルフォース誤差のノ ルムを最小化するものである.彼らは、十分なモーダルデータが利用できるならば、要素特性は、計 測モーダル周波数、モードシェイプ、そして、空間での部材方向とトラスの全体的な接続性を示す2 つの行列を用いて、直接コンピュータで計算できることを示した.このケースでは、部材特性の解は、 一意で極小となることを示している.この方法は、一回3セットの最初の4つの計測モードを使用す るトラスFEMの損傷部材を見つけるために用いられる.

Another type of approach to the optimal matrix update problem involves the minimization of the rank of the perturbation matrix, rather than the norm of the perturbation matrix. This approach is motivated by the observation that damage will tend to be concentrated in a few structural members, rather than distributed throughout a large number of structural members. Thus, the perturbation matrices will tend to be of small rank. This approach has been published extensively by Zimmerman and Kaouk (see Refs. below). The solution for the perturbation matrices is based on the theory that the a unique minimum rank matrix solution of the underdetermined system exists.

その他の最適な行列更新問題へのアプローチは、行列の摂動のノルムではなく、行列の摂動のランクの最小化に影響を与える.このアプローチは、多数の構造部材の全体に分散するのではなく、いくつかの構造部材に集中する傾向があるという損傷の計測により動機づけられる.つまり、行列の摂動は小さいランクになる傾向がある.このアプローチは、Zimmerman と Kaoukにより広く公開された.行列の摂動の解は、劣決定系が存在するユニークな最小階数の行列解であるという理論に基づいている.

Zimmerman and Kaouk (1994) present the basic minimum rank perturbation theory (MRPT)

algorithm. A nonzero entry in the damage vector is interpreted as an indication of the location of damage. The resulting perturbation has the same rank as the number of modes used to compute the modal force error. It is demonstrated that the MRPT algorithm preserves the rigid body modes of the structure and the effects of measurement and expansion errors in the mode shapes are demonstrated and discussed.

Zimmerman と Kaouk (1994) は,基本的な最小階数の摂動理論(MRPT)アルゴリズムを示した.損傷ベクトルの非ゼロ成分は,損傷位置を示すものとして解釈される.摂動の結果は,モーダルフォース誤差の計算で用いられたモード数と同じ階数となる.MRPTアルゴリズムが構造の剛体モードを維持することで,それは証明された.そして,モードシェイプの計測誤差と拡張誤差の効果は,議論され,証明された.

Kaouk and Zimmerman (1994a) further develop this algorithm and demonstrate how perturbations to two of the property matrices can be estimated simultaneously by using complex conjugates of the modal force error equation. The method is demonstrated numerically for a truss with assumed proportional damping. Also, the technique is used experimentally to locate a lumped mass attached to a cantilevered beam.

Kaouk と Zimmerman (1994a) は、このアルゴリズムをより発展させ、2 つの行列特性の摂動が、どの ようにして、モーダルフォース誤差方程式の複素共役を用いたシミュレーションから推測できるかを 証明した.その方法は、比例減衰で仮定されたトラス構造で数値的に裏付けされた.また、その手法 は、片持梁に載荷された集中荷重の位置を見つけるために、実験的に使われる.

Kaouk and Zimmerman (1994b) extend the MRPT algorithm to estimate mass, stiffness, and proportional damping perturbation matrices simultaneously. The computation of these individual perturbation matrices is accomplished by exploiting the cross-orthogonality conditions of the measured mode shapes with respect to the damaged property matrices. The authors examine the results by computing a cumulative damage vector.

Kaouk と Zimmerman (1994b) は、質量、剛性、比例減衰行列の摂動を同時に評価するためにMRPTア ルゴリズムを拡張した.これら個々の行列の摂動の計算は、損傷特性行列に重点をおいたモードシェ イプで計測された直交性検査の条件を利用し、実行される.彼らは、累積損傷ベクトルを計算するこ とにより結果を調査した.

Kaouk and Zimmerman (1994c) present a technique that can be used to implement the MRPT algorithm with no original FEM. The technique involves using a baseline data set to correlate an assumed mass and stiffness matrix, so that the resulting updates can be used as the undamaged property matrices.

Kaouk とZimmerman (1994c)は、元のFEMがない場合のMRPTアルゴリズムを最適化に用いる手法を示した.この手法では、仮定質量と剛性マトリックスが関連するベースラインデータセットを使用しているので、更新結果は無損傷の行列特性のように用いる事ができる.

Zimmerman and Simmermacher (1994, 1995) compute the stiffness perturbation resulting from multiple static load and vibration tests. This technique is proposed partially as a method for circumventing the mismatch in the number of modes between test and FEM. They apply this technique to a FEM of a structure similar to a NASA test article. They also present two techniques for overcoming the rank deficiency that exists in the residual vectors when the results of one static or modal test are linear combinations of the results of previous tests.

Zimmerman と Simmermacher (1994, 1995)は、複数の静的荷重と振動実験の結果から、剛性の摂動を 計算した.この手法は、振動テストとFEM解析の間で、モード数が一致しないことを回避する方法と して部分的に提案された.彼らは、NASAの実験体と類似構造のFEM解析にこの手法を適用した.彼ら はまた、1つの静的またはモーダル実験の結果が、前述の実験結果の線形結合である時の残差ベクト ルが存在する場合のランク欠損を解決するために、2つの手法を提示した.

Kaouk and Zimmerman (1995a) introduce a partitioning scheme into the MRPT algorithm by writing the parameter matrix perturbations as sums of elemental or substructural perturbations. The partitioning procedure reduces the rank of the unknown perturbation matrices and thus reduces the number of modes required to successfully locate the damage. The technique is demonstrated on data from the NASA 8-bay Dynamic Scale-Model Truss (DSMT) testbed. In a related paper, Kaouk and Zimmerman (1995b) further examine the reduction of the number of modes required for model updating using a two-level matrix partitioning technique. Kaouk と Zimmerman (1995a)は、要素または部分構造の摂動の和として、摂動マトリックスの特性を 書き込むことで、MRPTアルゴリズムを分割する手法を示した.その分割手順では、不明な行列の摂動 のランクが低減し、損傷を予想通りに見つける為に要求されたモード数も低減する.その手法は、NASA の 8-bay Dynamic Scale-Model Truss (DSMT)実験のデータで裏付けられた. 関連論文によると、Kaouk と Zimmerman (1995b)は、2段階の行列分配手法を用いるモデル更新で必要な、モード数の減少に関 する調査を行った.

Zimmerman, et al. (1995a) extend the theory to determine matrix perturbations directly from measured FRFs. This method is implemented by solving for the perturbation in the dynamic impedance matrix from the generalized off-resonance, dynamic-force residual equation. They discuss the benefits of this formulation, including the elimination of the need to match modes between FEM and test, reduction in the amount of frequencies required in the test (and thus test time), and the elimination of the need to perform modal parameter identification.

Zimmerman等(1995a)は、計測周波数応答(FRFs)から、直接行列の摂動を決定するために理論を拡張した.この理論は、一般的なオフレスポンスとダイナミックフォース残差方程式から、ダイナミックインピーダンス行列の摂動を目的とした解決法によって実装される.彼らは、FEMと実験の間でのモード一致の必要性の排除を含めてこの理論の優位性を検討し、実験(その実験回数)で必要とする周波数帯域を縮小し、そして、モーダルパラメータの同定の必要性を削減した.

Zimmerman, et al. (1995b) investigate the role of engineering insight and judgment in the implementation of the MRPT techniques to damage detection. Specifically, the issues of evaluation of the damage location, selection of how many measured modes to use, filtering of the eigenvectors and the damage vector, and decomposition of the damage vector into contributions from individual property matrices are addressed. This paper also contains a list of publications related to the theory and application of MRPT.

Zimmerman等(1995b)は、エンジニアとしての立場で調査し、損傷検出のためのMRPT手法の可用性を判断した.具体的には、損傷位置の評価の方法、使用する計測モードの選定、固有ベクトルと損傷ベクトルのフィルタリング、そして、個々の行列の特性から与えられる損傷ベクトルの分解、を指している.また、この報告書には、理論に関連した出版物とMRPTアプリケーションのリストも含まれている.

Doebling (1996) presents a method to compute a minimum-rank update for the elemental parameter vector, rather than for global or elemental stiffness matrices. The method uses the same basic formulation as the MRPT, but constrains the global stiffness matrix perturbation to be an explicit function of the diagonal elemental stiffness parameter perturbation matrix that preserves the finite element strain-displacement relations. A limitation of this method as with all minimum-rank procedures is that the rank of the perturbation is always equal to the number of modes used in the computation of the modal force error.

Doebling (1996)は、全体または要素剛性行列のためというより、むしろ要素パラメータベクトルのために、最小のランク更新を計算する方法を示した.その方法では、MRPTと同じ基本公式を用いるが、全体剛性行列の摂動は、有限要素の歪み-変異関係として保持される対角要素剛性パラメータの行列の摂動の陽関数に限定される.全最小ランク手法が、モーダルフォース誤差の計算で使われるモード数と常に等しい摂動ランクであることが、この方法の制限である.

Sensitivity-Based Update Methods 感度ベースの更新方法

Another class of matrix update methods is based on the solution of a first-order Taylor series that minimizes an error function of the matrix perturbations. Such techniques are known as

sensitivity-based update methods. An exhaustive list and classification of various sensitivitybased update techniques is given in Hemez (1993). The basic theory is the determination of a modified model parameter vector (consisting of material and/or geometric parameters), where the parameter perturbation vector is computed from the Newton-Raphson iteration problem for minimizing an error function.

他の行列の更新方法のクラスは、行列の摂動の誤差関数を最小にする一次のテイラー級数の解を基に したものである.そのような手法は感度ベースの更新方法として知られている.Hemez (1993)は、様々 な感度ベースの更新手法の網羅リストと分類を示した.基本的なセオリーは、修正モデルパラメータ ベクトル(材料特性や幾何学パラメータ)を特定することであり、パラメータの摂動のベクトルは、 誤差関数を最小化にするためにニュートン・ラプソン反復法で計算される.

A main difference between the various sensitivity-based update schemes is the method used to estimate the sensitivity matrix. Basically, either the experimental or the analytical quantities can be used in the differentiation. For experimental sensitivity, the orthogonality relations can be used to compute the modal parameter derivatives. Norris and Meirovitch (1989), Haug and Choi (1984) and Chen and Garba (1980) have proposed such an approach. いくつかの感度ベースの更新手法間の主な違いは、感度行列の評価の使用方法である. 基本的に、実 験または解析の結果を評価するために用いられる. 感度ベースの実験によって得られた直行相関関係 は、モデルパラメータの導関数を計算するために用いられる. そのような手法は、Norris と Meirovitch (1989), Haug と Choi (1984) と Chen と Garba (1980)により提案された.

Analytical sensitivity methods usually require the evaluation of the stiffness and mass matrix derivatives, which are less sensitive than experimental sensitivity matrices to noise in the data and to large perturbations of the parameters.

感度ベースの解析では、通常、剛性と質量行列の導関数の評価が必要となり、それらは、データのノ イズとパラメータの大きな摂動に対し、実験的な感度行列よりも敏感である.

Ricles (1991) presents a methodology for sensitivity-based matrix update, which takes into account variations in system mass and stiffness, center of mass locations, changes in natural frequency and mode shapes, and statistical confidence factors for the structural parameters and experimental instrumentation. The method uses a hybrid analytical/experimental sensitivity matrix, where the modal parameter sensitivities are computed from the experimental data, and the matrix sensitivities are computed from the analytical model. This method is further developed and applied to more numerical examples by Ricles and Kosmatka (1992).

Ricles (1991)は、感度ベースの行列の更新のための方法論を示し、それらには、質量と剛性の系、 重心系、固有振動数とモードシェイプの変化、構造パラメータと実験的な計測のための統計的な信頼 ファクター、等による計算バリエーションがある.それらの方法では、ハイブリッドな解析/実験に よる感度行列を使用し、モーダル感度パラメータは実験データから計算され、感度行列は解析モデル から計算される.この方法は、さらに発展し、Ricles と Kosmatka (1992)により多くの数値例に適 用された.

Sanayei and Onipede (1991) present a technique for updating the stiffness parameters of a FEM using the results of a static load-displacement test. A sensitivity-based, element-level parameter update scheme is used to minimize the error between the applied forces and forces produced by applying the measured displacements to the model stiffness matrix. The sensitivity matrix is computed analytically. The structural DOF are partitioned such that the locations of the applied loads and the locations of the measured displacements are completely independent. The technique is demonstrated on two FEM examples.

Sanayei と Onipede (1991) は,静的載荷試験の結果を用いたFEMの剛性パラメータの更新テクニックを示した. 感度ベース,要素レベルのパラメータ更新手法は,"加振力"と"モデルの剛性行列に計測変位を適用することで生じた力"の間の誤差を最小にするために用いられる. 感度ベースの行列は,解析的に計算される.構造の自由度は,載荷点と独立した変位の計測地点で分割される. このテクニックは,2つのFEM例で裏付けられる.

In a related paper, Sanayei, et al. (1992) examine the sensitivity of the previous algorithm to noisy measurements. The influence of the selected measurement DOF set on the errors in the identified parameters is studied. A heuristic method is proposed that recursively eliminates the measurement DOF that the elemental stiffness parameters are the most sensitive to. In this manner, the full FEM DOF set is reduced to a manageable size while preserving the ability to identify the structural stiffness parameters. In later work, Sanayei and Saletnik (1995a, 1995b) extend the algorithm and the error analysis to use static strain, rather than displacement, measurements.

関連論文で, Sanayei等(1992)は、ノイズが多い計測値に対して、前述のアルゴリズムの感度を調査 した.特定のパラメータで生じる誤差による計測自由度の選択の影響についての研究である.経験則 として,最も敏感な要素剛性パラメータとなる計測自由度を再帰的に除去する方法が提案されている. このように,最大のFEM自由度セットは、構造的な剛性パラメータを識別する能力を維持しながら、 管理可能なサイズに減少される.その後の研究で,Sanayei と Saletnik (1995a, 1995b)は、静的 なひずみではなく、動的な変位、計測値を使用する誤差解析とアルゴリズムに拡張した.

Hemez and Farhat (1995) present a sensitivity-based matrix update procedure that formulates the sensitivities at the element level. This has the advantage of being computationally more efficient than forming the sensitivities at the global matrix level. It also allows the analysis to "focus" on damage in specific members. A modified version of this algorithm, developed by Alvin (1996), improves the convergence, utilizes a more realistic error indicator, and allows the incorporation of statistical confidence measures for both the initial model parameters and the measured data.

Hemez と Farhat (1995) は、要素レベルで感度を定式化する感度ベースの行列更新手順を示した. この方法は、全体的な行列レベルでの感度を形成するよりも計算効率の面で優位である.また、特定 部材の損傷にフォーカスした解析を可能にする.このアルゴリズムの修正版は、Alvin (1996) によ って開発され、収束性の向上、より現実的な誤差の指標の利用、そして、初期モデルのパラメータと 計測データ両方の統計的信頼度の取り込みを可能とした.

Eigenstructure Assignment Method 固有構造配置法

Another matrix update method, known as "eigenstructure assignment," is based on the design of a fictitious controller that would minimize the modal force error. The controller gains are then interpreted as parameter matrix perturbations to the undamaged structural model. Lim (1994, 1995) provides a clear overview of the eigenstructure assignment technique: Consider the basic structural EOM with a controller. Suppose that the control gains are selected such that the modal force error between the nominal structural model and the measured modal parameters from the damaged structure is zero. Then the "best achievable eigenvectors" can be written in terms of the measured eigenvectors. The relationship between the best achievable eigenvectors and the measured eigenvectors is then used as a measure of damage location. Specifically, if damage is in a particular member, then the measured and best achievable eigenvectors are identical. Thus, the angle between the two vectors gives an indicator of how much a particular member contributes to the change in a particular mode. This information can be used to hypothesize the location of the structural damage. The magnitude of the damage is then computed using the eigenstructure assignment technique such that the best achievable eigenvectors, undamaged model matrices, and controller satisfy the modal force error equation. Lim and Kashangaki (1994) introduce the use of the best achievable eigenvectors for the location of structural damage and apply the technique to the detection of damage in an 8-bay cantilevered truss.

他の行列更新方法として,モーダルフォース誤差を最小化する仮想のコントローラの設計をベースと した"固有構造配置"がある.仮想コントローラのゲインは,無損傷構造モデルのパラメータ行列の 摂動として解釈される.Lim (1994, 1995)は、コントローラと運動方程式の基本構造を考慮し、固 有構造配置のテクニックの概要を明らかに示した.仮想コントローラのゲインは、公称構造モデルと 損傷構造がゼロと計測モーダルパラメータ間のモーダルフォース誤差として選択される.そして、 "最適達成可能固有ベクトル"は、計測固有ベクトルの項として扱える.最適達成可能固有ベクトル と計測固有ベクトルとの関係は、後に損傷位置の計測に使用される.特に、特定部材が損傷している 場合、その後の計測固有ベクトルと最適達成可能固有ベクトルは同じものである.このように、2つ のベクトル間の角度は、特定部材が特定モードの変化にどの程度影響するかの指標を示す.この情報 は、構造的な損傷の位置を仮定するのに用いることができる.最適達成可能固有ベクトル、無損傷モ デル行列、そして、モーダルフォース誤差方程式を満足するコントローラといった固有構造配置法を 用いて、損傷の大きさが計算される.Lim と Kashangaki (1994)は、損傷位置と8 べイの片持ちト ラスの損傷の検出する手法を適用するために、最適達成可能固有ベクトルの利用を提示した.

Zimmerman and Kaouk (1992) implement such an eigenstructure assignment technique for damage detection. They include algorithms to improve the assignability of the mode shapes and preserve sparsity in the updated model. They apply their technique to the identification of the elastic modulus of a cantilevered beam.

Zimmerman と Kaouk (1992) は,損傷検出のためにこのような固有構造配置法を用いた.彼らは,ア ルゴリズムに,モードシェイプの譲渡性と更新モデルのスパース性を維持するための改良を加えた. 彼らは,片持ち梁の弾性係数の同定に,そのテクニックを適用した.

Lindner and Goff (1993) define damage coefficients for each structural member. They then use an eigenstructure assignment technique to solve for the damage coefficient for each member. They apply this technique to detect simulated damage in a 10-bay truss FEM. Lindner と Goff (1993) は、構造部材毎の損傷係数を定義した.彼らは、各部材の損傷係数を解析 するために固有構造配置法を用いた.彼らは、10 ベイトラスFEMでシミュレートした損傷を検出する ために、この手法を適用した.

Lim (1994, 1995) applies a constrained eigenstructure technique experimentally to a twenty-bay planar truss. His approach identifies element-level damage directly, rather than finding perturbations to the stiffness matrix. The computation of element-level perturbations is accomplished by diagonalizing the control gains, then interpreting the diagonal entries as changes to the elemental stiffness properties. The technique is shown to work well even with limited instrumentation.

Lim (1994, 1995)は、20 ベイ平面トラスに実験的に制約付きの固有構造配置法を適用した.そのアプ ローチでは、剛性行列の摂動を見つけるというより、直接要素レベルの損傷を識別する.要素レベル の摂動の計算は、コントロールゲインを対角化することによって行われ、その後、要素剛性特性の変 更として対角要素を解釈する.

Schulz, et al. (1996) present a technique similar to eigenstructure assignment known as "FRF

assignment." The authors formulate the problem as a linear solution for element-level stiffness and mass perturbation factors. They point out that using FRF measurements directly to solve the problem is more straightforward than extracting mode shapes. They use measured mobility functions (FRFs from velocity measurements) to obtain higher numerical accuracy, since the velocity response is flatter over the entire spectrum than either the displacement or acceleration response. The technique is applied to an FEM of a bridge structure. Cobb and Liebst (1997) present another eigenstructure assignment-based method for structural damage identification.

Schulz等(1996)は、周波数応答関数配置方式(FRF assignment)という固有構造配置に似た手法を示した.彼らは、要素レベルの剛性と質量の摂動要素の線形解として問題を定式化した.彼らは、問題解決のために直接FRFの計測値を使用するのが、モードシェイプを抽出するよりも簡単であることを示した.彼らは、速度応答が、変位または加速度応答のいずれかよりも、スペクトル全体にわたって平坦にされているので、より高精度の計測値を得るために計測モビリティ機能(速度計測からFRF)を使用した.その手法は、橋梁構造のFEMに適用された.Cobb と Liebst (1997)は、構造損傷同定のために、固有構造配置法をベースとしたもう一つの方法を示した.

Hybrid Matrix Update Methods and Other Considerations

ハイブリッドな行列更新方法とその他事項

Baruh and Ratan (1993) use the residual modal force as an indicator of damage location. They separate the residual modal force into the effects of identification error in the measurements, modeling error in the original structural model, and modal force error resulting from structural damage. They examine the sensitivity of the damage location solution to errors in the original structural model and to inaccuracies in the modal identification procedure.

Baruh と Ratan (1993)は,損傷位置の指標として残留モーダルフォースを用いた.彼らは,計測に よる同定誤差,オリジナル構造モデルによるモデル化誤差,そして,構造的な損傷に起因するモーダ ルフォース誤差の影響により,残留モーダルフォースを分離した.彼らは,オリジナル構造モデルの 誤差とモーダル同定手法の最大誤差で,損傷位置結果に対する感度を調査した.

Kim and Bartkowicz (1993, 1994) and Kim, et al. (1995a) present a two-step damage-detection procedure for large structures with limited instrumentation. The first step uses optimal matrix update to identify the region of the structure where damage has occurred. The second step is a sensitivity-based method, which locates the specific structural element where damage has occurred. The first advantage of this approach lies in the computational efficiency of the optimal update method in locating which structural parameters are potentially erroneous. The second advantage lies in the small number of parameters updated by the sensitivity-based technique.

Kim と Bartkowicz (1993, 1994), ならびに, Kim等 (1995a) は,大規模構造の局所的な計測における2段階の損傷検出手順を提示した.第1段階では,損傷が発生している構造の領域を識別するために,行列更新の最適化を用いる.第2段階では,損傷が発生している特定の構造要素の位置を識別するために,感度ベースの手法を用いる.このアプローチの第1の長所は,潜在的な構造パラメータの間違いを見つけるための最適な更新方法の計算効率化を図れることである.第2の長所は,感度ベースの手法により更新パラメータを少なくできることである.

Li and Smith (1994, 1995) present a hybrid model update technique for damage identification that uses a combination of the sensitivity and optimal-update approaches. This method constrains the stiffness matrix perturbation to preserve the connectivity of the FEM, and the solution minimizes the magnitude of the vector of perturbations to the elemental stiffness parameters. The hybrid technique is shown to be more computationally efficient than the iterative sparsity-preserving algorithm presented by Smith (1992).

Li と Smith (1994, 1995)は、感度と最適な更新アプローチの組み合わせた、損傷同定のためのハイ ブリッドモデルの更新手法を示した.この方法は、FEMの連結性を保持することで剛性行列の摂動を 制限し、要素剛性パラメータに応じて摂動ベクトルの大きさを最小にする.このハイブリッドな手法 は、Smith (1992)によって示されたスパース性を保持した反復アルゴリズムよりも、効果的な計算 方法として示された.

Dos Santos and Zimmerman (1996a) examine the effects of model reduction via component mode synthesis (specifically using the Craig-Bampton technique) on the accuracy of damage identification results obtained using the MRPT force residual and angle residual vectors. Numerical examples were conducted using a FEM of a clamped-clamped beam divided into five substructures of 3 or 4 elements each. Damage was simulated on one of the elements within one of the substructures by reducing the cross-sectional moment of inertia by 25%. The results indicated that the MRPT force residual vector was unable to accurately locate the damaged substructure. The results of applying the angle residual vector indicated that the damaged substructure could be identified using a highly truncated component mode set, and the damaged element could be identified using a more rich component mode set.

Dos Santos と Zimmerman (1996a)は, MRPT残留力と残差ベクトルの角度を使用して得られた損傷同 定の結果の精度で,コンポーネントモード合成法 (Craig-Bampton法が特に用いられる)によるモデ ル縮小の影響を調査した.数値例は,それぞれが3か4要素の,5つの部分構造に分割されたクラン プ支持梁のFEMで利用された.損傷は,横断面慣性モーメントを25%に減らした1つの部分構造の1 つの要素としてシミュレートされた.MRPT残留力ベクトルとして示された結果は,損傷を受けた部分 構造を正確に見つけられなかった.損傷を受けた部分構造を示す残差ベクトルの角度を適用した結果 は,高次が打ち切られたコンポーネントモードセットを利用することにより特定できた.

Dos Santos and Zimmerman (1996b) propose a method for damage identification that uses MRPT in conjunction with ordinary least-squares estimation to preserve the connectivity of the FEM during the update procedure. The method produces estimates of the damage extent in the form of element-level stiffness parameter perturbations. The procedure is conducted in two steps: First, the damaged global stiffness matrix perturbation is estimated using the MRPT algorithm. Next, a set of parameters representing the loss of stiffness in each element is estimated by minimizing the error between the MRPT matrix perturbation and the global stiffness matrix perturbation computed using the elemental stiffness matrices and the number of measurement be greater than or equal to the number of parameters being estimated.

Dos Santos と Zimmerman (1996b)は、更新手順を通して、FEMの接続性を維持するため、一般的な最 小二乗推定と共にMRPTを用いる損傷同定法を提案した.その方法では、要素レベルの剛性パラメータ の摂動の形式で、損傷の大きさの推定値を概算する.その手順は、2 つのステップで処理される.1 つめのステップは、損傷を受けた全体剛性行列の摂動が、MRPTアルゴリズムを用いて概算される.次 に、各要素の剛性低下を示すパラメータのセットが、MRPT行列の摂動と、要素剛性行列と剛性低下パ ラメータを用いて計算された全体剛性行列の摂動との間の誤差を最小化することによって概算され る.そのパラメータの一意性を判断するためには、計測数よりも多い、または、等しい数の推測点を 必要とする.

Gafka and Zimmerman (1996) evaluate the performance of a mode shape expansion algorithm known as Least-Squares Dynamic Residual Force Minimization with Quadratic Measurement Error Inequality Constraint (LSQIC). The method is used to estimate the component of the measured mode shapes at the unmeasured FEM DOF. The method minimizes the error in the residual modal force vector that results from substituting the expanded measured mode shape into the FEM eigenequation. The magnitude of the difference between the expanded and measured mode shape at the measurement DOF is constrained to be less than a certain fraction of the magnitude of the measured mode shape. The method is compared to two standard techniques — Guyan (or static) expansion and dynamic expansion - for application to both FEM model correlation and damage identification. The results demonstrate that the expansion method allows for accurate FEM correlation in the general case where the errors are distributed somewhat evenly in the structure. However, in the case of damage identification, where the discrepancies between the test data and the model are isolated at a few DOF, a smearing effect resulting from the use of a singular value decomposition in the solution procedure can impede accurate identification of the damage.

Gafka と Zimmerman (1996)は、「二次計測誤差の不等式制約付き最小二乗法の動的な残留力の最小化 (LSQIC)」として知られるモードシェイプ拡張アルゴリズムのパフォーマンスを調査した. その方法

は、計測不可能なFEMの自由度で、計測されたモードシェイプを概算するために用いられる.その方法は、FEM固有方程式の中で増大した計測モードシェイプの代わりに生じた、残留モーダルフォースベクトルの誤差を最小化する.拡張モードシェイプと計測された自由度における計測モードシェイプとの違いの大きさは、計測モードシェイプの大きさの一定の割合よりも小さくなるように制約される.その方法は、FEMモデルの相関性と損傷同定に応用するため、一般的な2手法—Guyanの静縮小と動的法—で比較される.その結果は、「拡張メソッドは、構造内に一様に適度に誤差が拡散させられるような一般的なケースでは、FEMの相関性を正確に示す」ということを証明している.しかしながら、損傷同定のケースでは、試験データとモデルの差異がわずかな自由度で分離されている場合、解決手順の中で特異値分解を用いることによって生じたスミアリング効果により、正確な損傷同定が阻害される.

Yao and Natke (1994) present a model-based approach for damage detection and structural reliability evaluation based on parameter changes of the verified mathematical model. Hjelmstad and Shin (1997) present another damage detection technique based on FEM updating. This procedure uses an adaptive parameter-grouping scheme to localize the damage under the realistic conditions of spatially sparse measurement data. A technique is proposed to determine a threshold above which damage can be discriminated from background noise.

Yao と Natke (1994)は,損傷検出のためのモデルベースのアプローチと検証済の数学モデルのパラ メータの変化に基づく構造信頼性評価を示した. Hjelmstad と Shin (1997)は,FEMアップデーティ ングに基づくもう一つの損傷同定のテクニックを示した.この手順は,空間的にまばらな計測データ の実際の条件下で損傷を制限するために,適用可能なパラメータを分類するために用いられる.この テクニックは,損傷とバックグラウンドノイズとが区別された上で,閾値決定のために示される.

Doebling, et al. (1997) examine the effects of mode selection on the accuracy of the damage location and extent identified using a FEM refinement scheme. A method is proposed to select modes for the update based on modal strain energy content. James and Zimmerman (1997) present a study of the model order reduction and measured data expansion processes. The magnitude of errors introduced by the processes and the preservation of the original load paths are some of the topics addressed in this paper.

Doebling等(1997)は、FEMの改良方法を用いて同定された損傷位置と大きさの精度で、モード選択の 効果を調査した.その方法は、モーダル歪エネルギーの含有量に基づいた更新を目的としたモードを 選択するために提示された.James と Zimmerman (1997)は、モデル次数の低減と計測データの拡張 プロセスに関する研究を示した.オリジナルの荷重経路の手順と保持することによって決まる誤差の 大きさは、この論文にいくつかのトピックとして取り上げられている.

CRITICAL ISSUES FOR FUTURE RESEARCH IN DAMAGE IDENTIFICATION AND HEALTH MONITORING

損傷同定とヘルスモニタリングにおける将来研究のための重要課題

【抄訳】

本章は、振動を利用した構造損傷同定法とヘルスモニタリング法における重要課題についてまとめている.

- 多くのアルゴリズムが、初期の解析モデルおよび試験データへの依存度が高い. 誤ったデータへの依存を最小にするための技術(モデルアップデート)が必要である.
- 現在の損傷同定法の多くが線形モデルを仮定しており、疲労亀裂の開閉など非線形応答を考慮 するための技術が必要である.非線形応答を検出する技術は、初期モデルを不要にできるという利点がある.
- 実用性の高い損傷同定法とするためには、損傷発生位置に関する知識なしで、少ない測点数で 最適な位置を決める方法が必要である。
- 多くの研究者が抱える重要な課題は、構造上の小さい損傷がモーダルパラメータに与える感度の問題であり、モーダルパラメータの変化が損傷によるものなのか物理的な検証を十分に行う必要である。
- 損傷によるモード特性の変化と測定条件の変化によって生じるモード特性の変化を区別する 方法も必要である.モード特性の環境変化による変動など統計的に評価する研究がDoeblingら によって始められている.
- 橋や造船などの長期ヘルスモニタリングを行う上で、加振力への依存度を小さくすることも必要であり、常時微動の有効利用が求められる。
- 一部の研究で異なる損傷同定法の客観的な比較検証がなされているものの、そのような研究が 不十分である(有用なデータの研究的活用).
- 理論的アルゴリズムと実験上の制約との統合が,損傷同定法の確立のために必要である.
- 総括すると、各損傷同定法の検証の蓄積が必要であり、産官学の協力を得て、室内実験より供用環境下での実フィールドテストに注力すべきである。

This section contains a summary of the critical issues, as perceived by the authors, in the field of vibration-based structural damage identification and health monitoring. The purpose behind this section is to focus on the issues that must be addressed by future research to make the identification of damage using vibration measurements a viable, practical, and commonly implemented technology.

本章は、振動を利用した構造損傷同定とヘルスモニタリングの分野において、著者が考える重要課題 についてまとめている.本章の目的は、実行可能で、実用的で、普遍的な技術として振動測定を利用 した損害同定法を確立するために、将来研究として扱わなければならない問題をフォーカスすること である.

One issue of primary importance is the dependence on prior analytical models and/or prior test data for the detection and location of damage. Many algorithms presume access to a detailed FEM of the structure, while others presume that a data set from the undamaged structure is available. Often, the lack of availability of this type of data can make a method impractical for certain applications. While it is doubtful that all dependence on prior models and data can be eliminated, certainly steps can and should be taken to minimize the dependence on such information.

最も重要な課題は、損傷同定および位置同定のための初期の解析モデルおよび(もしくは)試験データに依存されると言うことである.多くのアルゴリズムが構造の詳細なFEMへのアクセスを仮定しま

す.他のものは,損傷のない構造からのデータセットが利用可能であると推定しますが.しばしば, このタイプに関する有効なデータの不足により,あるアプリケーションは非実用的になる場合があり ます.初期モデルとデータへのすべての依存を除外できるかが疑わしいため,そのような情報への依 存を最小にするための確かな技術進歩が必要とされている.

Almost all of the damage-identification methods reviewed in this report rely on linear structural models. Further development of methods that have the ability to account for the effects of nonlinear structural response has the potential to enhance this technology significantly. An example of such a response would be the opening and closing of a fatigue crack during cyclic loading, in either an operational situation or in the case of a forced-vibration test. Many methods are inherently limited to linear model forms and, therefore, cannot account for the nonlinear effects of such a damage scenario. Another advantage of methods that detect nonlinear structural response is that they can often be implemented without detailed prior models. It is of interest to note that the one application where this technology is accepted and commonly used in practice, the monitoring of rotating machinery, relies almost exclusively on the detection of nonlinear response.

このレポートでレビューした損傷同定方法の多くが線形の構造モデルに頼ります. 非線形の構造応 答の効果の原因になる能力を持っている方法のさらなる展開には、この技術をかなり高める可能性が あります.そのような応答の例は、供用状況か強制振動試験の場合における繰り返し荷重の間の疲労 亀裂の開閉でしょう. 多くの方法は、本来線形モデルフォームに制限されて、したがって、そのよ うな損傷シナリオの非線形効果を考慮することができません. 非線形の構造応答を検出する方法の 別の利点は、詳細な初期モデルなしでそれらをしばしば実行できるということです. この技術が受 け入れられて、実際には一般的に使用される1つのアプリケーション、回転する機械のモニターが非 線形応答の検出に専ら依存することに注意するのは、興味があります.

The number and location of measurement sensors is another important issue. Many techniques that appear to work well in example cases actually perform poorly when subjected to the measurement constraints imposed by actual testing. Techniques that are to be seriously considered for implementation in the field should demonstrate that they can perform well under the limitations of a small number of measurement locations, and under the constraint that these locations be selected *a priori* without knowledge of the damage location.

計測センサの数と位置の決定は別の重要な課題です. 実際のテストでは何らかの測定制限が課せら れ、ある場合でうまくいくように見える多くのテクニックが、実際には不十分となる場合があります. その分野での実現のために真剣に考えられることになっているテクニックは、少ない数の測定位置の 制限、およびこれらの位置が損傷位置に関する知識なしで先験的に選択されるという規制でよく振る 舞うことができるのを示すべきです.

An issue that is a point of controversy among many researchers is the general level of sensitivity that modal parameters have to small flaws in a structure. Much of the evidence on both sides of this disagreement is anecdotal because it is only demonstrated for specific structures or systems and not proven in a fundamental sense. This issue is important for the development of health monitoring techniques because the user of such methods needs to have confidence that the damage will be recognized while the structure still has sufficient integrity to allow repair.

多くの研究者の中の論点となっている課題は、構造上の小さい損傷がモーダルパラメータに与える感度の問題です。それが特異的構造かシステムのために示されるだけであり、物理的に検証されていないので、この証拠がないと方法論が説得力を欠きます。そのような方法のユーザが構造には修理を許すことができるくらいの保全がまだある間損害が認識されるという信用を必要とするので、ヘルスモニタリングのテクニックの開発に、この問題は重要です。

An issue that has received almost no attention in the technical literature is the ability to discriminate between changes in the modal properties resulting from damage and those changes resulting from variations in the measurements. These variations result from changing environmental and/or test conditions and from the repeatability of the tests. A high level of variation in the measurements will prevent the accurate detection of small levels of damage. Mazurek (1997) presents a technique to address the variability issue in the context of vibration based damage identification. Very few vibration-based damage detection studies report statistical variations associated with the measured modal parameters used in the damage identification process. Even fewer studies report the results of false-positive studies (cases where techniques indicate damage even though the data is from an undamaged structure). Two recent studies (Doebling, et al., 1997a, and Farrar and Jauregui, 1996) have started to examine these issues.

技術文献においてほとんど注目されていない問題は,損傷によるモード特性の変化と測定条件の変化 によって生じるモード特性の変化を区別することです.これらの変化は環境である,そして/または, テスト状態を変えて,テストの再現可能性から結果として生じます.測定値の,高いレベルの変化 は小さいレベルの損傷の正確な検出の妨げとなるでしょう.Mazurek(1997)は,振動ベースの損傷同 定の可変性問題を記述するためにテクニックを提示します.研究が,測定モードパラメータに関連 している統計的変動が損傷同定の過程で使用したと報告するほんのわずかな振動ベースの損傷検出. さらに少ない研究が無病誤診研究(データが無傷の構造から来ていますが,テクニックが損害を示す ケース)の結果を報告します.20の最近の研究(Doeblingと他と1997aとFarrarとJauregui, 1996)が これらの問題を調べ始めました.

With regard to long-term health monitoring of large structures such as bridges and offshore platforms, the need to reduce the dependence upon measurable excitation forces is noted by many researchers. The ability to use vibrations induced by ambient environmental or operating loads for the assessment of structural integrity is an area that merits further investigation.

橋や海上作業台船などの大きい構造の長期ヘルスモニタリングに関して,測定できる加振力への依存 を減少させる必要性は多くの研究者によって注意されます. 構造完全評価のために周囲環境または 供用負荷によって引き起こされた振動を使用する能力(常時微動)は,詳細調査に値する領域です.

The literature also has scarce instances of studies where different health-monitoring procedures are compared directly by application to a common data set. Some data sets, such as the NASA 8- Bay truss data set and the I-40 Bridge data set, have been analyzed by many different authors using different methods. However, the relative merits of these methods and their success in locating the damage have not been directly compared in a sufficiently objective manner. The study of the I-40 Bridge presented in (Farrar and Jauregui, 1996) compares five vibration-based damage identification methods applied to the same data sets. また, 異なったヘルスモニタリング手順が一般的なデータセットへのアプリケーションで比較される研究が不十分という問題もあります. NASA8湾のトラスデータセットやI-40 Bridgeデータセットなどのいくつかのデータセットが, 異なった方法を使用することで多くの異なった研究者によって分析されました. しかしながら, これらの方法と損傷同定結果の優劣は十分客観的な方法で直接比較されていません. I-40 Bridgeの研究は(FarrarとJauregui, 1996), 同じデータセットに適用された5つの振動ベースの損傷同定法を比較します.

A final note on future research in the field of vibration-based damage identification: There is a significant need in this field for research on the integration of theoretical algorithms with application-specific knowledge bases and practical experimental constraints. For example, most vibration-based damage identification theories are applied similarly to both an
airframe and a highway bridge. However, real-life vibration monitoring of airframes and highway bridges are radically different in terms of both equipment and techniques. Likewise, design margins and periodic maintenance requirements are different for an airframe and a highway bridge. Most (if not all) damage identification techniques proposed in the literature do not take into account these differences.

振動ベースの損傷同定の分野での将来研究に関する最後の課題: アプリケーション特有の知識ベースに基づいた理論的アルゴリズムと実用的な実験上の制約との統合が,この分野のために特に必要です.例えば,ほとんどの振動ベースの損傷同定理論が同様に機体と道路橋の両方に適用されます. しかしながら,機体の現実の振動モニタリングと道路橋は機材とテクニックの両方において根本的に異なっています. 同様に,機体と道路橋において,設計余裕と周期的な保守要求は異なっています. 文献によって提案されたほとんどの損傷同定法は,これらの違いを考慮に入れません.

Overall, it is the opinion of the authors that sufficient evidence exists to promote the use of measured vibration data for the detection of damage in structures, using both forced-response testing and long-term monitoring of ambient signals. It is clear, though, that the literature in general needs to be more focused on the specific applications and industries that would benefit from this technology, such as health monitoring of bridges, offshore oil platforms, airframes, and other structures with long design life, life-safety implications and high capital expenditures. Additionally, research should be focused more on testing of real structures in their operating environment, rather than laboratory tests of representative structures. Because of the magnitude of such projects, more cooperation will be required between academia, industry, and government organizations. If specific techniques can be developed to quantify and extend the life of structures, the investment made in this technology will clearly be worthwhile.

全体的に見て,測定振動データの構造損傷同定の使用を促進するために,強制応答テストと周囲の信 号の長期のモニタリングの両方を使用して,十分に検証することが必要と考えられます. もっとも, 一般に,長い設計寿命,供用期間の安全性,および高い資本支出で橋,海上石油プラットフォーム, 機体,および非重要構造のヘルスモニタリングなどに,この技術の利益を得る特定応用と産業により 集中する必要があるのは明確です. さらに,研究は代表している構造の室内実験よりむしろそれら 構造物の供用環境で本当の構造をテストすることにフォーカスすべきです. そのようなプロジェク トの大きさのため,より多くの協力が産官学の間で必要でしょう. 構造寿命の定量化や延命化のた めの特定技術を見いだすことができるなら,この技術開発に使われた投資は,非常に価値があります.

参考文献:

1) S. W. Doebling, C. R. Farrar and M. B. Prime, "A summary review of vibration-based damage identification methods", Shock and Vibration Digest, vol. 30, no. 2, pp. 91-105, 1998.

鋼橋技術研究会

2. 歪·応力計測WG 調査研究報告書

歪・応力計測技術の鋼橋への適用に関する研究

歪・応力計測技術の鋼橋への適用に関する研究 目次

§1. はじめに ······	2-1
§ 2. 歪・応力計測技術 ······	2-2
2-1. 歪・応力計測技術の現状と課題 · · · · · · · · · · · · · · · · · · ·	2-2
2-2. 歪・応力計測技術の調査結果 · · · · · · · · · · · · · · · · · · ·	2-4
§3. 光ファイバセンサの適用性検討 ·····	2-48
3−1. 検討の目的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-48
3-2. 実験で使用する光ファイバセンサ ······	2-48
3−3. 実験の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-49
3−4. 実験結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-52
3–5. FBG センサと PPP–BOTDA センサの測定まとめ ・・・・・・・・・・・・・・・・・・・・・・	2-54
§4. 磁歪法の適用性検討 ······	2-56
4−1. 計測の目的 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-56
4−2. 磁歪法の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-56
4-3. 実橋梁への磁歪法の適用方法 · · · · · · · · · · · · · · · · · · ·	2-57
4−4. 磁歪法の適用性検証試験 · · · · · · · · · · · · · · · · · · ·	2-59
4–5. 計測概要 · · · · · · · · · · · · · · · · · · ·	2-65
4−6. 計測結果 · · · · · · · · · · · · · · · · · · ·	2-70
4-7. まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-73
§5.まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-75

§1.はじめに

国や地方自治体の厳しい財政状況下において,建設投資額は減少傾向にあることから,今後は今ある 構造物をできる限り長く供用する(長寿命化)という考え方にシフトしつつある。構造物の長寿命化を 図るには,維持管理を従来の対症療法的な手法から予防保全的な手法に転換する必要があり,そのため には構造物の変状を事前に検知するモニタリング技術が重要なテーマとなる。

橋梁のモニタリング技術に関する研究が行われているが,その中では振動を利用するアプローチが多 く採用されている。モニタリング技術として,設計値と比較することを考えれば,現況を迅速に把握し, 評価するための物理量としては応力が望ましい。現状では,ひずみゲージを用いて応力を計測する方法 が一般的であるが,ゲージ貼付後の応力値しか計測できない(残留応力,死荷重応力を含んだ絶対応力 の計測は困難),塗膜除去・補修塗装が必要となる等の問題がある。このようなことから,橋梁の応力 を簡便に計測することが可能な応力モニタリング技術が求められている。

歪・応力モニタリング WG では,上記の目的に向け,橋梁の歪・応力モニタリングに適用可能な歪・ 応力計測技術について検討する。そこで,まず,現状の計測技術を俯瞰的に把握するために,計測原理, 長所・短所,適用事例に着目して整理することとした。次いで,これらの計測技術の中でも,特に適用 が期待されている二つの計測技術について,個別検討課題として取り上げることとした。一つ目は,歪・ 応力モニタリング技術の中でも,その発展が著しく,実際に,実橋への適用も行われ始めている光ファ イバを用いたモニタリング技術である。光ファイバセンサは,ファイバ内に入射する光波の使用方法に 応じて分類されるが,ここではFBG光ファイバセンサとPPP-BOTDA光ファイバセンサの二種類を取り扱 う。両者の相違点や長所・短所を明らかにして,今後の適用に向けた課題や使い分け方などについて検 討するために,鋼桁の屋内載荷試験を実施する。二つ目は,残留応力や死荷重を含む,橋梁に作用する 全応力を非破壊で計測することが可能な磁歪法である。薄板にビード溶接を施した試験体を対象として, 機械式切断による応力解放法との比較を通じた精度検証と実橋を対象として工場製作時から架設時ま で逐次計測を行い,適用性について検討する。 §2. 歪・応力計測技術

2-1. 歪・応力計測技術の現状と課題

一般的に,従来の歪・応力計測では,ひずみゲージやひずみゲージ式変換機を用いて有線で,応力や 変位量を計測することが多い。図2-1に計測機器の組合せの一例を示す。計測機器やセンサは,この他 にも様々な種類があり,目的や計測方法に応じて組合せを変え,適切な計測が行われている。また、デ ータ収集方法については,インターネット経由で収集できるものもある。

図 2-1 計測機器の組合せ例

しかし,この様な技術,機材があっても実務において適用されることが少ないというのが現状である。 その理由としては,以下の様なことが挙げられる。

【計測機材や周辺資機材における問題】

- ・ゲージ貼付後の発生応力しか計測出来ない。 死荷重応力や残留応力の計測が困難である。
- ・計測点の塗膜除去・ゲージの設置撤去・補修塗装が必要となる。(図2-2参照) 準備時間を要し,迅速な計測が行えない。塗装費用も発生する。
- ・使用する計測機器やケーブルが多い。(図2-3参照) 運搬が大変なうえ比較的広い設置,配線スペースが必要となり,場合によっては計測用足場の設 置が発生する。結果的に準備期間,費用の増加につながる。
- ・簡易に計測できる機械とその使用用途が一般的に知られていない。 計測は時間とお金がかかるものとのイメージが先行してしまう。

(a)塗膜除去状況

(b) ひずみゲージ貼付状況

図 2-2 ひずみゲージ設置状況

(a)設置状況全景

(b) ケーブル結線・配線状況

図 2-3 計測機器設置状況

【適用の要否や要領・評価における問題】

・実施要領に関する図書が少ない。

計測技術に関する認知度が高まらず,計測方法や有効性が分からないため,計測を実施する判断 に至らない。

・評価手法に関する図書が少ない。

適当な計測規模,適切な計測位置,解析・評価手法など,作業全体の枠が決められないため,計 測業務が立案されなくなってしまう。

これら問題のうち,計測機器に関しては小型軽量化や塗膜上から計測可能なセンサなどの改良,開発 が進められている。また,無線でのデータ回収機器も開発されてきており,需要の増加に応じて計測機 器は更に使いやすいものに更新されていくものと考えられる。

このため,計測技術や最適な適用方法,解析・評価手法が図書や文献により広まっていくことが計測

技術を適用する機会の増加につながり,それにより更に高度な技術,製品が生まれてくるものと考える。 後述する非破壊での計測技術は,その多くが研究レベルにあるが,これらも計測技術や適用機会の拡 がりにより,実用化が進むと期待される。

2-2. 歪・応力計測技術の調査結果

本節では,以下に示す計測技術を対象として文献調査を行い,それぞれの計測技術の原理,長所・短 所,適用事例,今後の展望をまとめた。

- ・磁歪法
- ・応力聴診器
- ・ワイヤレスひずみ計
- ・赤外線サーモグラフィ
- ・応力発光体
- ・中性子イメージング
- 3MA
- ・光ファイバセンサ
- ・音弾性法
- ・画像計測

次項以降では,各計測技術の詳細について紹介する。

本計測技術は鋼材に発生している全応力を非破壊で簡易的に測定できるが,鋼材の 表面状態の影響を受け易い等の特徴を有する。本技術の長所と短所を以下に列記す る。

<u>長所</u>

・非破壊で残留応力,死荷重応力などの全応力が測定できる。

・非接触で測定できるため,塗膜除去や表面処理が不要である。

・計測機器がコンパクトであり,作業性が良い。

短所

・プローブタッチ面に不陸があると計測が困難である。

・表面残留応力の影響を受ける。

・リフトオフ(計測面とプローブの離れ)の影響を受ける。

・計測対象素材の性質(化学組成など)で,応力感度が異なる。

表 2-1 ひずみゲージ法と磁歪法の比較 ¹⁾

長所・短所

 ・表面処理や塗膜厚さ等による影響を軽減する方法として、励磁電流の周波数を下げる事や,インピーダンスを規格化した較正曲線が提案,検証されている^{6),10,10,10}, ー方で,溶接部の近傍では残留応力の影響などによる計測誤差が大きく,応力状態 の傾向把握は可能であるが,実用化にはさらなる検証が必要と考えられる。 ・新設構造物では本体構造とほぼ同条件の試験片により較正曲線が作成できるが,試 験片の得られない既設橋では類似の試験片等により対応している状況と考えられ る¹⁰⁾。 ・磁歪法で得られる応力は,グリッドで囲まれた中の平均応力であり,局部応力を計 測するのは困難である。 今後の展望 ・磁歪法の計測誤差が大きい理由の一つに,残留応力の影響がある。残留応力は溶接 によるものだけではなく,圧延,切断によるものもあり,それらがどの程度の大き さなのか不明である。よって,残留応力の評価方法の確立が必要である。 ・支載9)ではミルメーカーにより応力感感の違いが報告されているほか,古い構造 物では類似試験片が得られないケースも考えられる。このため,ミルメーカー,製 造年代,材質毎の較正曲線を作成・収集し,データベースを構築する必要がある。 また,架設時期の古い橋梁に対しては,更新により撤去される構造物からデータを 収集する事も有効である。 ・4章で示す2主鈑桁橋の計測では,下フランジ1断面で約90分を要した。実際の モニタリング技術として適用するには,計測時間を短縮する計測方法の構築が必要 である。 ・現状では主応力方向が明確な場合は,適用が比較的容易であるが,例えば,鋼製橋 脚の隅角部のように,複雑な応力場では,せん断応力差積分法における適切な応力 の零点設定など計測方法の構築が望まれる。 1)安福精一,藤井堅,末宗仁吉,境禎明,村井亮介,池田誠:磁気を用いた鋼構造 物の応力測定,橋梁と基礎,pp.33-39,2001. 2) 高橋洋一,除光太,久限限型,営用厚卓、佐々木義則:EMセンサによる張力管理 計測事例(その2),否九州自動車道グランドアンカー弧力が提示、土木学会年 次学術講演会概要集,CS1-017,2003. 3) 芥川頁一,有村有紀,森本紘太郎,中廃絵美:PSアンカーの作用軸力を推定する ためのナットの非磁集応力測定,土水学会年次学術講演会概要集,3-073,2007.
 今年や、イシビーダンスを規格化した教止囲縦が遅来、検証されている^{60,10,11,40}。 一方で、溶技部の近傍では残留応力の影響などによる計測誤差が大きく、応力状態の傾向把握は可能であるが、実用化にはさらなる検証が必要と考えられる。 新設構造物では本体構造とほぼ同条件の試験片により対応している状況と考えられる。¹⁰⁰。 ・磁歪法で得られる応力は、グリッドで囲まれた中の平均応力であり、局部応力を計測するのは困難である。 今後の展望 ・磁歪法の計測誤差が大きい理由の一つに、残留応力の影響がある。残留応力は溶接によるものだけではなく、圧延、切断によるものもあり、それらがどの程度の大きさなのか不明である。よって、残留応力の影響がある。残留応力は溶接物では類似試験片が得られないケースも考えられる。このため、ミルメーカー、製造年代、材質毎の較正曲線を作成・収集し、データベースを構築する必要がある。また、架設時期の古い橋梁に対しては、更新により撤去される構造物からデータを収集する事も有効である。 ・4章で示す2主飯桁橋の計測では、下フランジ1断面で約90分を要した。実際のモニタリング技術として適用するには、計測時間を短縮する計測方法の構築が必要である。 ・現状では主応力方向が明確な場合は、適用が比較的容易であるが、例えば、銅製橋脚の隅角部のように、複雑な応力場では、せん断応力差積分法における適切な応力の零点設定など計測方法の構築が望まれる。 1)安福精一、藤井堅、末宗に吉、境禎明、村井亮介、池田誠:磁気を用いた鋼構造物の応力測定、橋梁と基礎、pp.33-39,2001. 2) 高橋洋一、伏太、久保良雅、宮本則率、佐々木義則:EM センサによる張力管理計測事例(その2)・西九州自動車道グランドアンカー張力管理・土木学会年次学術講演会概要集、5407% 参考文献
 一方で,溶程部の近傍では残留応力の影響などによる計測誤差が大きく,応力状態の傾向把握は可能であるが、実用化にはさらなる検証が必要と考えられる。 ・新設構造物では本体構造とほぼ同条件の試験片により較正曲線が作成できるが,試験片の得られない既設橋では類似の試験片等により対応している状況と考えられる。¹⁰。 ・磁歪法で得られる応力は,グリッドで囲まれた中の平均応力であり,局部応力を計測するのは困難である。 今後の展望 ・磁歪法の計測誤差が大きい理由の一つに,残留応力の影響がある。残留応力は溶接によるものだけではなく,圧延,切断によるものもあり,それらがどの程度の大きさなのか不明である。よって,残留応力の評価方法の確立が必要である。 ・文献9)ではミルメーカーにより応力感度の違いが報告されているほか,古い構造物では類似試験片が得られないケースも考えられる。このため,ミルメーカー,製造年代,材質毎の較正曲線を作成・収集し,データベースを構築する必要がある。また,架設時期の古い橋梁に対しては,更新により撤去される構造物からデータを収集する事も有効である。 ・4章で示す2±鉱桁橋の計測では,下フランジ1断面で約90分を要した。実際のモニタリング技術として適用するには,計測時間を短縮する計測方法の構築が必要である。 ・4章で示す2±鉱桁橋の計測では,下フランジ1断面で約90分を要した。実際のモニタリング技術として適用するには,計測時間を短縮する計測方法の構築が必要である。 ・10安福精一,藤井堅,未宗仁吉,境禎明,村井亮介,池田誠:磁気を用いた鋼構造物の応力測定,橋梁と基礎,pp.33-39,2001. 21高橋洋一,徐光太,久保良雅,宮本則幸,佐々未義則:EMセンサによる張力管理計測事例(その2)-西九州自動車道グランドアンカー張力管理・土木学会年次学術講演会概要集,CS1-017,2003. 3) 芥川真一,有村有紀,森本紘太郎,中森絵美:PS アンカーの作用軸力を推定する
 の傾向把握は可能であるが、実用化にはさらなる検証が必要と考えられる。 新設構造物では本体構造とほぼ同条件の試験片により較正曲線が作成できるが,試験片の得られない既設橋では類似の試験片等により対応している状況と考えられる¹⁰。 磁査法で得られる応力は,グリッドで囲まれた中の平均応力であり,局部応力を計測するのは困難である。 今後の展望 ・磁査法の計測誤差が大きい理由の一つに,残留応力の影響がある。残留応力は溶接によるものだけではなく,圧延,切断によるものもあり,それらがどの程度の大きさなのか不明である。よって,残留応力の評価方法の確立が必要である。 ・文献 9)ではミルメーカーにより応力感度の違いが報告されているほか,古い構造物では類似試験片が得られないケースも考えられる。このため,ミルメーカー,製造年代,材質毎の較正曲線を作成・収集し,データベースを構築する必要がある。また,架設時期の古い橋梁に対しては,更新により撤去される構造物からデータを収集する事も有効である。 ・4章で示す2主鈑桁橋の計測では,下フランジ1断面で約90分を要した。実際のモニタリング技術として適用するには,計測時間を短縮する計測方法の構築が必要である。 ・4章で示す2主鈑桁橋の計測では,せん断応力差積分法における適切な応力の零点設定など計測方法の構築が望まれる。 1)安福精一,藤井堅,未宗仁吉,境禎明,村井亮介,池田誠:磁気を用いた鋼構造物の志力測定,橋梁と基礎,pp.33-39,2001. 高橋洋一,徐光太,久保良雅,宮本則率,佐々義則:EMセンサによる張力管理計測事例(その2)-西九州自動車道グランドアンカー張力管理・土木学会年次学術講演会概要集,S-073,2007.
 新設構造物では本体構造とほぼ同条件の試験片により較正曲線が作成できるが,試験片の得られない既設橋では類似の試験片等により対応している状況と考えられる¹⁰。 磁査法で得られる応力は,グリッドで囲まれた中の平均応力であり,局部応力を計測するのは困難である。 今後の展望 ・磁査法の計測誤差が大きい理由の一つに,残留応力の影響がある。残留応力は溶接によるものだけではなく,圧延,切断によるものもあり,それらがどの程度の大きさなのか不明である。よって,残留応力の評価方法の確立が必要である。 ・文献 9)ではミルメーカーにより応力感度の違いが報告されているほか,古い構造物では類似試験片が得られないケースも考えられる。このため,ミルメーカー,製造年代,材質毎の較正曲線を作成・収集し,データベースを構築する必要がある。また,架設時期の古い橋梁に対しては,更新により撤去される構造物からデータを収集する事も有効である。 ・4 章で示す2 主鈑桁橋の計測では,下フランジ1 断面で約9 0 分を要した。実際のモニタリング技術として適用するには,計測時間を短縮する計測方法の構築が必要である。 ・現状では主応力方向が明確な場合は,適用が比較的容易であるが,例えば,鋼製橋脚の隅角部のように,複雑な応力場では,せん断応力差積分法における適切な応力の零点設定など計測方法の構築が望まれる。 1) 安福精一,藤井堅,未宗仁吉,境禎明,村井亮介,池田誠:磁気を用いた鋼構造物の応力測定,橋梁と基礎,pp.33-39,2001. 2) 高橋洋一,徐光太,久保良雅,宮本則幸,佐々木義則:EM センサによる張力管理計測事例(その2).西九州自動車道グランドアンカーの振力管理・,土木学会年次学術講演会概要集,CS1-017,2003. 芥川真一,有村有紀,森本紘太郎,中森絵美:PS アンカーの作用軸力を推定するためのテットの非破壊応力測定,北学会年次学術講演会概要集,3-073,2007.
 験片の得られない既設橋では類似の試験片等により対応している状況と考えられる ¹⁰。 ・磁歪法で得られる応力は、グリッドで囲まれた中の平均応力であり、局部応力を計 測するのは困難である。 ・磁歪法の計測誤差が大きい理由の一つに、残留応力の影響がある。残留応力は溶接 によるものだけではなく、圧延、切断によるものもあり、それらがどの程度の大き さなのか不明である。よって、残留応力の評価方法の確立が必要である。 ・文献9)ではミルメーカーにより応力感度の違いが報告されているほか、古い構造 物では類似試験片が得られないケースも考えられる。このため、ミルメーカー、製 造年代、材質毎の軟正曲線を作成・収集し、データベースを構築する必要がある。 また、架設時期の古い橋梁に対しては、更新により撤去される構造物からデータを 収集する事も有効である。 ・4章で示す2主飯桁橋の計測では、下フランジ1断面で約90分を要した。実際の モニタリング技術として適用するには、計測時間を短縮する計測方法の構築が必要 である。 ・現状では主応力方向が明確な場合は、適用が比較的容易であるが、例えば、鋼製橋 脚の隅角部のように、複雑な応力場では、せん断応力差積分法における適切な応力 の零点設定など計測方法の構築が望まれる。 1) 安福精一、藤井堅、未宗仁吉、境禎明、村井亮介、池田誠:磁気を用いた鋼構造 物の応力測定、橋梁と基礎、pp.33-39、2001. 2) 高橋洋一、徐光太、久保良雅、宮本則幸、佐々木義則:EM センサによる張力管理 計測事例(その2)・西九州自動車道グランドアンカーの引力管理 -、土木学会年 次学術講演会概要集、SS1-017、2003. 3) 芥川真一、有村有紀、森本紘太郎、中森絵美:PS アンカーの作用軸力を推定する ための方少ドの非破壊応力測定、土木学会年次学術講演会概要集、3-073、2007.

 ・磁歪法で得られる応力は、グリッドで囲まれた中の平均応力であり、局部応力を計測するのは困難である。 今後の展望 ・磁歪法の計測誤差が大きい理由の一つに、残留応力の影響がある。残留応力は溶接によるものだけではなく、圧延、切断によるものもあり、それらがどの程度の大きさなのか不明である。よって、残留応力の評価方法の確立が必要である。 ・文献 9)ではミルメーカーにより応力感度の違いが報告されているほか、古い構造物では類似試験片が得られないケースも考えられる。このため、ミルメーカー、製造年代、材質毎の較正曲線を作成・収集し、データベースを構築する必要がある。また、架設時期の古い橋梁に対しては、更新により撤去される構造物からデータを収集する事も有効である。 ・4章で示す2主飯桁橋の計測では、下フランジ1断面で約90分を要した。実際のモニタリング技術として適用するには、計測時間を短縮する計測方法の構築が必要である。 ・現状では主応力方向が明確な場合は、適用が比較的容易であるが、例えば、鋼製橋脚の隅角部のように、複雑な応力場では、せん断応力差積分法における適切な応力の零点設定など計測方法の構築が望まれる。 1)安福精一、藤井堅、未宗仁吉、境禎明、村井亮介、池田誠:磁気を用いた鋼構造物の応力測定、橋梁と基礎、pp.33-39、2001. (高橋洋一、徐光太、久保良雅、宮本則幸、佐々木義則:EMセンサによる張力管理計測事例(その2)・西九州自動車道グランドアンカー張力管理・、土木学会年次学術講演会概要集、、S1-017、2003. 芥川真一、有村有紀、森本紘太郎、中森絵美:PS アンカーの作用軸力を推定するためのナットの非破壊応力測定、土木学会年次学術講演会概要集、3-073、2007.
 別するのは困難である。 今後の展望 ・磁歪法の計測誤差が大きい理由の一つに,残留応力の影響がある。残留応力は溶接によるものだけではなく,圧延,切断によるものもあり,それらがどの程度の大きさなのか不明である。よって,残留応力の評価方法の確立が必要である。 ・文献 9)ではミルメーカーにより応力感度の違いが報告されているほか,古い構造物では類似試験片が得られないケースも考えられる。このため,ミルメーカー,製造年代,材質毎の較正曲線を作成・収集し,データベースを構築する必要がある。また,架設時期の古い橋梁に対しては,更新により撤去される構造物からデータを収集する事も有効である。 ・4章で示す2主飯桁橋の計測では,下フランジ1断面で約90分を要した。実際のモニタリング技術として適用するには,計測時間を短縮する計測方法の構築が必要である。 ・現状では主応力方向が明確な場合は,適用が比較的容易であるが,例えば,鋼製橋脚の隅角部のように,複雑な応力場では,せん断応力差積分法における適切な応力の零点設定など計測方法の構築が望まれる。 1)安福精一,藤井堅,未宗仁吉,境禎明,村井亮介,池田誠:磁気を用いた鋼構造物の応力測定,橋梁と基礎,pp.33-39,2001. 高橋洋一,徐光太,久保良雅,宮本則幸,佐々木義則:EMセンサによる張力管理計測事例(その2)-西九州自動車道グランドアンカー張力管理・,土木学会年次学術講演会概要集,S1-017,2003. 芥川真一,有村有紀,森本紘太郎,中森絵美:PSアンカーの作用軸力を推定するためのナットの非破壊応力測定,土木学会年次学術講演会概要集,3-073,2007.
今後の展望 ・磁歪法の計測誤差が大きい理由の一つに,残留応力の影響がある。残留応力は溶接によるものだけではなく,圧延,切断によるものもあり,それらがどの程度の大きさなのか不明である。よって,残留応力の評価方法の確立が必要である。 ・文献 9)ではミルメーカーにより応力感度の違いが報告されているほか,古い構造物では類似試験片が得られないケースも考えられる。このため,ミルメーカー,製造年代,材質毎の較正曲線を作成・収集し,データベースを構築する必要がある。また,架設時期の古い橋梁に対しては,更新により撤去される構造物からデータを収集する事も有効である。 ・4章で示す2主鈑桁橋の計測では,下フランジ1断面で約90分を要した。実際のモニタリング技術として適用するには,計測時間を短縮する計測方法の構築が必要である。 ・3環状では主応力方向が明確な場合は,適用が比較的容易であるが,例えば,鋼製橋脚の隅角部のように,複雑な応力場では,せん断応力差積分法における適切な応力の零点設定など計測方法の構築が望まれる。 1)安福精一,藤井堅,末宗仁吉,境禎明,村井亮介,池田誠:磁気を用いた鋼構造物の応力測定,橋梁と基礎,pp.33-39,2001. 2)高橋洋一,徐光太,久保良雅,宮本則幸,佐々木義則:EMセンサによる張力管理計測事例(その2)・西九州自動車道グランドアンカー張力管理-、土木学会年次学術講演会概要集,CS1-017,2003. 3)芥川真一,有村有紀,森本紘太郎,中森絵美:PSアンカーの作用軸力を推定するためのナットの非破壊応力測定,土木学会年次学術講演会概要集,3-073,2007.
 ・磁歪法の計測誤差が大きい理由の一つに,残留応力の影響がある。残留応力は溶接によるものだけではなく,圧延,切断によるものもあり,それらがどの程度の大きさなのか不明である。よって,残留応力の評価方法の確立が必要である。 ・文献9)ではミルメーカーにより応力感度の違いが報告されているほか,古い構造物では類似試験片が得られないケースも考えられる。このため,ミルメーカー,製造年代,材質毎の較正曲線を作成・収集し,データベースを構築する必要がある。また,架設時期の古い橋梁に対しては,更新により撤去される構造物からデータを収集する事も有効である。 ・4章で示す2主鈑桁橋の計測では,下フランジ1断面で約90分を要した。実際のモニタリング技術として適用するには,計測時間を短縮する計測方法の構築が必要である。 ・現状では主応力方向が明確な場合は,適用が比較的容易であるが,例えば,鋼製橋脚の隅角部のように,複雑な応力場では,せん断応力差積分法における適切な応力の零点設定など計測方法の構築が望まれる。 1)安福精一,藤井堅,末宗仁吉,境禎明,村井亮介,池田誠:磁気を用いた鋼構造物の応力測定,橋梁と基礎,pp.33-39,2001. 2)高橋洋一,徐光太,久保良雅,宮本則幸,佐々木義則:EMセンサによる張力管理計測事例(その2)・西九州自動車道グランドアンカー張力管理-,土木学会年次学術講演会概要集,CS1-017,2003. 3)芥川真一,有村有紀,森本紘太郎,中森絵美:PSアンカーの作用軸力を推定するためのナットの非破壊応力測定,土木学会年次学術講演会概要集,3-073,2007.
 今後の展望 によるものだけではなく、圧延、切断によるものもあり、それらがどの程度の大き さなのか不明である。よって、残留応力の評価方法の確立が必要である。 ・文献 9)ではミルメーカーにより応力感度の違いが報告されているほか、古い構造 物では類似試験片が得られないケースも考えられる。このため、ミルメーカー、製 造年代、材質毎の較正曲線を作成・収集し、データベースを構築する必要がある。 また、架設時期の古い橋梁に対しては、更新により撤去される構造物からデータを 収集する事も有効である。 ・4章で示す2主鈑桁橋の計測では、下フランジ1断面で約90分を要した。実際の モニタリング技術として適用するには、計測時間を短縮する計測方法の構築が必要 である。 ・現状では主応力方向が明確な場合は、適用が比較的容易であるが、例えば、鋼製橋 脚の隅角部のように、複雑な応力場では、せん断応力差積分法における適切な応力 の零点設定など計測方法の構築が望まれる。 1)安福精一、藤井堅、末宗仁吉、境禎明、村井亮介、池田誠:磁気を用いた鋼構造 物の応力測定、橋梁と基礎、pp.33-39、2001. 2)高橋洋一、徐光太、久保良雅、宮本則幸、佐々木義則:EM センサによる張力管理 計測事例(その2)・西九州自動車道グランドアンカー張力管理・土木学会年 次学術講演会概要集、CS1-017、2003. 3)芥川真一、有村有紀、森本紘太郎、中森絵美:PS アンカーの作用軸力を推定する ためのナットの非破壊応力測定、土木学会年次学術講演会概要集、3-073、2007.
 シマ献 9) ではこルメーカーにより応力の評価方法の確立が必要である。 ・文献 9) ではミルメーカーにより応力感度の違いが報告されているほか,古い構造物では類似試験片が得られないケースも考えられる。このため,ミルメーカー,製造年代,材質毎の較正曲線を作成・収集し,データベースを構築する必要がある。また,架設時期の古い橋梁に対しては,更新により撤去される構造物からデータを収集する事も有効である。 ・4 章で示す2 主鈑桁橋の計測では,下フランジ1 断面で約9 0 分を要した。実際のモニタリング技術として適用するには,計測時間を短縮する計測方法の構築が必要である。 ・9 現状では主応力方向が明確な場合は,適用が比較的容易であるが,例えば,鋼製橋脚の隅角部のように,複雑な応力場では,せん断応力差積分法における適切な応力の零点設定など計測方法の構築が望まれる。 1) 安福精一,藤井堅,未宗仁吉,境禎明,村井亮介,池田誠:磁気を用いた鋼構造物の応力測定,橋梁と基礎,pp.33-39,2001. 2) 高橋洋一,徐光太,久保良雅,宮本則幸,佐々木義則:EM センサによる張力管理計測事例(その2)・西九州自動車道グランドアンカー張力管理-,土木学会年次学術講演会概要集,CS1-017,2003. 3) 芥川真一,有村有紀,森本紘太郎,中森絵美:PS アンカーの作用軸力を推定するためのナットの非破壊応力測定,土木学会年次学術講演会概要集,3-073,2007.
 ・ 文献 9) ではミルメーカーにより応力感度の違いが報告されているほか,古い構造物では類似試験片が得られないケースも考えられる。このため,ミルメーカー,製造年代,材質毎の較正曲線を作成・収集し,データベースを構築する必要がある。また,架設時期の古い橋梁に対しては,更新により撤去される構造物からデータを収集する事も有効である。 ・ 4章で示す2主鈑桁橋の計測では,下フランジ1断面で約90分を要した。実際のモニタリング技術として適用するには,計測時間を短縮する計測方法の構築が必要である。 ・ 現状では主応力方向が明確な場合は,適用が比較的容易であるが,例えば,鋼製橋脚の隅角部のように,複雑な応力場では,せん断応力差積分法における適切な応力の零点設定など計測方法の構築が望まれる。 1) 安福精一,藤井堅,未宗仁吉,境禎明,村井亮介,池田誠:磁気を用いた鋼構造物の応力測定,橋梁と基礎,pp.33-39,2001. 2) 高橋洋一,徐光太,久保良雅,宮本則幸,佐々木義則:EMセンサによる張力管理計測事例(その2)・西九州自動車道グランドアンカー張力管理-,土木学会年次学術講演会概要集,CS1-017,2003. 3) 芥川真一,有村有紀,森本紘太郎,中森絵美:PSアンカーの作用軸力を推定するためのナットの非破壊応力測定,土木学会年次学術講演会概要集,3-073,2007.
 物では類似試験片が得られないケースも考えられる。このため、ミルメーカー、製造年代、材質毎の較正曲線を作成・収集し、データペースを構築する必要がある。また、架設時期の古い橋梁に対しては、更新により撤去される構造物からデータを収集する事も有効である。 ・4章で示す2主鈑桁橋の計測では、下フランジ1断面で約90分を要した。実際のモニタリング技術として適用するには、計測時間を短縮する計測方法の構築が必要である。 ・現状では主応力方向が明確な場合は、適用が比較的容易であるが、例えば、鋼製橋脚の隅角部のように、複雑な応力場では、せん断応力差積分法における適切な応力の零点設定など計測方法の構築が望まれる。 1)安福精一、藤井堅、末宗仁吉、境禎明、村井亮介、池田誠:磁気を用いた鋼構造物の応力測定、橋梁と基礎、pp.33-39、2001. 2)高橋洋一、徐光太、久保良雅、宮本則幸、佐々木義則:EM センサによる張力管理計測事例(その2)・西九州自動車道グランドアンカー張力管理・、土木学会年次学術講演会概要集、CS1-017、2003. 3)芥川真一、有村有紀、森本紘太郎、中森絵美:PS アンカーの作用軸力を推定するためのナットの非破壊応力測定、土木学会年次学術講演会概要集、3-073、2007.
 参考文献 参考文献 おとはみ(成はぬ) からういないり、大らうたちいな。といため、マルア・ガー・スを 造年代、材質毎の較正曲線を作成・収集し、データベースを構築する必要がある。 また、架設時期の古い橋梁に対しては、更新により撤去される構造物からデータを 収集する事も有効である。 ・4章で示す2主鈑桁橋の計測では、下フランジ1断面で約90分を要した。実際の モニタリング技術として適用するには、計測時間を短縮する計測方法の構築が必要 である。 ・現状では主応力方向が明確な場合は、適用が比較的容易であるが、例えば、鋼製橋 脚の隅角部のように、複雑な応力場では、せん断応力差積分法における適切な応力 の零点設定など計測方法の構築が望まれる。 1)安福精一、藤井堅、未宗仁吉、境禎明、村井亮介、池田誠:磁気を用いた鋼構造 物の応力測定、橋梁と基礎、pp.33-39、2001. 2)高橋洋一、徐光太、久保良雅、宮本則幸、佐々木義則:EM センサによる張力管理 計測事例(その2)・西九州自動車道グランドアンカー張力管理・、土木学会年 次学術講演会概要集、CS1-017、2003. 3)芥川真一、有村有紀、森本紘太郎、中森絵美:PS アンカーの作用軸力を推定する ためのナットの非破壊応力測定、土木学会年次学術講演会概要集、3-073、2007.
 参考文献 からな正面添さに加くな来し、アンディンスを構成する必要がある。 また、架設時期の古い橋梁に対しては、更新により撤去される構造物からデータを 収集する事も有効である。 4 章で示す2主鈑桁橋の計測では、下フランジ1断面で約90分を要した。実際の モニタリング技術として適用するには、計測時間を短縮する計測方法の構築が必要 である。 現状では主応力方向が明確な場合は、適用が比較的容易であるが、例えば、鋼製橋 脚の隅角部のように、複雑な応力場では、せん断応力差積分法における適切な応力 の零点設定など計測方法の構築が望まれる。 文福精一、藤井堅、末宗仁吉、境禎明、村井亮介、池田誠:磁気を用いた鋼構造 物の応力測定、橋梁と基礎、pp.33-39、2001. がの応力測定、橋梁と基礎、pp.33-39、2001. な気を構成していため、ための大学の時間では、このでのには、一般にないために力量である。 がの応力測定、橋梁と基礎、pp.33-39、2001. がの応力測定、橋梁と基礎、pp.33-39、2001. がの応力測定、橋梁と基礎、pp.33-39、2001. である。 のにの力測定、橋梁と基礎、pp.33-39、2001. の方に設定など計測方法の構築が望まれる。 アンガーの作用軸力を推定する、ためのナットの非破壊応力測定、土木学会年次学術講演会概要集、3-073、2007. れのに力力を推定する ためのテンドアンカーの作用軸力を推定する ためのテントの非破壊応力測定、土木学会年次学術講演会概要集、3-073、2007.
 参考文献 なた,果設味期の日が晴楽に外りでは,更新により散去される構造物からケークを 収集する事も有効である。 4章で示す2主鈑桁橋の計測では,下フランジ1断面で約90分を要した。実際の モニタリング技術として適用するには,計測時間を短縮する計測方法の構築が必要 である。 現状では主応力方向が明確な場合は,適用が比較的容易であるが,例えば,鋼製橋 脚の隅角部のように,複雑な応力場では,せん断応力差積分法における適切な応力 の零点設定など計測方法の構築が望まれる。 1) 安福精一,藤井堅,未宗仁吉,境禎明,村井亮介,池田誠:磁気を用いた鋼構造 物の応力測定,橋梁と基礎,pp.33-39,2001. 高橋洋一,徐光太,久保良雅,宮本則幸,佐々木義則:EMセンサによる張力管理 計測事例(その2)・西九州自動車道グランドアンカー張力管理-,土木学会年 次学術講演会概要集,CS1-017,2003. 芥川真一,有村有紀,森本紘太郎,中森絵美:PSアンカーの作用軸力を推定する ためのナットの非破壊応力測定,土木学会年次学術講演会概要集,3-073,2007.
 ・4章で示す2主鈑桁橋の計測では,下フランジ1断面で約90分を要した。実際の モニタリング技術として適用するには,計測時間を短縮する計測方法の構築が必要 である。 ・現状では主応力方向が明確な場合は,適用が比較的容易であるが,例えば,鋼製橋 脚の隅角部のように,複雑な応力場では,せん断応力差積分法における適切な応力 の零点設定など計測方法の構築が望まれる。 1)安福精一,藤井堅,末宗仁吉,境禎明,村井亮介,池田誠:磁気を用いた鋼構造 物の応力測定,橋梁と基礎,pp.33-39,2001. 2)高橋洋一,徐光太,久保良雅,宮本則幸,佐々木義則:EMセンサによる張力管理 計測事例(その2)-西九州自動車道グランドアンカー張力管理-,土木学会年 次学術講演会概要集,CS1-017,2003. 3)芥川真一,有村有紀,森本紘太郎,中森絵美:PSアンカーの作用軸力を推定する ためのナットの非破壊応力測定,土木学会年次学術講演会概要集,3-073,2007.
 ***草でがす2至戦術術の計測では、ドクラクタキが面ににあずの方を姿ひた。実际の モニタリング技術として適用するには、計測時間を短縮する計測方法の構築が必要 である。 ・現状では主応力方向が明確な場合は、適用が比較的容易であるが、例えば、鋼製橋 脚の隅角部のように、複雑な応力場では、せん断応力差積分法における適切な応力 の零点設定など計測方法の構築が望まれる。 1)安福精一、藤井堅、末宗仁吉、境禎明、村井亮介、池田誠:磁気を用いた鋼構造 物の応力測定、橋梁と基礎、pp.33-39、2001. 2)高橋洋一、徐光太、久保良雅、宮本則幸、佐々木義則:EM センサによる張力管理 計測事例(その2)・西九州自動車道グランドアンカー張力管理・、土木学会年 次学術講演会概要集、CS1-017、2003. 3)芥川真一、有村有紀、森本紘太郎、中森絵美:PS アンカーの作用軸力を推定する ためのナットの非破壊応力測定、土木学会年次学術講演会概要集、3-073、2007.
 ジリンク投納として適用するには、計測時间を短縮する計測方法の構築が必要である。 ・現状では主応力方向が明確な場合は、適用が比較的容易であるが、例えば、鋼製橋脚の隅角部のように、複雑な応力場では、せん断応力差積分法における適切な応力の零点設定など計測方法の構築が望まれる。 1) 安福精一、藤井堅、末宗仁吉、境禎明、村井亮介、池田誠:磁気を用いた鋼構造物の応力測定、橋梁と基礎、pp.33-39、2001. 2) 高橋洋一、徐光太、久保良雅、宮本則幸、佐々木義則:EM センサによる張力管理計測事例(その2)・西九州自動車道グランドアンカー張力管理・、土木学会年次学術講演会概要集、CS1-017、2003. 3) 芥川真一、有村有紀、森本紘太郎、中森絵美:PS アンカーの作用軸力を推定するためのナットの非破壊応力測定、土木学会年次学術講演会概要集、3-073、2007.
 ・現状では主応力方向が明確な場合は,適用が比較的容易であるが,例えば,鋼製橋脚の隅角部のように,複雑な応力場では,せん断応力差積分法における適切な応力の零点設定など計測方法の構築が望まれる。 1) 安福精一,藤井堅,末宗仁吉,境禎明,村井亮介,池田誠:磁気を用いた鋼構造物の応力測定,橋梁と基礎,pp.33-39,2001. 2) 高橋洋一,徐光太,久保良雅,宮本則幸,佐々木義則:EM センサによる張力管理計測事例(その2)-西九州自動車道グランドアンカー張力管理-,土木学会年次学術講演会概要集,CS1-017,2003. 3) 芥川真一,有村有紀,森本紘太郎,中森絵美:PS アンカーの作用軸力を推定するためのナットの非破壊応力測定,土木学会年次学術講演会概要集,3-073,2007.
 参考文献 ないてはエルシリカドウが明確な場合は、週内方に住な的各切でののがか、内方には、朝装福脚の隅角部のように、複雑な応力場では、せん断応力差積分法における適切な応力の零点設定など計測方法の構築が望まれる。
 あの兩角高のように, 複雑な心分場では, どの面心分差積分法における過のな心分のでは, どの面心分差積分法における過のな心分のでは, どの面心分差積分法における過のな心分のでは, どの面心分差積分法のでは, どの面心分差積分法のでは, どの面心分差積分法のです。 1) 安福精一,藤井堅,末宗仁吉,境禎明,村井亮介,池田誠:磁気を用いた鋼構造物の応力測定,橋梁と基礎, pp.33-39,2001. 2) 高橋洋一,徐光太,久保良雅,宮本則幸,佐々木義則:EM センサによる張力管理計測事例(その2) - 西九州自動車道グランドアンカー張力管理-,土木学会年次学術講演会概要集, CS1-017,2003. 3) 芥川真一,有村有紀,森本紘太郎,中森絵美:PS アンカーの作用軸力を推定するためのナットの非破壊応力測定,土木学会年次学術講演会概要集,3-073,2007.
 (3) 安福精一,藤井堅,末宗仁吉,境禎明,村井亮介,池田誠:磁気を用いた鋼構造物の応力測定,橋梁と基礎,pp.33-39,2001. (2) 高橋洋一,徐光太,久保良雅,宮本則幸,佐々木義則:EMセンサによる張力管理計測事例(その2)-西九州自動車道グランドアンカー張力管理-,土木学会年次学術講演会概要集,CS1-017,2003. (3) 芥川真一,有村有紀,森本紘太郎,中森絵美:PSアンカーの作用軸力を推定するためのナットの非破壊応力測定,土木学会年次学術講演会概要集,3-073,2007.
1) 安福精一,藤井堅,末宗仁吉,境禎明,村井亮介,池田誠:磁気を用いた鋼構造物の応力測定,橋梁と基礎,pp.33-39,2001. 2) 高橋洋一,徐光太,久保良雅,宮本則幸,佐々木義則:EMセンサによる張力管理計測事例(その2)-西九州自動車道グランドアンカー張力管理-,土木学会年次学術講演会概要集,CS1-017,2003. 参考文献 参考文献
 物の応力測定,橋梁と基礎,pp.33-39,2001. 2) 高橋洋一,徐光太,久保良雅,宮本則幸,佐々木義則:EMセンサによる張力管理 計測事例(その2) - 西九州自動車道グランドアンカー張力管理-,土木学会年 次学術講演会概要集,CS1-017,2003. 3) 芥川真一,有村有紀,森本紘太郎,中森絵美:PSアンカーの作用軸力を推定する ためのナットの非破壊応力測定,土木学会年次学術講演会概要集,3-073,2007.
 2) 高橋洋一,徐光太,久保良雅,宮本則幸,佐々木義則:EMセンサによる張力管理 計測事例(その2) - 西九州自動車道グランドアンカー張力管理 - ,土木学会年 次学術講演会概要集,CS1-017,2003. 3) 芥川真一,有村有紀,森本紘太郎,中森絵美:PSアンカーの作用軸力を推定する ためのナットの非破壊応力測定,土木学会年次学術講演会概要集,3-073,2007.
 計測事例(その2) - 西九州自動車道グランドアンカー張力管理 - , 土木学会年 次学術講演会概要集, CS1-017, 2003. 3) 芥川真一,有村有紀,森本紘太郎,中森絵美: PS アンカーの作用軸力を推定する ためのナットの非破壊応力測定,土木学会年次学術講演会概要集, 3-073, 2007.
次学術講演会概要集,CS1-017,2003. 3) 芥川真一,有村有紀,森本紘太郎,中森絵美:PS アンカーの作用軸力を推定する ためのナットの非破壊応力測定,土木学会年次学術講演会概要集,3-073,2007.
3) 芥川真一,有村有紀,森本紘太郎,中森絵美:PS アンカーの作用軸力を推定する 参考文献 ためのナットの非破壊応力測定,土木学会年次学術講演会概要集,3-073,2007.
参考文献 ためのナットの非破壊応力測定,土木学会年次学術講演会概要集,3-073,2007.
4) 金島也恵子,和田信良,岡俊蔵,坂手道明:橋台移動により拘束された鋼桁内在
応力の推定方法について,土木学会年次学術講演会概要集,∀-465,2000.
5)柳沢栄一,和田信良,坂手道明,山本信哉,村井亮介:橋台移動により拘束され
た鋼桁内在応力の推定方法について(その2:磁歪法による夏・冬の内在応力変
動の測定性と再現性について),土木学会年次学術講演会概要集,1-284,2002.

6) 川合一嘉 , 星野辰雄 , 野村直茂 , 中谷眞二 , 柳沢栄一 : 磁歪式応力計測法の鋼橋
への適用に関する研究(第7報:昭和30年代の古い鋼橋材の応力測定結果に関す
る検討その1),土木学会年次学術講演会概要集,I-286,2002.
7) 岡俊蔵 , 星野辰雄 , 野村直茂 , 中谷眞二 , 村井亮介 : 磁歪式応力計測法の鋼橋へ
の適用に関する研究(第8報:昭和30年代の古い鋼橋材の応力測定結果に関する
検討その2),土木学会年次学術講演会概要集,I-287,2002.
8) 池田誠 , 黒瀬義幸 , 松岡敬 , 安福精一 : 磁歪式応力測定法の実構造物への適用化
研究その1(プローブ,素材), 土木学会年次学術講演会概要集,Ⅳ-126,2000.
9) 黒瀬義幸 , 池田誠 , 松岡敬 , 安福精一 : 磁歪式応力測定法の実構造物への適用化
研究 補足実験その2(材質,板厚,表面処理),土木学会年次学術講演会概要集,
IV-127, 2000.
10) 芥川真一 , 中森絵美 , 森本紘太朗 , 口池尚子 : 磁歪法による既設鋼橋の応力測定
に関する検討,土木学会年次学術講演会概要集,1-116,2007.
11) 佐藤悠樹 , 宮下剛 , 長井正嗣 , 奥井義昭 , 安福精一 : 表面処理の影響を受けにく
い磁気的残留応力の測定方法,1-419,2009.
12) 佐藤悠樹 , 宮下剛 , 長井正嗣 , 稲葉尚文 , 矢吹太一 : 表面処理の影響を受けにく
い磁気的応力測定法の実橋への適用,土木学会年次学術講演会概要集,I-252,
2010.
13) 渡辺剛 , 稲葉尚文 , 平山繁幸 , 木村啓作 : 既設橋拡幅工事における施工時応力の
計測及び長期計測方法の検討,土木学会年次学術講演会概要集,I-255,2010.

	・クレーンにおける荷吊り時のアームでの発生ひずみ
	測定 ⁴⁾ (図 2-12)
	クレーンのアーム部に聴診器を設置し,荷吊り時の
	安全管理を目的としてアーム軸方向の発生応力レ
	ベルをリアルタイムに測定する。
	☆ बाराज 図 2-12 応力聴診器適用事例 ⁴⁾
	1) 小塩達也,山田健太郎,齋藤,好康,椎名政三:摩擦型ひずみゲージによる応力
	聴診器の開発と構造物の健全度診断への応用,土木学会年次学術講演会概要集,
	6-128,2005.
	2) 小塩達也,山田健太郎:摩擦型ひずみゲージを用いた塗膜上ひずみ測定,土木学
参考又献	会年次学術講演会概要集,I-294,2002.
	│ │3)佐光浩継,古市亨,福田浩之,村上郷太,青山裕士:摩擦型ゲージ(応力聴診器)の
	現場適用性に関する試験結果,土木学会年次学術講演会概要集,I-169,2006.
	 4)株式会社東京測器研究所ホームページ:http://www.tml.jp/index.html
	│ │・応力聴診器使用の現状としては,開発主旨として「簡易に対象部位の応力レベルを
	測定する」といったことがあり、前述のような予備試験に適用されるケースが多い
	ようである。製作メーカーに問い合わせてみたところ、鉄道や道路の橋梁管理者か
	らの購入実績が多く、小型の動ひずみ計とセットで購入し、日常点検に合わせて活
	荷重による発生ひずみを測定しているのが実能である
	「「「「「「」」になるジェーの「いって」」というのが、実心とのの。
	<u>今後の展望</u>
今後の展望	今後この測定技術が広く使われていくには,その他の技術も含め,今回の報告書を
	使って橋梁管理者,計測業者にアナウンスすることも必要だが,色々な適用方法を提
	示することが重要であることからいくつか適用方法(案)を列挙する。
	健全度判定における標準化
	「既設橋梁の耐荷力照査実施要領(案)(平成8年3月(財)道路保全技術センター)」
	では,対象橋梁の発生応力はひずみゲージと応力頻度計を用いて計測することとなっ
	ており,この方法は今でも広く用いられている。
	 この測定センサとして応力聴診器を用いることを提案してはどうかと考える。設置の
	容易性,塗膜除去復旧の不要を考えれば,明らかに聴診器は有効であり,測定方法が
	認知されてくれば,自ずと計測業者も機材を取り扱うようになる。ただ単にゲージか
	ら聴診器への変更ではなく,8点ないしは16点程度で,この測定における測点も明
	│ │確に(出来れば構造物形式別)すれば,より適用しやすくなると考える。

2-2-3.ワイヤレスひずみ計

	長所
	・無線化によりケーブルが不要となる。
	・ひずみゲージやゲージ式変換器近傍でデジタル処理するためノイズに強い。
	・重量が軽く,設置も容易である。
	・中継機能により広域の測定点からデータを収集できる。
長所・短所	短所
	・静的載荷計測対応となっており,動的計測への適用が困難。(最小インターバル,
	データ集録数より)
	・通信距離が短く,広域測定するためには多くの中継器が必要となる。
	・電池寿命の点からも動的計測への適用は困難。また,本体サイズの問題から,測定
	点を狭い間隔で設定することが難しい。
	・観測井戸の動態観測 ¹⁾
	観測井戸内部に設置した水位計にワイヤレスモジュールを取り付け ,パソコンとワ
	イヤレスコントローラーにより外部から定期的に水位の変化を測定する。
	・擁壁の傾斜測定や補強部既設アンカー緊張力の経年変化測定 ¹⁾ (図 2-17)
	擁壁上に設置した傾斜計や ,アンカーに
	設置した荷重計にワイヤレスモジュー
	ルを取り付け ,パソコンとワイヤレスコ
適用事例	ントローラーにより路面から定期的に 7%カー荷重計
	傾斜度 ,アンカー緊張力を測定しその変
	化を確認する。
	図 2-17 アンカー緊張力の長期計測事例 ¹⁾
参考文献	1)株式会社東京測器研究所ホームページ:http://www.tml.jp/index.html

	<u>現状の課題</u> 紹介したシステムは,適用事例で挙げた測定を目的として開発されており,長期的 かつ測定間隔の長いものを対象にしていることから,動的な連続測定は出来ない状況 にある。このような測定技術の場合,適用範囲が非常に限られてくる。
	今後の展望 開発されて日が浅いため適用実績が少ないものと考えられるが、実業務への適用を 考えた場合、システムを改良し適用範囲を拡げる必要があると考える。今後考えられ る適用事例とそのための改良点を以下に列記する データ記録数の増加・サンプリング間隔の短縮 鋼橋への適用を考えた場合、静的載荷を行うケースは限られていることから、デー タ記録数増加とサンプリング間隔短縮の改良を行い、車輌走行時の動的計測データを 収録出来るようにする。この結果、適用可能な計測ケースが増えることが期待される。
今後の展望	②通信距離の延長 見通しで50mとなると、既設橋の足場や裏面吸音板の内部で全点を同時にコントロール 出来る範囲は20m強になると思われ、ワイヤレスの優位性が失われる。中継機能を付加し たメッシュ型ワイヤレスシステムも開発・販売されているが、中継用のモジュールが必要とな り非効率である。通信延長が増せば、①で記載した動的計測の同時測定範囲が拡がるとと もに、必要最小限の中継機材で測定可能となる。
	応力聴診器との併用 鋼橋の各管理者からは,必要性よりもコストと作業性の観点から,ひずみ測定が敬 遠されてしまっている。上記の改良が出来た場合,応力聴診器と併せて使用する ことにより,測定の準備,片付け時間が大幅に短縮されるとともに塗装処理も無くな り,結果的に16点程度であれば安価で短期間の測定が可能となり,適用しやすい状 況が生まれることになる。

I

2-2-4.赤外線サーモグラフィ

	短所
	・温度変化の発生しない一定荷重や残留応力などは,現段階では基本的に測定できな
	د ۱ <u>۵</u>
	・各応力成分を分離して直接計測できない(主応力和の変動量が計測される) ¹⁾ 。
	ただし,問題克服のために応力成分分離法の開発も進んでいる ¹⁾ 。
	・測定対象以外の物体(電気機器や照明など)の熱源に注意が必要となる ¹⁾ 。
	・測定体の表面反射は,赤外線の放射量を低下させることで計測精度の低下を招くこ
	とから,反射率を小さくするため,黒体化塗装等の反射率(放射率)補正が必要と
長所・短所	なる ¹⁾ 。ただし,鋼床版の疲労き裂検出など,応力の相対分布を計測する場合であ
	れば,一般的に表面反射の影響は小さく,特別な処置は不要である ¹⁾ 。
	・円孔縁等の応力集中部や薄肉断面の応力計測では,熱伝導現象により計測精度が低
	下する ^{3), 4)} 。
	・応力変動による温度変化は微少であるため , 熱伝導の影響を小さくするためには
	比較的早い繰返し荷重か高速荷重が必要となる ^{2),3)} 。
	・遠距離計測(10m前後以上)になると計測精度が低下する(空気中の炭酸ガスや水
	蒸気により赤外線が吸収され,減衰するため) $^{5)}$ 。
	赤外線サーモグラフィによる応力計測を応用したモニタリング技術として,近年,
	鋼床版の疲労亀裂検出技術の開発が実用化に近い成果を挙げている ^{5),6)} 。本手法で
	は、応力集中部や亀裂先端近傍など特異な熱弾性応力変動分布を画像中で識別するこ
	とにより,構造的な欠陥を検出する。以下にその計測事例を示す。
	<u>鋼床版の疲労亀裂検出事例</u> 5)
	【計測対象】
	対象橋梁:供用下の道路橋(図 2-19)
	対象部位:輪荷重の影響を強く受ける車両タイヤ直下の鋼床版(図 2-20)
	対象亀裂:デッキプレートとトラフリブ間の溶接ビードにおけるビード貫通型亀裂
演田車例	
通出事例	
	Inspection area
	図 2-10 測定対象の鋼種 ⁵⁾ 図 2-20 測定対象部とま行レーンの

	5)鎌田敏郎(研究代表者):各種道路橋床版における疲労損傷の非破壊検査システム
	に関する研究開発 ,道路政策の質の向上に資する技術研究開発成果報告レポート ,
	No.19-3, 2010.
	6) 和泉遊以,阪上隆英,久保司郎,玉越隆史:自己相関ロックイン赤外線サーモグ
参考文献	ラフィ法による鋼床版デッキ貫通型疲労き裂の検出 ,機械学会論文集A , Vol.76 ,
5 57(10)	No.766, pp.723-729, 2010.
	7) 阪上隆英,西村隆,久保司郎,崎野良比呂,石野和成:自己相関ロックイン赤外
	線サーモグラフィ法による疲労き裂の遠隔非破壊検査技術の開発(第1報 溶接試
	験片を用いた基礎的検討), 機械学会論文集A, Vol.72, No.724, pp.1860-1867,
	2006.
	【計測される応力】
	本手法では,応力変動に相関のめる温度変動を計測することで土心力和の変動を計 測することから、温度変化の発生しない。 京芸書や発知広わなどは原理的には測定で
	測9 ることから,温度変化の先生しない一定何里や残留心力などは原理的には測定で
	5備垣的英帯・入陥を検山9る于法(例, 鋼水版の疲力さ表検山)など、の週用に限
	▶ ■ 2017月22 既設橋梁祖場にて計測を行う場合 測定物の断面や表面処理だけでなく 表面反射
	前述の応力計測による綱床版の疲労き裂検出技術では、特異な応力変動分布を画像中
	で識別することにより欠陥を検出するため、周辺環境などが検出精度に与える影響は
今後の展望	
	【計測範囲・効率】
	本手法では,赤外線カメラを使用することから,計測距離および計測装置の空間分
	解能が計測精度や効率に大きな影響を与える。例えば,鋼床版の疲労き裂検出技術に
	おいて ,望遠レンズを用いて約9m離れた場所から計測した場合での測定可能な視野
	範囲は 500mm 四方程度である。よって ,より広範囲を効率的に測定するためには ,計
	測機器の改良や自動化が必要となる。
	今後の展望
	・計測機器の自動化 , 空間分解能の向上
	・一定荷重や残留応力の評価手法の開発
	・実橋計測における影響因子排除や管理方法の確立

	<u>長所</u>
	・き裂の形状分布や進展具合,き裂先端の応力集中をリアルタイムに可視化できる。
	・目視では確認できないき裂(マイクロクラック)についても,応力発光により検出
	できる。
	・ひずみゲージが点情報として、ひずみを計測するのに対し、応力発光体は面的にひ
	ずみを捉えることが出来る。
	・ステンレス系基板を用い、弾性限界の 80%に相当するひずみ量(1 600 µ ひずみ)
長所・短所	
	・桟橋上邨工の上うな暗視野環境下においてまき烈友検出することが可能である
	<u>本川</u> ・カメニが記案できない提所では広力値を押提できない
	先光9る。そのにの,供用後の死何里心力などは確認できない。 日常において時期限したこれに第5日のいては、古明には別する。時幕で更っては
	・日常においく暗視野とならない固所については、 夜間に計測する, 暗幕で復つく計
	測する寺の対東か必要となる。
	構造形式:3径間連続工桁橋
	橋長:24.40m,幅員:7.89m
	建設年:昭和34年3月(築50年経過)
	【計測結果】
	応力発光体を塗布したシートをウェブ表面に貼り付けた(図2-25)。応力発光体で
	得られたひずみ値とひずみゲージを比較したところ ,応力発光とひずみの大きさに相
	関があり,ひずみゲージに 700 μ 以上のひずみが発生したときに,応力発光が見ら
	れた (図 2-26)。
演田車例	
地而争的	目視確認
	応力発光体シート
	ひび割れ
	れずみがご 未確認箇所の
	図 2-25 発光シートの貼付状況 ³⁾ 図 2-26 ひび割れでの発光状況 ³⁾

	現状の課題
	参考文献では発光強度と応力値とのキャリブレーション方法が明らかにされていな
	い。また,応力値によっては発光しないとの報告もされており,使用環境や材質,構造
	等により発光強度と応力値との関係は変わってくるものと考えられ ,キャリブレーショ
	ン方法が課題となると考える。
今後の展望	
	<u>今後の展望</u>
	鋼橋用の塗料に混入しても ,塗装の耐久性を低下させずに発光可能であればセンサの
	設置が容易である。新設橋は工場塗装時に応力発光体が混入された塗料を使用すること
	で,既設橋でも塗装塗替え時に応力発光体が混入された塗料を使用することで,センサ
	の埋め込みが容易にできると考える。
	の埋め込みが容易にできると考える。

2-2-6.中性子イメージング

(1) 中性子ラジオグラフィ

中性子ラジオグラフィによる流体可視化・計測 矩形管内気液二相流撮影,水中に落下した溶融金属塊の中性子透過像

【事例1】

下図は,アルミ製矩形容器に満たした重水中に約600 に加熱溶融したウッズメタル を落下させ,毎秒500コマの撮像速度で撮影した中性子透過画像である²⁾。

図の上側は 30ms ごとの原画像であり,黒い部分は溶融したウッズメタルの液滴,灰 色の部分は重水,明るい部分は気泡を表す。図の下側は二値化画像であり,画像処理 により現象の特徴をより明確に観察できることがわかる。

中性子ラジオグラフィにおいても適当なトレーサ粒子を使ってPIVあるいはPTV法により流体内の速度ベクトルを計測することができる。

適用事例

	<u>現状の課題 ⁵⁾</u>
	(1) 技術上の課題
	1) 中性子ビームの限定的利用
	現在 ,熱中性子ビームの利用が大勢を占めている(次いで ,熱下 ,冷中性子ビーム)。
	極冷中性子ビーム,超高速中性子などは研究段階。
	2) 散乱線の発生
	ダイナミックレンジ ¹ の下限拡大,画質劣化原因となる。
	1:ダイナミックレンジ:フィルムにおいて特性曲線(中性子量(光量)と濃度
	の関係)として,定義され,直線性の保たれる領域をいう。
	通常の撮像系では , 取得可能な最大識別信号と最小識別信号の比で表す。
	最大識別信号は,撮像系の飽和条件,最小識別信号は,主に増幅器初段の雑音で決
	まる。
	3) 画像取得関連
	中性子1個の作る信号量がX線と比較して大きいため,少量の中性子数でも画像化
今後の展望	が可能だが , 中性子の量子総計による揺らぎが画質に現れやすい。
	(2) 操作上の課題
	可搬性の無さ,放射化,照射物の放射線管理の問題が発生する。
	検査施設(原子炉設備)の解放性の問題
	日常的利用は困難 , 一般事業者の利用より , 研究プロジェクトが事実上優先され
	ている。
	(3) 業務内容と画像の秘匿性の問題
	日本原子力研究開発機構では ,産学連携推進部知的財産管理課による秘密情報保持
	契約の締結が必要
	(4) 高額な経費と維持費
	米国では 1974 年よりアエロテスト・オペレーションズ社が事業化,中性子ラジオ
	グラフィだけを運営している(利用施設が限定される。)。カナダでは,チョーク・
	リバー研究所が事業化したものの,利用料金の問題で施設は休眠状態である。

	国内では , サイクロトロンを用いた検査を行っている企業もあるが , 事業面で苦戦
	している。中性子ラジオグラフィ施設は国立の研究施設での利用に限定される。
	(5) 資格と教育の特殊性
	国内では , JIS の「非破壊試験-技術者の資格および承認」で規格化
	中性子ラジオグラフィについては , 上記規格の中の「放射線透化試験」を適用
	当該規格は IS09712 に準拠(米国非破壊検査協会の諸規定に基づく)
	(6) ビーム及び画像の規格化
	各種の中性子ビームについては,線質が微妙に異なり,取得する画像の品質管理の
	問題から規格化の現状は未だ道遠しの感がある。
へ後の展開	
ラ後の展望	<u>今後の展望 5)6)7)</u>
	・安全性の確保の検討と関連する法整備
	・国際協力・連携による施設利用の拡大
	・小型中性子源の開発から可搬性小型中性子源の開発
	・より大きい被写体への運用のため ,透過力の大きい高速中性子の利用が期待される。
	そのためには ,高速中性子に対して特性のよいコンバータの開発とエネルギー変化
	に対応する画像定量化法の理論的検討および開発が必要である。
	・新型中性子源(核破壊中性子源など)への適用に対して , 中性子エネルギー範囲の
	差異 ,連続ビーム・高繰り返し型パルスビームに対応した中性子ラジオグラフィ技
	術の開発が必要である。

2-33

2-2-7. 3MA (<u>M</u>icromagnetic <u>M</u>ultiparameter <u>M</u>icrostructure and Stress <u>A</u>nalysis)

	<u>マルチ周波数渦流探傷(3 周波数で計測)</u>					
	測定パラメータ					
	・コイルのインピーダンス					
	<u>長所</u>					
	・活荷重による応力の増加分ではなく,残留応力や死荷重応力など発生している全応					
	力を , ピンポイントに非破壊で測定できる。					
	・高速で鋼材の機械的性質を連続して把握できる。					
医氏、右氏	・リアルタイムで計測(1 測点の計測時間は 20~30 秒)できる。					
長別・短別	短所					
	・強磁性材料だけに適用可能である。					
	・屋外での長期的な適用事例が少ない。					
	・キャリブレーションは必要である。センサの摩擦等による再キャリブレーション方					
	法が課題である。					
	・鋼板の品質検査(降伏強度,引張強度などの機械的性質に関する検査)					
海田車例	・厚板の残留応力の調査					
過用事例	・自動車のエンジンのシリンダーに使用されている鋳鉄の微視構造の調査					
	・ベアリングの残留応力調査					
	1) Gerd Dobmann, Iris Altpeter, Bernd Wolter, Rolf Kern : Industrial					
	Applications of $3MA-Micromagnetic Multiparameter Microstructure and Stress$					
	Analysis, 5th International Conference Structural Integrity of Welded					
参考文献	Structures (ISCS2007),2007.					
	2) E. Schneider : Evaluation of Stress States of Components using Ultrasonic					
	and Micro Magnetic Techniques, 2009 ASME Pressure Vessels & Piping					
	Conference, 2009.					
	<u>現状の課題</u>					
	・鋼板などの硬度管理に用いられる場合が多く,応力測定への適用事例は少ない。					
	・超音波測定と組み合わせてコンクリート橋の応力測定に適用した事例がある。					
	・既存の測定器具よりも高価である。					
	・個々のマイクロ磁気パラメータを用いた計測技術は国内でも開発されているが,複					
	数のパラメータを組み合わせた計測技術の開発は少ない					
今後の展望						
	<u>今後の展望</u>					
	・応力測定に応用可能な技術と考える。					
	・鋼橋での測定事例を積み重ねる必要がある。					
	・3MA が応力測定の選択肢の一つとして確立されれば,短時間で測定できるという長					
	所を生かして,採用される可能性がある。					
L						

適用事例:FBG 光ファイバセンサを用いた Weigh-In-Motion システムの開発 【対象橋梁】 構造形式:3 径間連続6主鈑桁橋+単純6主鈑桁橋 橋長:109.5m(3@36.5m)+35.6m,幅員:17.5m 建設年:1974年 【測定方法】

FBG センサは 3 径間連続桁橋梁に,ひずみゲージを単純桁橋梁に設置した(図 2-39)。いずれの橋 梁も RC 床版を有す6主桁プレートガーダー橋であり,片側 2 車線の対面交通となっている。FBG セ ンサの設置では,エポキシ系接着剤で接着し,ポリエステル系の樹脂でコーティングをした。

【計測結果】

走行試験で得られたデータをリサンプリングして Weigh-In-Motion(W.I.M.)を行った。FBG センサ の測定精度が,W.I.M.による荷重算出における精度に及ぼす影響について検討するために,走行試験 の測定波形からW.I.M.を行った。FBG センサとひずみゲージによる実測波形とW.I.M.による解析結果 を図 2-40 に示す。試験車重量 20.95t に対して,FBG センサで算出した重量は 20.89t であり,精度 良く重量が求まっている。また,ひずみゲージで算出した重量との差は0.06t(0.3%)となっており, ひずみゲージと同程度の精度であることが確認できた。

	1) 小林祐介,三木千壽,佐々木栄一:FBG光ファイバセンサによるWeigh-In-Motion
	システムの構築,土木学会応用力学論文集,Vol.6,pp.1009-1016,2003.
	2) 黒川章二,羅黄順,嶋野慶次,青木優介:光ファイバを用いた断面修復済み鉄筋
	コンクリート梁底面の引張変位計測,土木学会応用力学論文集,Vol.6,
	pp.1017-1024 , 2003.
	3) 西尾真由子,武田展雄:分布光ファイバひずみセンサを用いた変位同定法による
	境界条件変化を考慮した構造物の変形モニタリング ,土木学会応用力学論文集A ,
	Vol.66, No.2, pp.229-238, 2010.
	4) 門万寿夫,佐藤拓哉:光ファイバセンサによる構造物の長期連続モニタリング,
	土木学会応用力学論文集,Vol.6,pp.1105-1112,2003.
	5) 恒國光義,加藤佳孝,魚本健人:既設プレストレスコンクリート道路橋の構造劣
	化診断,生産研究 58 巻,3 号,2006.
参考又献	6) 鹿島建設株式会社ホームページ:光ファイバセンサによる新しい構造物モニタリ
	ングシステムの開発http://www.kajima.co.jp/news/press/200603/30c1fo-j.htm
	6) 李哲賢,津田勉,澤貴弘: PPP-BOTDA を用いた高分解能(10cm)かつ高速(10Hz)
	分布計測の実現,電子情報通信学会技術研究報告, 0FT2008-42, pp.39-44, 2008.
	7) 淡路動太,福田和寛,平野宏幸,横山光徳,松田公彦:PPP-BOTDA 方式光ファイ
	バ計測による超長尺先受け鋼管のひずみ挙動,土木学会年次学術講演会概要集,
	VI-022, 2012.
	8) 岸田欣増,李哲賢,山内良昭,横山光徳,松田公彦:光ファイバモニタリングが
	必要とする測定・解析・情報管理技術,電子通信情報学会ソサイエティ大会,
	BCI-1-4, 2012.
	9)NETIS ホームページ (NETIS 番号:KT-000059-A):
	http://www.netis.mlit.go.jp/
	現状の課題
	光ファイバの種類によって特徴が違うので,目的に合ったセンサを選択することが
	重要である。また,センサ本体の長期耐久性,安定性,設置方法についても検討の余
	地がある。下記 ~ に方式ごとにまとめる。
今後の展望	FBG 方式,FPI 方式
	分解能が高く , 動的測定も可能。複雑な形状の構造物のひずみ計測や , 局部的なひ
	ずみ計測に有効である。また,TDM(時間分割多重化)方式の FBG(FSI ユニットを使
	用)は,最大100点を1本のファイバに配置し計測することができる。

	<u>今後の展望</u>
	老朽化が進んだ構造物の場合 ,クラックの発生状況や ,材料特性の変化などがあり ,
	管理値を決めることは難しい。しかし,光ファイバによる長期連続モニタリングによ
	り,管理値に加え,変形量の変化速度(変化率)によっても評価することが可能にな
今後の展望	り,絶対値管理(管理値)から傾向管理が可能になる。
	光ファイバは,計測物理量に応じたセンサ構成を選択することで,多岐多様な物理
	量(地震,水位,ひずみ等)を短時間で高い精度でセンシングでき,さらには,遠隔操
	作により,それら複数の物理量を複合して長距離伝送できる機能が期待される。

2-2-9.音弾性法

応力を受けた物体には力学的な異方性が生じる。これにより,主応力方向に振動す る二つの横波の速度に違いが生じる。音弾性による応力測定では,この差が主応力差 に比例することを利用する。つまり,主応力方向に偏向した2つの横波の速度差その ものを測定する必要がある。例えば,軟鋼に対しては単位応力あたりの相対速度差は 7×10⁻⁶MPa⁻¹であることから,厚さ15mmの試験片に対しては1往復の伝播時間はおよ そ10µs(=15×2/3000×1000)となる。このため,10MPaの分解能で応力を測定す るには7×10⁻¹⁰秒(=10×7e-6×10e-5),すなわちおよそ1nsの精度で速度差を測定 しなければならない。ただし,2つの横波の相対速度差である音響複屈折量は,組織 効果と応力効果の和として与えられるため,音響複屈折量を応力効果と組織効果に分 離する必要がある。

線形弾性論におけるひずみと応力の定義式,運動方程式,応力-ひずみ関係式を対応する非線形の関係で置き換えて基礎式を得る。これより初期変形による応力を受けた弾性体における弾性波の伝播速度が求められる。弱い直交異方性を有する圧延板にx あるいはy方向に振動し,厚さz方向に伝播する横波を入射するとき(図2-44), この板がx,y方向に主応力」, _2をうける平面応力状態(_3 = 0)のもとにあれば,横波の伝播速度を与える式は,弾性定数における等方性からの変化と初期ひずみを微小な量と考え,高次の微小量を省略することで次式(複屈折音弾性法則)が得られる。

計測の仕組み

$$\frac{V_{zx} - V_{zy}}{V_{\tau}} = \frac{\Delta C_{55} - \Delta C_{44}}{2\mu} + \frac{1}{2\mu} \left(1 + \frac{V_3}{\mu}\right) (\sigma_1 - \sigma_2) \tag{1}$$

ここで, v_3 は等方性弾性体の3次の弾性定数, $V_T = (V_{xx} + V_{xy})/2$ は2つの横波の平均 速度であり,右辺の第1項が組織効果,第2項が応力効果である。このようにして測 定される応力は厚さにわたって平均した値である。 $(1 + v_3/\mu)/2\mu$ は,複屈折におけ る音弾性定数で C_A の記号で表される。また,左辺の相対速度差が測定により求めら れる量で音響複屈折とよぶ。複屈折音弾性法則以外に,縦波の速度変化を利用する音 弾性法則

$$\frac{V_{zz} - V_{zz}^0}{V_{zz}^0} = C_L \left(\sigma_1 + \sigma_2 \right)$$
⁽²⁾

と,横波の平均速度の変化を利用する音弾性法則

$$\frac{V_T - V_T^0}{V_T^0} = C_T \left(\sigma_1 + \sigma_2 \right)$$
(3)

も同様に導くことができる。ここで, V_{zz}^0 と V_T^0 は,それぞれ無応力状態における縦波と横波の平均速度である。また,縦波の速度と横波の平均速度の比は音速比音弾性法則を与える。

$$\frac{V_{zz}}{V_T} = R_0 + C_R \left(\sigma_1 + \sigma_2 \right)$$
(4)

	ここで。 R_0 は無応力時の音速比 , C_R は音速比法の音弾性定数である。以上 , 4 種の音				
	弾性法則は ,すべて板状試料の面内に存在する平面応力を板厚方向に伝播する横波あ				
	るいは縦波を用いて測定する場合である。				
	もう一つ重要な応用として ,単軸応力をその応力軸の方向に伝播する縦波を用いて				
	測定する場合がある。これは超音波によるボルトの軸力測定において,応力の存在に				
	よる縦波の速度変化を与える音弾性法則を利用する場合である。				
	^{σ1} 4 ^{σ3}				
計測の仕組み					
	y at				
	**				
	図 2-44 各種音弾性法則における応力状態と伝播速度 ¹⁾				
	ができるが、通常、対象物と同じ材料より製作した較正用試験片に短軸負荷試験を行				
	って得た速度 - 応力関係の傾斜からこれらの定数を求めておく。平面応力状態に対し				
	て組織異万性と無心力音速比が既知の場合には, 複屈折法と音速比法より王心力 1,				
	2を分離して氷のることかできる。 Fr				
	・非飯場で負何応力,残留応力の測定が行える。 短艇				
	<u> </u>				
	・ 音歴を同相反に別定する必要がのる(10万万の100相反)。 ・ 辛弾性広力測定で必要とたる辛郷道屈折号(2) た向に偏向した構造の相対速度美)				
長所・短所	は 材料に依存する組織効果と応力効果の和として与えられるため 両者を分離す				
	・音弾性定数を、通常、対象物と同じ材料より製作した較正用試験片に短軸負荷試験				
	・音弾性定数や音速の温度依存性を考慮する必要がある。				
	複屈折音弾性法で測定した音響異方性には,2次元平面応力場の主応力差と,材料				
	の組織異方性とが含まれるので,組織異方性を分離しなければ,応力を測定すること				
適用事例	ができない。この分離が可能なのは次の2つのケースに限られる。				
	ケース1:無応力時に音弾性測定を実施して測定点の組織異方性が既知である。				
	ケース2:材料の組織異方性が一様でかつ応力分布の幾何学的な特徴が利用できる。				

	この測定から複屈折音弾性法の適用の難しさが良くわかる。一般に組織異方性の小さ
金田吉何	い材料では,その値のばらつきも小さく,複屈折音弾性法の信頼性があがる。板厚が
週用爭例	厚く ,圧延温度が高いほど組織異方性が小さくなる。フランジでは音響異方性の均一
	性が良く,ウェブではその均一性が悪い。
	1) 福岡秀和,戸田裕己,平尾雅彦:音弾性の基礎と応用,オーム社,1993.
ᆇᆇᆇᆂ	2) 福岡秀和:音弾性法による残留応力の測定,溶接学会誌,Vol.58,No.1,pp.65-72,
参考又瞅	1989.
	3) http://www.laser-measurement.com/product/sintec/ultramars.html
	・ 音弾性法では , 物体内を伝播する音速を非常に高精度で計測する必要がある。音
	速を高精度に計測する手法としては,絶対的音速測定法としてシングアラウンド
	法やパルス・エコーオーバーラップ法,相対的音速測定法として位相干渉法など
	がある。これらの手法には,それぞれ独自のノウハウがあり,さらに計測時には
	音速の温度依存性も考慮する必要がある。よって,物体内を伝播する音速を簡易
	かつ高精度に計測することが可能な手法の開発が必要と考える。
	・ 音弾性法で計測される 2 方向に偏向した横波の相対速度差である音響複屈折量
	は,材料に依存する組織効果と応力に起因する効果の和として与えられるため,
今後の展望	両者を分離する必要がある。両者の分離では,材料の組織異方性が一様であると
	し,ある部分の組織異方性を全体の組織異方性と仮定することがある。しかし,
	一般に古い経年材では,材料の均質性が悪く,この仮定を満たすことが難しい。
	よって,組織効果と応力効果を適切かつ効率的に分離する手法の開発が必要と考
	える。
	 ・ 音弾性法では,計測対象物と同じ材料より製作した較正用試験片によるキャリブ
	レーション試験が必要である。このため,音弾性法の効率化に向けては,キャリ
	ブレーション試験結果のデータベース化が求められる。

	鉛の力学挙動の把握 ⁴⁾
	制震デバイスは,大変形下において,材料の不均一性に起因するくびれ現象などの
	著しい局部変形を生じるため,力学特性に不明な点が多い。本論文では,エネルギー
	吸収材料として用いられる鉛の力学挙動を把握するために,画像計測技術で大変形下
	のひずみを計測した。ダンベル形の試験片(図2-53)を用いて各種試験を行い,30%
冷田市何	程度までのひずみを計測することができた。
」 適用争例	
	R=15
	14
	< <u>60</u>
	図 2-53 試験片の形状と寸法
	1) 舘石和雄:デジタルステレオビジョンによる広領域ひずみ場計測システムの開発,
	土木学会論文集,No.693/VI-53,pp.87-94,2001.
	2) 舘石和雄,判治剛:画像計測を用いた試験システムによる突合せ溶接継手の低サ
~~~~	イクル疲労強度の検討,土木学会論文集,No.752/I-66,pp.277-287,2004.
参考又厭	3) 劉陽,水野千里,青木徹彦:画像計測を利用したせん断型ダンパーのひずみ分布
	特性の把握,構造工学論文集,Vol.54A,pp.394-402,2008.
	4) 吉田純司,阿部雅人,Alessandro BEGHINI,藤野陽三,横川英彰:画像計測を利
	用した鉛の力学特性の把握,土木学会論文集,No.724/I-62,pp.127-139,2003.
	画像計測技術を用いた適用事例の多くが,地震のような大ひずみ条件下での計測デ
	ータである。上記文献には,計測精度は0.1mm~0.2mm という記述もあることから,
	現状では通常時の長期モニタリング技術として,画像計測により車両走行時に発生す
へ後の屋胡	るひずみを計測することは難しい。
ラ後の展望	ただし ,最近ではデジタルビデオカメラを使って主桁下フランジの変位を計測した
	事例もあるため,たわみ計測であれば適用できる。また,技術革新が進み,現在より
	も更に高性能のデジタルカメラが開発されれば ,活荷重作用時のひずみを計測できる
	可能性もある。

§3.光ファイバセンサの適用性検討

3-1.検討の目的

様々な歪・応力モニタリング技術の中でも光ファイバを用いたモニタリング技術は,実橋梁への適用 が実施され始めている。従来,点でしか把握しえなかった歪・応力の情報を,空間の分布情報として把 握できるようになる点が,ニーズや期待として最も大きいように思われる。しかし,現状では,光ファ イバセンサにも様々なタイプものがあり,実橋梁の適用に向けては,計測方法や長所・短所,計測精度 について把握しておく必要がある。また,光ファイバセンサを用いて実橋で測定したという事例は良く みられるものの,ひずみゲージ等,他のセンサと比較検証した結果はあまり表に出ていない。そこで, 本章では,鋼桁試験体の静的載荷試験で得られたひずみ値の比較を通じて,光ファイバセンサの特性, 精度について検討する。使用した光ファイバセンサは,FBG センサとBOTDR センサの2 種類である。

3-2.実験で使用する光ファイバセンサ

実験で使用した2種類の光ファイバセンサの概要を以下に示す。

3-2-1.FBG 光ファイバセンサ

FBG (Fiber Bragg Grating)とは,図 3-1 に示すように光ファイバに紫外線を照射して一定周期の回 析格子 (グレーティング)を加工したもので,FBG に光を入射させると,グレーティング周期に応じた 特定波長の反射光が戻ってくる。FBG 近傍の光ファイバに軸方向ひずみが発生し,FBG のグレーティン グ周期が変化すると、図 3-2 に示すように反射光の波長がシフトする性質があり,この性質を利用して, ひずみ測定を行う。







#### 3-2-2. PPP-BOTDA 光ファイバセンサ

PPP-BOTDA (Pulse-PrePump Brillouin Optical Time Domain Analysis)とは,光ファイバの両端に Pulse の Pump 光と CW の Probe 光を入射した時に誘導されるブリルアン散乱光の変化をとらえ,光ファ イバに生じているひずみを計測する方法である(図 3-3)。Pump 光のパルス幅を狭くすれば,高い空間 分解能が得られることは一般に知られているが,光ファイバ内に誘起される音波には立ち上がり時間が あり,高空間分解能を追求するために Pump 光のパルス幅を狭くすると,誘導ブリルアン・ゲインの低 下と誘導ブリルアン・ゲイン・スペクトラムの変形のリスクを負わなければならない。PPP-BOTDA は Pump 光に着目して,光ファイバ内に誘起される音波を先に立ち上がらせる手法を取ることで,10cm 空間分解 能と±0.0025%ひずみ計測精度を実現している。



図 3-3 PPP-BOTDR ひずみ計測の原理²⁾

### 3-3.実験の概要

3-3-1.試験体

使用した試験体は,高さ390mm,長さ4400mmのH鋼桁試験体である(図3-4)。鋼種はSM400である。 後述の通り,実験は4点曲げで行うが,せん断力が作用する区間は座屈防止用として,ウェブに鋼板を 溶接で設置した。



図 3-4 桁試験体の形状と寸法

## 3-3-2.センサの設置位置

試験体に設置するセンサは,2種類の光ファイバセンサ(FBG センサおよび PPP-BOTDR センサ),ひず みゲージ,応力聴診器,磁歪法の5種類である(表 3-1)。センサ設置位置を図 3-5 に,設置状況を図 3-6 に示す。

		測定位置	測定点数
半コッイバヤンサ	FBG センサ	下フランジ	2 点
元ノアイハビノリ	PPP-BOTDA センサ	上下フランジ	1ライン
ひずみゲージ		上下フランジ	24 点
応力聴診器		下フランジ	2 点
		下フランジ	1 点

表 3-1 設置するセンサの一覧



図 3-5 センサ設置位置



(c) 応力聴診器



(d) 磁歪法プローブ



(a) 上フランジ載荷点付近

図 3-6 センサ設置状況

FBG

(b) 下フランジ下面

3-3-3.実験方法

実験は,静的載荷容量2000kNの試験機を用いて,等曲げ区間を設ける4点曲げ試験で行った(図3-7) 実験状況を図3-8に示す。載荷手順は表3-2に示すとおりである。2回の予備載荷後,本載荷を行った。 本載荷では,梁理論から求められる最大荷重(950kN)までは荷重制御,それ以降は変位制御とした。



図 3-7 載荷方法





図 3-8 試験状況

計測番号	荷 重 [kN]	備考	計測番号	荷 重 [kN]	備考
1	0	イニシャル測定	32	0	イニシャル測定
2	50		33	100	
3	100		34	200	
4	150		35	300	
5	200		36	400	
6	250	予備載荷	37	500	
7	300	1回日	38	600	
8	350		39	650	荷重制御
9	400		40	700	
10	300		41	750	
11	200		42	800	
12	100		43	850	
13	0		44	900	
14	50		45	950	
15	100		46		
16	150				
17	200		$\downarrow$	$\downarrow$	
18	250				
19	300				
20	350		↓	$\downarrow$	変位制御
21	400	又供載芬			(アクチュエータ変位)
22	450	了佣蚁的			45 ex 52 0 2mm
23	500	2000	↓	$\downarrow$	45~53° 0.2mm
24	550				54~57: 1.0mm
25	600				57~62: 2.0mm
26	500		$\downarrow$	$\downarrow$	
27	400				
28	300				
29	200		$\downarrow$	↓	
30	100				
31	0		62		終了

表 3-2 載荷手順

3-4.実験結果

支間中央(等モーメント区間)における,各センサの荷重と軸方向ひずみの関係を図3-9に示す。図中の実線は,鋼材を完全弾塑性体と仮定して,梁理論より求めた結果である。ただし,計算では残留



図 3-9 支間中央における各センサの測定値

応力・初期不正は考慮していない。載荷の初期段階での各センサの出力値と計算値はほぼ一致している。 ひずみが 800 µ を超えたあたりから,磁歪法で得られたひずみは計算値から離れ始めている。載荷の早 い段階で磁歪法が計算値と乖離したのは,1)試験体と同じ鋼材でキャリブレーションを行うことがで きなかった,2)今回の実験では別の実験で降伏させた試験体を使用している,の2点が原因と考えら れる。

一方,他のセンサは1200µ付近から計算値と離れ始めている。このことは,残留応力の影響により計 算値よりも先に試験体の降伏が始まったことを示している。また,磁歪法を除く4種類のセンサを比較 すると,測定値に大きな違いはない。

1/4 支間(せん断作用区間)における荷重とひずみ値の関係を図 3-10 に示す。PPP-BOTDA センサで得られた値は,計算値とよく一致している。ひずみゲージは,東側の値が載荷初期から計算値と多少の差があるものの,全体的には計算値とよく一致していると言える。ひずみゲージの東側と西側で差があるのは,試験体の初期不正が影響している。FBG センサで得られた値は,残留応力の影響で 1200 µ 付近から計算値と乖離しているものの,大きな違いではない。



図 3-10 1/4 支間における各センサの測定値

PPP-BOTDA センサで得られた,下フランジ下面の軸方向ひずみの分布を図 3-11 に示す。図中の横に引 いた点線は降伏ひずみを表している。弾性範囲内(900kN 以下)では,測定値は梁理論より求めた値と ほぼ一致している。このことから,弾性範囲内であれば,PPP-BOTDA センサを用いてひずみを連続的に 精度よく測定できることがわかる。ただし,支点から約 400mm の範囲では,測定値は計算値よりも小さ くなっている。これは,座屈防止用としてウェブの両面に設置した鋼板により,この区間の断面剛性が 増加したことが原因と考えられる。



3-5.FBG センサと PPP-BOTDA センサの測定まとめ

今回の実験を通して得られた知見をまとめると、以下の通りとなる。

- 1) FBG は,センサを配置した箇所のみのひずみの測定であるため,測定時間が非常に短い。一方, PPP-BOTDA センサは,分布測定をするため,今回の実験規模で測定に約2分程度要する。
- 2) FBG センサは,エポキシ樹脂で母材に堅固に固定するが, PPP-BOTDA センサは,両面テープで母材に 接着する。実橋での計測においては,接着方法の検討が別途必要と考える。
- 3) PPP-BOTDA センサにおけるひずみの分布計測では,図 3-12 のとおり,着目測定箇所と,センサの位 置関係を予め把握しておく必要がある。本実験では,冷却スプレーを用いて,故意にセンサに低温 のひずみを与えることで,その箇所を把握している。この点は,FBG センサに比べると手間を要する。



図 3-12 PPP-BOTDA センサにおける位置の確認

4) 外気温の変化に対する補正処理については,以下に示す。

光ファイバは,外力の作用のほか,外気温の変化に対しても,ひずみが生じるため,測定期間中の外 気温の変化を補正する必要がある。本実験では,FBG センサ及び PPP-BOTDA センサの各々について,以 下のようなひずみの補正の処理を行った。

FBG センサ

外力の作用に対して影響しない桁端部にダミーのセンサを設置し(図 3-13),外気温の変化によるひ ずみ量を測定した。この方法を用いれば,比較的容易にデータの補正処理が行える。



図 3-13 ダミーセンサの設置状況

PPP-BOTDA

測定時の外気温を別途,温度計等で記録しておき,別途に設定されたキャリブレーションデータにて 補正を行う。このため,処理に時間を要し,実験途中ではデータが確認できない。 §4. 磁歪法の適用性検討

4-1.計測の目的

磁性体に内在する全応力を非破壊で計測することが可能な技術として磁歪法がある。磁歪法の実橋梁 に対する適用性を検討するために,屋内での精度検証試験とある橋梁を対象として工場製作の段階から 現地架設までの各段階で磁歪法による応力計測を実施した。

4-2.磁歪法の概要

磁歪法とは,鋼材などの強磁性体における磁気ひずみ効果を利用した応力計測法である³⁾。例えば, 鋼材に磁場を加えると,鋼材は磁化され,それに伴い長さが変化する(3×10⁻⁶程度)。この磁気ひずみ 効果の逆の効果が,Villari 効果と呼ばれ,鋼材に引張応力を作用させて伸ばせば磁化しやすくなり, また,圧縮応力を作用させて縮ませれば磁化しにくくなる。つまり,応力が加わった鋼材は,主応力方 向に磁化しやすく,これに直角となる方向では磁化しにくくなる。磁歪法では,この磁気異方性を検出 して,応力を計測する。

磁歪法では,その計測原理から既に作用している応力状態下にある磁場が検出される。このため,供 用中の橋梁に適用する場合,残留応力・死荷重・活荷重を全て含む全応力が非破壊で計測されることと なる。これは,ひずみゲージによる応力計測が,貼り付けた後からの応力の相対変化しかわからないこ とと比較すると,大きなメリットである。

具体的な計測方法は,対向する電磁石の一方を励磁極とし,これと直角する方向を検出極とするプロ ーブを鋼材表面に接触させることで行う(図4-1)。プローブの出力は,主応力方向と主応力差に関係し た下式で与えられる電圧である。

$$V = k(\sigma_1 - \sigma_2)\cos\theta \tag{1}$$

ここで, V: プローブの出力電圧(V)
 k: 材料とリフトオフ量から決まる係数(V/MPa)
 σ₁および σ₂: 主応力(MPa)
 θ: 主応力方向(radian)



(a) 写真



(b) 模式図

図 4-1 磁歪法プローブ



図 4-2 磁歪法の実橋梁への適用に向けたフローチャート

リフトオフ量とは,塗膜を除いた鋼材表面からプローブまでの距離である。出力電圧から応力へ換算 するためには,予め計測対象において引張・圧縮試験を実施して,出力電圧と応力の関係である応力感 度曲線(校正曲線,キャリブレーションカーブとも呼ぶ)を作成する必要がある。ただし,鋼材の種類, 板厚,年代などがわかれば,既往の応力感度曲線を用いて,応力を概算することが可能である。

また,計測対象で主応力方向が明確でない場合は,式(1)において が確定しない。このため,各計 測点でプローブを0°,45°,90°,135°の4方向に回転させて,その度に計測を行い, を確定する 必要がある(4方向計測)。さらに,主応力差に関する情報しか得られないことから,これらを分離する ために主に光弾性分野で使用されているせん断応力差積分法⁴⁾を利用する。ただし,トラス橋の斜材な どは軸力部材であり,主応力方向が明確であるため,プローブの計測軸を主応力方向に一致させて計測 すれば,主応力に比例した電圧が得られることとなる(1方向計測)。参考までに,磁歪法による応力計 測精度は既往の研究から 10~20 MPa とされており,磁歪法の適用範囲は塑性領域では磁気飽和現象が 生じることから弾性領域内とされている^{4),5)}。

#### 4-3.実橋梁への磁歪法の適用方法

磁歪法による応力計測では,応力感度曲線(校正曲線,キャリブレーションカーブ)の有無,リフト オフ量が重要となる。磁歪法を実橋梁へ適用する際のフローチャートを図 4-2 に示す。図 4-2 からは, 応力感度曲線がある場合でも,リフトオフ量の取り扱い方から,二種類の応力計測方法があることがわ かる。以下では,本計測で採用した応力感度曲線,リフトオフ量の取り扱い方について説明する。 4-3-1. 応力感度曲線(校正曲線,キャリブレーションカーブ)

図 4-3 に,応力感度曲線の一例を示す。鋼種は SM400A である。図 4-3 は,プローブの先端に薄膜テ



図 4-3 応力感度曲線の例 (SM400A)



図 4-4 磁歪法から出力されるリフトオフ量と実際のリフトオフ量の関係

ープ(0.05mm 厚)を貼り付けて鋼材表面とプローブ間距離を調整し,リフトオフ量を0.36mm,0.46mm, 0.65mm,1.46mm として実施した引張・圧縮試験から得られた出力電圧と応力の関係である。これらの応 力感度曲線から,図4-2の手順にもとづいて,リフトオフ量に依存しない応力感度曲線を作成すること が可能である⁷⁾。

4-3-2.リフトオフ量

磁歪法計測システムからは,検出される磁場の強度にもとづいてリフトオフ量に関する情報(以下, Lift と呼ぶ)が出力される。図 4-3 の応力感度曲線に対して,Lift と実際のリフトオフ量の関係を図 4-4 に示す。横軸がLift,縦軸が実際のリフトオフ量である。実計測では,まず,Lift が図 4-4 のグラ フの範囲内(0.4~1.4mm)であるかを確認する。ここで,塗膜上からプローブを当て,グラフの範囲内 であれば,塗膜上からでも応力計測が可能である。グラフの範囲外となる場合は,計測精度が著しく悪 化するため,塗膜のグラインダーによる除去,薄膜テープによるリフトオフ量の調整が必要となる。ま



図 4-5 磁歪法計測システム

た,チェックされたリフトオフ量が,図4-3における実際のリフトオフ量(0.36mm,0.46mm,0.65mm, 1.46mm)に非常に近い場合は,図4-3の応力感度曲線を直接利用して応力を算出することが可能である。 実際のリフトオフ量に近くない場合は,リフトオフ量の調整を行うか,あるいは,リフトオフ量に依存 しない応力感度曲線を利用することとなる。

4-3-3.計測システム

本研究で使用した磁歪法応力計測システムを図 4-5 に示す。システムは、コントローラー、ノート PC、 プローブから構成される。本計測システムでは、静的計測のみならず、動的計測も行うことが可能であ るが、本研究では静的計測のみを行うことから、プローブとして、直径 20mm、励磁電流 14Hz のタイプ のものを用いた。このとき、磁場の浸透深さは、理論式から 1.94mm となる。

4-4.磁歪法の適用性検証試験

磁歪法を実橋梁の応力計測に適用するのに先立って,磁歪法の計測精度,適用範囲を検証するための 屋内試験を実施した。一つめは,ビード溶接を施した薄板の残留応力を磁歪法と応力解放法により測定 し,比較を行った。二つめは,第3章で実施する光ファイバ検証試験の鋼桁4点曲げ試験時に,支間中 央部下フランジ下面に磁歪法プローブを設置して,比較を行った。試験の詳細については,第3章を参 照されたい。

4-4-1. 薄板の溶接残留応力

厚さ 10mm の SS400 鋼材から幅 40mm,長さ 400mm の試験片を切り出し,引張試験で表面に引張応力を 作用させ,種々のリフトオフの下で,応力と出力電圧のとの関係(校正曲線)を求めた例を図 4-6 に示 す。励磁電流は 14Hz であり,磁場の浸透深さは 1.94mm である。

図 4-6 のデータの出力電圧 *V*, 応力 *σ*, インピーダンス *Z*を以下のように規格化する。

- ・ 出力電圧は、最大応力 σ_m = 200MPa 加えたときの出力電圧 V_m との比で表し、相対出力電圧 V( = V/V_m) で表す。
- 応力は *o_m* との比で表し,相対応力 *o_r* (= *o*/*o_m*)で表す。
- インピーダンスはリフトオフ無限大時すなわちプローブを被測定物から十分離した位置でのインピーダンス Z₀ との比で表し,相対インピーダンス Z_r(= Z/Z₀)で表す。
- 図 4-6 を相対出力 V_rと相対応力 σ_rとの関係に置き換えたグラフを図 4-7 に示す。これはリフトオフ

に依らない1本の曲線で表されることがわかる。次に相対インピーダンス Z_rと応力 200MPa 時の出力電 圧 V_m との関係に置き換えたグラフを図 4-8 に示す。この曲線はプローブの大きさ,コイルの巻き数に 依存するが,1本の曲線で校正曲線を表す。すなわち,これらの曲線により,利用するプローブに対し てリフトオフに依存せず,出力電圧を用いて応力を求めることが可能となる。



図 4-6 リフトオフごとの応力と出力電圧の関係





図 4-8 相対インピーダンスと最大出力電圧の関係

測定物から得られる生のデータは,応力に関係した出力電圧 Vと,リフトオフに関係したプローブの インピーダンス Z および主応力方向である。プローブのインピーダンス Z₀は使用するプローブにより決 まるため既知である。以下に本研究の手法に沿った応力算出の具体的な手順を示す。

測定されたインピーダンス Zから,相対インピーダンス  $Z_r = Z/Z_0$ を求める。

図 4-8 より応力 200MPa 時の出力電圧 V_mを求める。

 $V_m$ と測定された出力電圧 Vから相対出力電圧  $V_r$ を求め,図4-7より相対応力  $\sigma_r = \sigma/\sigma_m$ を求める。 相対応力  $\sigma_r$ に  $\sigma_m$ (=200MPa)を掛けて,求める応力  $\sigma$ が得られる。

リフトオフに依らない校正曲線の検討と磁歪法の精度を検証するめ,室内実験を行った。SS400 材の 鋼板(400×250×10)において,残留応力の影響を調べるため,中央にビード溶接を施した。計測は溶 接線に直角な方向を磁歪法により計測し,溶接線に平行な方向の残留応力を算出した。試験片ならびに 計測位置を図4-9に示す。その後,磁歪法計測位置にひずみゲージを貼り付け,帯鋸切断機を使用した 応力解放法により残留応力を計測し,磁歪法との比較を行った。



図 4-9 試験片形状および計測位置

切断後の試験片を図 4-10 に,残留応力の比較を行ったグラフを図 4-11 に示す。磁歪法の応力算出に はリフトオフに依らない校正曲線を使用した。磁歪法の精度は±20MPa とされているが,ひずみゲージ との良好な一致が見られる。また,鋼板の全域を磁歪法で計測し,溶接線方向の残留応力分布を図 4-12 に示す。図中の赤丸の部分では,図 4-13 に示す溶接欠陥に起因して溶接残留応力が小さくなっている。



図 4-10 切断後の試験片



図 4-11 磁歪法と応力解放法の比較







図 4-13 溶接欠陥

ここでは,磁歪法における校正曲線の規格化と精度検証を行った。精度検証には室内実験を行い,ひずみゲージによる応力解放法との比較を行った。また,応力算出にはリフトオフに依らない校正曲線を 利用した。その結果,リフトオフに依らず,磁歪法の計測が可能となった。

4-4-2. 鋼桁の4点曲げ試験

図 4-14 に本試験で使用した応力感度曲線を示す。これは,試験を実施した鋼桁と類似した鋼板(鋼種:SM400A,板厚 14 mm)を引張・圧縮試験した結果である。また,リフトオフ量は4点曲げ試験時の ものと合わせているため,応力感度曲線は1本しか作成していない。

図 4-15 に,磁歪法による応力計測結果と磁歪法プローブの近傍に添付されたひずみゲージによる応力計測結果の比較を示す。図中の点線は,磁歪法の計測精度と一般に言われる±20 MPa の範囲を示している。180 MPa 付近まで,磁歪法の計測結果は,ひずみゲージの計測結果に対して±20 MPa の範囲に入っていることが分かる。磁歪法の適用範囲は弾性範囲内とされており,今回の結果は公称の降伏応力よ

りも低い範囲で ± 20 MPa の範囲を超えている。これは,応力感度曲線の精度やリフトオフ量に依るものと思われる。



4-5.計測概要

4-5-1.対象橋梁

磁歪法の実橋梁への適用性を検討するために対象とした橋梁は,図 4-16 に示す橋長 50.0m の鋼単純 合成2主鈑桁橋である。



(a) 仮組時



(b) 架設時

図 4-16 対象橋梁

4-5-2.計測ステップ

磁歪法による応力計測は,工場製作の段階から現地架設までの各段階で実施した。表4-1に計測ステ ップを示す。計測対象とする部材は,鋼桁の上下フランジとするが,製作工程や作業性の観点から,計 測部材を適宜選定することとした。上下フランジの鋼種は SM520C-H である。応力計測では,橋軸直角 方向を計測軸とする4方向計測を行い,各計測点で主応力差と主応力方向を求め,さらに,せん断応力 差積分法から主応力差を分離して橋軸方向の応力を算出することとした。以下に,各計測ステップにつ いて説明する。

表 4-1	計測ステ	ッ	プ

計測 ステップ		計測実施日	計測部材
1	鋼板切断前	2009年4月20日	上フランジ(板厚:45mm)
2	鋼板切断後	2009年4月21日	上フランジ(板厚:45mm)
3	仮溶接,塑性加 <b>工</b>	2009年4月30日	上フランジ(板厚:45mm)
4	本溶接	2009年5月8日	上フランジ(板厚:45mm)
5	工場仮組み	2009年10月13日	上フランジ(板厚:45mm) 下フランジ(板厚:75mm)
6	現地桁架設	2010年11月15日	下 <b>フラン</b> ジ(板厚:75mm)

a) 計測ステップ1(鋼板切断前)

計測対象とした鋼板を図 4-17 に示す。鋼板の寸法は 1120×7090×45 mm である。この鋼板は,計測 対象とする鋼桁の上フランジとなる。磁歪法の計測方向,計測グリッドサイズ,グリッド間隔,計測方 法はそれぞれ部材軸直角方向(圧延直角方向),3×9,140 mm,4方向計測である。



計測方向

(a) 計測対象とした鋼板

(b) 計測グリッドと計測方向

図 4-17 計測ステップ1

b) 計測ステップ2(鋼板切断後)

計測ステップ2では,計測ステップ1の鋼板をガス切断して,鋼板寸法を550×7000×45 mmとした後,磁歪法による応力計測を実施した。磁歪法の計測方向,計測グリッドサイズ,グリッド間隔,計測方法はそれぞれ部材軸直角方向(圧延直角方向),3×5,140 mm,4 方向計測である。切断した鋼板は, それぞれG1桁の上フランジ,G2桁の上フランジに用いられる(図4-18)。


(a) G1 桁の上フランジ



(b) G2 桁の上フランジ



(c) 計測グリッドと計測方向図 4-18 計測ステップ2

c) 計測ステップ3(仮溶接,塑性加工)

本計測ステップでは,計測ステップ2で切断した鋼板に,高さ2855 mm,厚さ14 mm,鋼種SM490Yの ウェブを仮溶接して,歪除去のため塑性加工を施した後,磁歪法による応力計測を実施した。計測対象 は,計測ステップ2で計測した寸法550×7000×45 mmの鋼板である。磁歪法の計測方向,計測グリッ ドサイズ,グリッド間隔,計測方法はそれぞれ部材軸直角方向(圧延直角方向),3×5,140 mm,4 方向 計測である。











(c) 計測グリッドと計測方向図 4-19 計測ステップ3

d) 計測ステップ4(本溶接)

本計測ステップでは,計測ステップ3の仮溶接部を本溶接した後に,磁歪法による応力計測を実施した。計測対象は,計測ステップ3と同様である。磁歪法の計測方向,計測グリッドサイズ,グリッド間隔,計測方法はそれぞれ部材軸直角方向(圧延直角方向),3×5,140 mm,4方向計測である。



(a) G1 桁



(b) G2 桁



(c) 計測グリッドと計測方向図 4-20 計測ステップ4

e) 計測ステップ5(工場仮組み)

本計測ステップの計測位置は,図4-21 に示すように支間中央部付近とした。計測部材は,G1 桁の下 フランジ,G2 桁の上下フランジである。上下フランジの寸法は,それぞれ,上フランジが幅550 mm, 板厚45 mm,下フランジが幅740 mm,板厚75 mmである。磁歪法の計測方向,計測グリッドサイズ,グ リッド間隔,計測方法は,それぞれ部材軸直角方向(圧延直角方向,桁内側から桁外側),3×12(上フ ランジ),3×16(下フランジ),50 mm,4方向計測である。



図 4-21 計測位置



(a) 上フランジの計測



(b) 下フランジの計測

図 4-22 計測ステップ5

f) 計測ステップ6(現地桁架設)

本計測ステップでは,現地で桁を架設した後,計測ステップ5と同じ計測位置で,G1桁の下フランジ とG2桁の下フランジの応力計測を磁歪法により行った。下フランジの寸法は幅740 mm,板厚75 mmで あり,磁歪法の計測方向,計測グリッドサイズ,グリッド間隔,計測方法は,それぞれ部材軸直角方向 (圧延直角方向,桁内側から桁外側),3×16,50 mm,4方向計測である。図4-23 に,計測ステップ6 の計測状況を示す。



図 4-23 計測ステップ 6

4-6.計測結果

4-6-1.上フランジ

計測ステップ1~5で,計測対象とする橋梁の上フランジの応力計測を磁歪法により行った。ただし, 計測ステップ5(工場仮組み)では,計測作業に対する制約からG2桁でのみ計測を実施した。図4-24 に,各計測ステップの電圧値を示す。この電圧変化を応力に換算するために,図4-25に示す応力感度 曲線を使用した。本計測では,計測対象から鋼材を切り出してキャリブレーション用の試験片を作成す ることができなかったため,上フランジの板厚45 mmに近い,板厚46 mmの試験片を代用して応力感度 曲線を作成した。また,図4-25には,リフトオフ量に応じた感度曲線が示されているが,文献7)の手 法を用いて,リフトオフ量に依存しない感度曲線を作成して磁歪法の出力電圧を応力に換算した。図 4-26に,図4-25の応力感度曲線を用いて,図4-24の電圧値を応力に換算した結果を示す。図4-26 か ら分かることを以下に記す。

- ・計測ステップ2(切断後)では,1120 mm 幅の鋼板の中央部をガスで切断した。このため,計測ステップ1(切断前)と比較して計測ステップ2では,各鋼板の560 mmの位置に熱応力の導入と冷却に起因した引張応力が導入されるはずであるが,計測結果ではこれが確認されない。
- ・計測ステップ3(仮溶接)では,計測ステップ2と比較して,各鋼板の応力分布が引張側に大きく移動している。これは,歪除去のための塑性加工に起因するものと思われる。
- ・計測ステップ4(本溶接)では、計測ステップ3と比較して、各鋼板の応力分布が圧縮側に移動している。これは、溶接熱の導入による残留応力の再分配ならびに応力の自己釣合いに起因するものと思われる。応力の分布形状は、溶接部の直上で圧縮応力となっており、これは既往の残留応力分布の結果^{8)、9)}と一致する。
- ・計測ステップ5(工場仮組み)では,計測ステップ4と比較して,計測点数の相違にもとづいて応力 度に違いが確認されるものの,死荷重を支保工で支えているため,応力の分布形状は計測ステップ4 と5とで大きな違いはないと言える。



図 4-25 応力感度曲線



図 4-26 各計測ステップの応力度(上フランジ)

4-6-2.下フランジ

計測ステップ5(工場仮組み)と計測ステップ6(現地桁架設)で,G1桁,G2桁の下フランジを計測 した結果を図4-27,図4-28に示す。計測対象とした下フランジの板厚は75mmであるが,計測対象橋 梁と同種の応力感度曲線用の鋼材を入手できず,また同種同厚の鋼材も手元にないことから,ここでは, 磁歪法の出力電圧のままで図を示している。

計測ステップ5と計測ステップ6の差が,鋼桁の自重による死荷重分の応力変化量となる。応力変化の傾向を評価するために,各桁の各ステップで,下フランジの幅方向に平均化した出力電圧を求める。この結果,G1桁では,計測ステップ5では-4.3162 V,計測ステップ6では-2.5962 Vとなる。また,G2桁では,計測ステップ5では-2.7017 V,計測ステップ6では-2.0266 Vとなる。各桁における電圧の平均値の変化量は,+1.7200 V,+0.67510 Vとなる。電圧の変化量が正となることから,応力の変化量も正となり,これは死荷重による応力増加の傾向と一致している。同橋を対象とした三次元立体 FEAからは,下フランジの死荷重による応力増加量はフランジ幅方向で平均すると,17.5 MPaとなっている。ただし,両者の桁の変化量は本来,一致するはずであるが,相違が見られる。この原因については,主応力差を分離する際に実施するせん断応力差積分法の精度などが考えられるが,いまのところは明確ではなく,今後の課題としたい。



図 4-28 各計測ステップの電圧値(G2 桁・下フランジ)

4-7.まとめ

本章では,残留応力や死荷重を含む,橋梁に作用する全応力を非破壊で計測することが可能な磁歪法 の実橋梁に対する適用性に関して調査した。まず,薄板にビード溶接を施した試験体を対象として機械 式切断による応力解放法との比較を行い,次いで,光ファイバ試験への適用を通じて精度検証,適用範 囲の把握を行うこととした。さらに,ある橋梁を対象として,工場製作の段階から現地架設までの各段 階で実施した磁歪法による応力計測を実施して実橋への適用性について検討した。

一つめの薄板の試験では,磁歪法の適用で問題となる,センサプローブと計測対象との距離であるリ フトオフ量の把握を,リフトオフ量に依存しない校正曲線を作成することで解決した。磁歪法で計測さ れた溶接残留応力分布は,機械式切断による応力解放法でひずみゲージよって計測された分布と非常に 良い一致を示した。本試験で使用した鋼板の板厚は10mmであるが,磁場の浸透深さ,残留応力の板厚 方向分布を考えても,この程度の薄板に対する磁歪法の適用性は問題がないといえる。 二つ目の検証試験として,第3章で実施した光ファイバ検証試験の鋼 | 桁の4点曲げ試験に磁歪法も 適用することとした。磁歪法プローブの取付位置は,等曲げスパンの中央,板厚16mmの下フランジで ある。この結果,応力レベル180 MPa付近まで,磁歪法の計測結果は,ひずみゲージの計測結果に対し て±20 MPa以内の誤差であった。ここで,±20 MPaというのは,一般に言われている磁歪法の計測精 度である。もともと,磁歪法は,塑性域では鋼材の磁性変化からその適用ができない。しかし,今回の 試験体に用いた下フランジ鋼板の降伏応力は,317 MPaであることから,降伏応力の約5割までが,適 用可能範囲となった。この理由として,試験体と同じ鋼材でキャリブレーションを行うことができなか った点,今回の実験では別の実験で降伏させた試験体を使用している点といった試験条件に起因する原 因が挙げられる。前者に対してはキャリブレーションデータの十分な蓄積と適用性に関する検討が課題 として挙げられ,後者に対してはモニタリングにおける計測点の適切な設定が課題として挙げられる。

三つめの検証試験から,溶接後の鋼桁の応力分布が既往の残留分布形状と類似している点,電圧値に よる評価に留まってはいるものの,鋼桁架設後の死荷重による応力増加の傾向を捉えられた点から,磁 歪法は非破壊で応力分布の傾向を把握することに対しては非常に良いツールと言える。磁歪法による応 力計測の結果に誤差をもたらす要因としては,磁場の浸透深さ,応力感度曲線の精度,主応力差を分離 するためのせん断積分法の精度など,様々な要因が複雑に影響し合っている。これらの要因を分離する ことは難しい問題ではあるが,非破壊で残留応力を含む全応力を計測することができる磁歪法のメリッ トは大きい。今後とも,上記の計測誤差をもたらす要因を明確にしつつ,その対策を進める必要がある。

参考文献

- 1) 飛島建設技術研究所ホームページ:http://www.tobi-tech.com/tech/fbg-fiber.htm
- 2) ニューブレクス株式会社:http://www.neubrex.jp/htm/technology/kouseido.htm
- 3) 安福精一,磯野敏雄:磁気プローブによる溶接残留応力分布の計測,非破壊検査, Vol.35, No.11, pp.805-810, 1986.
- 4) 安福精一,村井亮介,藤井堅,池田誠,末宗仁吉,黒瀬義幸,境禎明:磁気を用いた鋼構造物の応 力計測,橋梁と基礎,pp.33-38,2001.6.
- 5) 芥川真一,安原幸二,太田道宏,松岡敬,織田卓哉:磁歪法を用いた非破壊計測における感度曲線 について,建設工学研究所論文報告集, Vol.44, pp.19-26, 2002.11.
- 6) 村井亮介,柳沢栄一,岡俊蔵,廣江哲幸,安福精一:磁歪法による鋼橋の動的応力計測ならびに実 橋鋼材感度校正方法に関する検討,溶接学会論文集,Vol.22,No.3,pp.411-416,2004.
- 7) 佐藤悠樹,宮下剛,長井正嗣,奥井義昭,安福精一,松岡敬,池田誠:表面処理の影響を受けにくい磁気的残留応力の計測方法,第64回土木学会年次学術講演会講演概要集,pp.837-838,2009.9.
- 8) 近藤明雅,日浦隆文,菊池洋一:溶接 I 型断面部材の残留応力の推定に関する研究,土木学会論文 報告集, No.288, pp.1-11, 1979.
- 9) 宮下剛,稲葉尚文,平山繁幸,劉翠平,長井正嗣:極厚フランジを有する鋼桁の終局耐力に対する 溶接残留応力の影響,土木学会論文集 A1(構造・地震工学), Vol.68, No.2, pp.465-480, 2012.8.

§5.まとめ

本編では,橋梁への歪・応力モニタリングの適用性について検討することを目的とし,はじめに,既 存の歪・応力計測技術を計測原理,長所・短所,適用事例に着目して整理することとした。調査対象と した歪・応力計測技術は以下である。

・磁歪法

- ・応力聴診器
- ・ワイヤレスひずみ計
- ・赤外線サーモグラフィ
- ・応力発光体
- ・中性子イメージング
- 3MA
- ・光ファイバセンサ
- ・音弾性法
- ・画像計測

次いで,これらの計測技術の中でも,特に適用が期待されている二つの計測技術について,個別検討 課題として取り上げることとした。光ファイバセンサと磁歪法である。

光ファイバセンサの検討では,FBG タイプと PPP-BOTDA タイプの二種類のセンサを対象とし,鋼 I 桁の4 点静的曲げ試験を通じて,計測精度,長所・短所,適用性について検討した。その結果を以下に記す。

- FBG は、センサを配置した箇所のみのひずみの測定であるため、測定時間が非常に短い。一方、 PPP-BOTDA センサは、分布測定をするため、今回の実験規模で測定に約2分程度要する。
- FBG センサは、エポキシ樹脂で母材に堅固に固定するが、PPP-BOTDA センサは、両面テープで母材に 接着する。実橋での計測においては、接着方法の検討が別途必要と考える。
- 3) PPP-BOTDA センサにおけるひずみの分布計測では,着目測定箇所と,センサの位置関係を予め把握しておく必要がある。本実験では,冷却スプレーを用いて,故意にセンサに低温のひずみを与えることで,その箇所を把握している。この点は,FBG センサに比べると手間を要する。

4) 実橋計測で問題となる温度補正に関しては、ダミーセンサを用いることで両者ともに可能である。
磁歪法の検討では、まず、薄板にビード溶接を施した試験体を対象として機械式切断による応力解放
法との比較を行い、次いで、光ファイバ試験への適用を通じて精度検証、適用範囲の把握を行うことと
した。さらに、ある橋梁を対象として、工場製作の段階から現地架設までの各段階で実施した磁歪法による応力計測を実施して実橋への適用性について検討した。その結果を以下に記す。

- 1) 薄板の試験では,磁歪法の適用で問題となる,センサプローブと計測対象との距離であるリフトオ フ量の把握を,リフトオフ量に依存しない校正曲線を作成することで解決した。磁歪法で計測され た溶接残留応力分布は,機械式切断による応力解放法でひずみゲージよって計測された分布と非常 に良い一致を示した。本試験で使用した鋼板の板厚は 10 mmであるが,磁場の浸透深さ,残留応力 の板厚方向分布を考えても,この程度の薄板に対する磁歪法の適用性は問題がないといえる。
- 2) 第3章で実施した光ファイバ検証試験の鋼 I 桁の4点曲げ試験に磁歪法も適用して,精度検証を行った。磁歪法プローブの取付位置は,等曲げスパンの中央,板厚16 mmの下フランジである。この

結果,応力レベル180 MPa 付近まで,磁歪法の計測結果は,ひずみゲージの計測結果に対して±20 MPa 以内の誤差であった。ここで,±20 MPa というのは,一般に言われている磁歪法の計測精度である。 もともと,磁歪法は,塑性域では鋼材の磁性変化からその適用ができない。しかし,今回の試験体 に用いた下フランジ鋼板の降伏応力は,317 MPa であることから,降伏応力の約5割までが,適用 可能範囲となった。この理由として,試験体と同じ鋼材でキャリブレーションを行うことができな かった点,今回の実験では別の実験で降伏させた試験体を使用している点といった試験条件に起因 する原因が挙げられる。前者に対してはキャリブレーションデータの十分な蓄積と適用性に関する 検討が課題として挙げられ,後者に対してはモニタリングにおける計測点の適切な設定が挙げられ る。

3) 実橋への適用に向け、ある橋梁を対象として、工場製作の段階から現地架設までの各段階で磁歪法 による応力計測を実施した。計測対象とした鋼板は、板厚45mm以上の厚板である。その結果、溶 接後の鋼桁の応力分布が既往の残留分布形状と類似しており、電圧値による評価に留まってはいる ものの、鋼桁架設後の死荷重による応力増加の傾向を捉えられた。ここから、磁歪法は非破壊で応 力分布の傾向を把握することに対しては非常に良いツールと言える。磁歪法による応力計測の結果 に誤差をもたらす要因としては、磁場の浸透深さ、応力感度曲線の精度、主応力差を分離するため のせん断積分法の精度など、様々な要因が複雑に影響し合っている。これらの要因を分離すること は非常に難しい問題ではあるが、非破壊で残留応力を含む全応力を計測することができる磁歪法の メリットは大きい。今後とも、上記の計測誤差をもたらす要因を明確にしつつ、その対策を進める 必要がある。

## 最新センシング技術の適用に関する研究部会報告書 (No.078)

- 編 集 鋼橋技術研究会 最新センシング技術の適用に関する研究部会
- 発 行 平成26年3月
- 発 行 所 鋼橋技術研究会 〒166-8532 東京都杉並区和田3-30-22 大学生協学会支援センター内 TEL.03-5307-1175

※当該資料の内容を複写したり他の出版物へ転載するような場合は、 必ず鋼橋技術研究会の許可を得てください。

印刷・製本 株式会社 アズ・クリエイト